Podstawy sztucznej inteligencji
|
|
- Mariusz Czech
- 8 lat temu
- Przeglądów:
Transkrypt
1 wykład 7 Eksploracja danych 25 stycznia 2011
2 Plan wykładu Co to jest eksploracja danych? 1 Co to jest eksploracja danych? 2 3
3 Definicja Eksploracja danych ED (Data mining) Metody wydobywania ukrytych informacji z dużych baz danych. Cel Do prognozowania przyszłych trendów i zachowań, które pozwolą przedsiębiorstwom na podejmowanie opartych na wiedzy decyzji. Zalety Zautomatyzowana prospektywna analiza danych wykracza poza zwykłe narzędzia wspomagania decyzji. ED udziela odpowiedzi na pytania, które nie znajdowały odpowiedzi ze względu na złożoność obliczeniową. Poszukują w bazach danych ukrytych wzorców, informacji, które ekspert może pominąć, gdyż znajdują się poza jego oczekiwaniami.
4 Technologie pozwalające na rzeczywiste wykorzystanie ED Zasoby zapewniające wykorzystanie ED: olbrzymie i prawie wszechobecne zbiory danych zwiększająca się moc obliczeniowa komputerów algorytmy eksploracji danych. Technologie eksploracji danych wywodzą się z obszarów bada : statystyka sztuczna inteligencja maszynowe uczenie się.
5 Zakres eksploracji danych Automatyczne przewidywanie trendów i zachowań Automatyzuje się proces wyszukiwania informacji i można szybko udzielać odpowiedzi na pytania dotyczące danych. Przykłady: Ukierunkowany marketing: wykorzystanie np. danych z przeszłych korespondencji promocyjnych do określenia klientów maksymalizujących szansę ponownych inwestycji. Prognozowanie upadłości: identyfikacja segmentów biznesu, które mogą reagować podobnie na pewną sekwencję zdarzeń.
6 Zakres eksploracji danych Automatyczne wykrywanie nieznanych wcześniej wzorców Narzędzia eksplorują bazy danych i identyfikują ukryte wzorce. Przykłady odkrywania wzorców Analiza danych o sprzedaży detalicznej do identyfikacji pozornie niepowiązanych produktów, które często są nabywane razem. Wykrywanie wzorca fałszywych transakcji z użyciem kart kredytowych. Identyfikacja anomalii w danych.
7 Plan wykładu Co to jest eksploracja danych? 1 Co to jest eksploracja danych? 2 3
8 Czego szuka się w danych? Klasyfikacja: Dane układa się w ustalonych grupach (klasach). Np., sieć restauracji może na podstawie zamówień klientów określić kiedy najczęściej klienci odwiedzają lokal i co zazwyczaj zamawiają. Te informacje mogą być wykorzystane do zwiększenia ruchu poprzez serwowanie np. specjalności dnia. Grupowanie: Dane są grupowane według logicznych powiązań lub preferencji konsumentów. Na przykład, identyfikacja podobieństwa konsumentów. Asocjacje: Dane służą do identyfikacji związków pomiędzy atrybutami. Przykładem reguły asocjacyjnej jest relacja piwo-pieluchy. Wzory sekwencyjne: Dane wykorzystuje się do przewidywania zachowań i trendów. Na przykład sprzedawcy sprzętu mogą przewidzieć prawdopodobieństwo nabycia plecaka na podstawie zakupu śpiwora i butów trekingowych.
9 Techniki eksploracji danych sztuczne sieci neuronowe: nieliniowe modele predykcyjne drzewa decyzyjne: struktura drzewiasta, które zaweira zestawy decyzji. Decyzje te generują zasad klasyfikacji zbioru danych. Metody wykorzystujące drzewa decyzyjne to drzewa klasyfikacyjne i regresyjne. algorytmy genetyczne metoda najbliższego sąsiedztwa: technika, który klasyfikuje każdy rekord w zbiorze danych na podstawie kombinacji klas k rekordów dla niego najbliższych (podobnych do niego). indukcja reguł: wydobycie reguł typu jeśli-to w oparciu o istotność statystyczną.
10 Modelowanie Co to jest eksploracja danych? Modelowanie jest to tworzenie modelu dopasowanego do pewnej sytuacji, w której znane jest zachowanie/odpowiedź i zastosowanie go do innej sytuacji, gdy odpowiedź nie jest znana. Przykład firmy telekomunikacyjnej Z danych historycznych o usługobiorcach zostanie zbudowany model, który określi potencjalnych klientów rozmów międzynarodowych. Modelowanie odgaduje zależności istniejące w bazie danych i tak możliwy model to: 98% klientów, którzy zarabiają więcej niż rocznie wydaje więcej niż 80/miesiąc na rozmowy międzynarodowe.
11 Przykłady zastosowań Firma farmaceutyczna może oceniać siłę sprzedaży w ostatnim okresie i ją połączyć z działalnością lekarzy oraz ustalić, które działania marketingowe będą miały największy wpływ na najbliższe kilka miesięcy. Dane powinny zawierać informacje o działalności konkurencji na rynku, jak również informacje na temat lokalnego systemu opieki zdrowotnej. Wyniki mogą być dystrybuowane do działu sprzedaży za pośrednictwem sieci WAN, która umożliwi przedstawicielom przeglądać sugestie z uwzględnieniem głównych atrybutów w procesie decyzyjnym. Firmy udzielające kredytów mogą na podstawie danych z transakcjami klientów wyszukać takich, którzy będą zainteresowani nowym produktem kredytowym. Korzystając z testu mailingowego można ustalić zainteresowanie klienta produktem.
12 Przykłady zastosowań Firma transportowa może określać najlepsze perspektywy dla swojej działalności na podstawie eksploracji danych. Analizując doświadczenia z klientami można wyznaczyć segmenty działalności (wyznaczyć atrybuty) o największym wpływie na przyszłą działalność. Można takie wyniki uogólnić na cały region. Firmy prowadzące sprzedaż mogą próbować zwiększać wskaźniki sprzedaży wykorzystując eksplorację danych. Dane z paneli konsumenckich, dostaw, aktywności konkurencji pozwalają zrozumieć trendy w zmianach marki i sklepów. Producent na tej podstawie może planować kampanię reklamową i najlepsze sposoby dotarcia do klienta.
13 Proces eksploracji danych 1 1 źródło:
14 Plan wykładu Co to jest eksploracja danych? 1 Co to jest eksploracja danych? 2 3
15 Statystyka Co to jest eksploracja danych? Używając narzędzi ze statystyki można udzielać odpoweidzi na pytania: Jakie wzorce są ukryte w bazie danych? Jaka jest szansa, że nastąpi pewne zdarzenie? Jakie wzorce są istotne? Co wynika z podsumowania (np. średnia) danych? Zyskuje się pewne wyobrażenie o tym, co jest zawarte w bazie danych.
16 Histogramy Co to jest eksploracja danych? kolor oczu wiek 2 źródło:
17 Użyteczne miary Co to jest eksploracja danych? Max - maksymalna wartość z danych. Min - minimalna wartość z danych. Średnia - średnia wartość w próbie. Mediana - wartość w bazie, powyżej i poniżej której znajduje się jednakowa liczba rekordów (dzieli bazę na połówki o równej liczbie rekordów). Dominanta - wartość najczęściej występująca (o największym prawdopodobieństwie wystąpienia). Wariancja - miara zmienności, tego, jak rozkładają się wartości od wartości średniej.
18 Rozkłady Co to jest eksploracja danych? Czasami zamiast histogramu chce się opisać rozkład danych równaniem. W klasycznej statystyce zakłada się, że istnieje pewien prawdziwy, podstawowy kształt rozkładu, który powstaje wtedy, gdy zostaną zebrane wszystkie możliwe dane. Zadaniem statystyka jest określenie prawdopodobnego rozkładu z ograniczonej liczby danych. Wiele rozkładów opisanych jest tylko przez średnią i wariancję. jednostajny normalny 3 źródło: wikipedia 3
19 Regresja liniowa Co to jest eksploracja danych? Podstawowa zasada regresji jest taka, że z mapy wartości jest tworzony taki model, by uzyskać najniższy błąd (zazwyczaj średniokwadratowy). Prediction = a + b Predictor 4 źródło: 4
20 Bardziej złożone modele niż liniowe Złożoność modelu może wynikać z: zwiększenia liczby wejść (predictors) (zwiększenie wymiarowości) Y = a + b 1 X 1 + b 2 X 2 + b 3 X 3 + b 4 X 4 + b 5 X 5 regresja nieliniowa zastosowania przekształcenie dla wejścia (podnoszenie do potęgi) wymnażania przez siebie wejść Y = a + b 1 X 1 + b 2 X 2 1 modyfikacji by odpowiedź modelu była binarna (regresja logistyczna)
21 Grupowanie Co to jest eksploracja danych? Grupowanie metodą najbliższego sąsiada Zasada polega na tym, że jeżeli chcę wiedzieć jaka jest odpowiedź (prognozowane wyjście) na sygnał wejściowy, to patrzę na najbliższe sąsiednie rekordy o podobnych wejściach z danych historycznych i używam taką samą klasę. Przykład grupowania Grupowanie odzieży do prania, czyszczenia. Grupuje się je, gdyż mają podobną charakterystykę. Grupowanie przez najbliższe sąsiedztwo Przykład: prawdopodobnie większość Twoich sąsiadów (sąsiedztwo geograficzne) ma podobny przychód. Metoda ta jest intuitywna a jednocześnie łatwa do zautomatyzowania.
22 Metoda najbliższego sąsiada w predykcji U podstaw koncepcji klastrów (grup) leży to, że dany obiekt (czy to samochody, żywność lub klient) może być bliżej do innego obiektu, niż jakiś inny trzeci obiekt. Większość ludzi ma wrodzone poczucie porządkowania różnych przedmiotów i zgodzi się, że jabłku bliżej do pomarańczy niż do pomidora. To poczucie pozwala nam budować klastry - zarówno w bazach danych, jak również w codziennym życiu. Definicja bliskości pozwala również dokonać prognozy. Sąsiedztwo do predykcji Obiekty leżące blisko siebie powinny mieć taką samą wartość predykcyjną. Wystarczy zatem znać wartość wyjściową dla jednego obiektu.
23 K-najbliższych sąsiadów 5 Zaufanie do predykcji Tym większa wiarygodność im bliższe sąsiedztwo lub jednorodność K-sąsiadów. 5 źródło:
24 Grupowanie bez wskazania odpowiedzi W danych nie ma predykcji. Grupowanie polega na obserwacji rozkładu danych w przestrzeni wejść i nadawanie tej samej etykiety dla blisko sąsiadujących rekordów separowalnych od innych.
25 pozwala wychwycić odstające rekordy (outliers) Dzięki klasteryzacji można łatwo zidentyfikować odstające rekordy i wskazać przyczynę tego stanu rzeczy. Na przykład: wszyscy sprzedawcy pewnej marki wina w jednym ze stanów osiągali mniej więcej podobny przychód. Jeden ze sklepów niestety nie. Okazał się, iż jeden z klientów po prostu nie płaci.
26 Różne wyniki klasteryzacji Według przychodu 6 6 źródło:
27 Różne wyniki klasteryzacji Według wieku i koloru oczu 7 7 źródło:
28 Problemy w klasteryzacji Który rekord do którego klastra? Algorytm podziału na klastry powinien mieć określone zasady, jaka cecha ma większy priorytet i jaki atrybut jest ważniejszy. Kompromis liczności klastrów i jednorodności. Chcąc uzyskać najbardziej jednorodne klastry będziemy mieli tendencję do zwiększania liczby klastrów (aż do liczby rekordów). Natomiast chcąc uzyskać generalizację trzeba dla danego problemu próbować budować jak najmniej klastrów.
29 Porównanie klasteryzacji i najbliższego sąsiedztwa Służy do prognozowania, jak również konsolidacji. Przestrzeń jest zdefiniowana przez problem (uczenie nadzorowane). Używa metod metrycznych do określenia bliskości rekordów. Używana głównie do konsolidowania danych (widok z góry na przestrzeń wejść) i zapisu do grup. Przestrzeń jest zdefiniowana jako domyślna przestrzeń n-wymiarowa lub zdefiniowana przez użytkownika, lub jest predefiniowaną przestrzenią dostarczoną przez wcześniejsze doświadczenia (uczenie bez nadzoru). Może używać inne niemetryczne miary.
30 hierarchiczna Metody hierarchiczne tworzą podziały na różne liczności klastrów. Istnieje możliwość decydowania o wygodnym doborze liczby klastrów. 8 8 źródło:
31 Metody klasteryzacji hierarchicznej Poprzez łączenie (aglomerative) techniki grupowania zaczynające od liczby klastrów równej liczbie rekordów. Klastry, które znajdują się najbliżej siebie są łączone ze sobą tworząc drugi co do wielkości klaster. To połączenie jest kontynuowane aż do utworzenia jednego klastra zawierających wszystkie rekordy, znajdującego się na szczycie hierarchii. Poprzez podziały (divisive) techniki grupowania działające w odwrotnym kierunku niż powyższa technika. Zaczynają gdy wszystkie rekordy są zgrupowane w jeden klaster, a następnie dokonują podziału na mniej liczne grupy.
32 niehierarchiczna Są zdecydowanie szybsze od hierarchicznych, ale wymagają od użytkownika podania: pożądanej liczby klastrów lub minimalnej wymaganej bliskość dwóch rekordów w jednym klastrze. Często wykonują się iteracyjnie startując z inną początkową konfiguracją rekordów, która wpływa na ostateczny podział oraz dokonują w pętli poprawek na granicach klastrów.
33 Drzewo decyzyjne Co to jest eksploracja danych? Drzewo decyzyjne Jest to model predykcyjny w formie drzewa. Każda gałąź jest odpowiedzią na pytanie o klasyfikację, o której decyzja zawarta jest w liściu. 9 źródło: 9
34 Cechy drzewa decyzyjnego Dzieli się dane w każdym punkcie podziału bez utraty danych (łączna liczba pozycji w węźle rodzicu jest równa sumie zapisów zawartych w jej potomkach). Łatwo jest zrozumieć jak model powstaje (w przeciwieństwie do sieci neuronowych czy klasycznej statystyki). Model zgodny z intuicją. Drzewo decyzyjne może być postrzegane jako tworzenie segmentów (klientów, produktów, regionów sprzedaży). Segmenty są tworzone poprzez podobieństwo rekordów wynikające z ich przynależności do zmiennej predykcyjnej.
35 Zastosowania drzew decyzyjnych Algorytmy budują pełne drzewo dla hipotezy. Odtwarzają sposób analizy problemu przez specjalistę. Dla dużych rzeczywistych problemów, mogą być bardzo złożone. Służą do eksploracji danych. Dokonuje się ona przez patrzenie na zmienną decyzyjną i zmienną podziału w drzewie. Np. Jeśli klient ma umowę <1,1 roku i kanał sprzedaży = telesprzedaż THEN możliwość rezygnacji wynosi 65%. Do wstępnej obróbki danych przed predykcją np. do wyznaczania istotnych wejść do sieci neuronwej. Do predykcji.
36 Algorytmy Co to jest eksploracja danych? ID3 rozdziela atrybuty na podstawie miar informacyjnych (entropii). C4.5 udoskonalenie ID3: zmniejszenie liczby obliczeń, możliwość użycia zmiennych ciągłych, praca z atrybutami z brakującymi wartościami. CART (Classification And Regression Tree) udoskonalenie C4.5. Stosuje node impurity do wskazania atrybutu podziału w drzewie. Szczegóły: an-integrated-study-on-decision-tree-induction-algorith html
Podstawy sztucznej inteligencji
wykład 7 Eksploracja danych 09 stycznia 2013 Plan wykładu Co to jest eksploracja danych? 1 Co to jest eksploracja danych? 2 3 Definicja Eksploracja danych ED (Data mining) Metody wydobywania ukrytych informacji
Inteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym Wykład 1 Wprowadzenie wrzesień/październik 2016 Inteligentne systemy przeciw atakom sieciowym wrzesień/październik 2016 1 / 54 Wprowadzenie Plan wykładu 1
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Wprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
Mail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Analiza danych i data mining.
Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Scoring kredytowy w pigułce
Analiza danych Data mining Sterowanie jakością Analityka przez Internet Scoring kredytowy w pigułce Mariola Kapla Biuro Informacji Kredytowej S.A. StatSoft Polska Sp. z o.o. ul. Kraszewskiego 36 30-110
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Data Mining Kopalnie Wiedzy
Data Mining Kopalnie Wiedzy Janusz z Będzina Instytut Informatyki i Nauki o Materiałach Sosnowiec, 30 listopada 2006 Kopalnie złota XIX Wiek. Odkrycie pokładów złota spowodowało napływ poszukiwaczy. Przeczesywali
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski
Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów
Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość
Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2
Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł
Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology
Nowe narzędzia zarządzania jakością
Nowe narzędzia zarządzania jakością Agnieszka Michalak 106947 Piotr Michalak 106928 Filip Najdek 106946 Co to jest? Nowe narzędzia jakości - grupa siedmiu nowych narzędzi zarządzania jakością, które mają
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
HURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych
WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble
dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych
- Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 14 listopada 2011 roku 1 - - 2 3 4 5 - The purpose of computing is insight, not numbers Richard Hamming Motywacja - Mamy informację,
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)
Indukowane Reguły Decyzyjne I. Wykład 3
Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie
Luty 2001 Algorytmy (4) 2000/2001
Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
SZKOLENIA SAS. ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie
SZKOLENIA SAS ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie DANIEL KUBIK ŁUKASZ LESZEWSKI ROLE ROLE UŻYTKOWNIKÓW MODUŁU
Transformacja wiedzy w budowie i eksploatacji maszyn
Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces
Eksploracja danych (data mining)
Eksploracja (data mining) Tadeusz Pankowski www.put.poznan.pl/~pankowsk Czym jest eksploracja? Eksploracja oznacza wydobywanie wiedzy z dużych zbiorów. Eksploracja badanie, przeszukiwanie; np. dziewiczych
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę)
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Projekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
Drzewa decyzyjne i lasy losowe
Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM
DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE:
DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: DATAMINING 1 S t r o n a WSTĘP Czyli jak zastąpić wróżenie z fusów i przysłowiowego nosa, statystyką i modelami ekonometrycznymi. Niniejszy dokument,
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
W poszukiwaniu sensu w świecie widzialnym
W poszukiwaniu sensu w świecie widzialnym Andrzej Śluzek Nanyang Technological University Singapore Uniwersytet Mikołaja Kopernika Toruń AGH, Kraków, 28 maja 2010 1 Podziękowania Przedstawione wyniki powstały
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Sterowanie wielkością zamówienia w Excelu - cz. 3
Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji
Data Mining Wykład 4. Plan wykładu
Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje
z wyszczególnieniem usług automatyzacji procesów mgr inż. Adam Smółkowski mgr inż. Marcin Wójciuk Aspartus (Grupa ProService FINTECO)
Przewidywane kierunki outsourcingu w ubezpieczeniach z wyszczególnieniem usług automatyzacji procesów mgr inż. Adam Smółkowski mgr inż. Marcin Wójciuk Aspartus (Grupa ProService FINTECO) Outsourcing definicja
Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby:
Laboratorium nr 1 CZĘŚĆ I : STATYSTYKA OPISOWA : 1. Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: 6,9,1,2,5,2,6,2,1,0,1,4,5,6,3,7,3,2,2,3,8,5,3,4,8,0,8,0,5,1,6,4,8,0,3,2
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization
Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne
SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU)
SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU) 1. Opis problemu - ocena końcowa projektu Projekt jako nowe, nietypowe przedsięwzięcie wymaga właściwego zarządzania. Podjęcie się realizacji
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
data mining machine learning data science
data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych
Temat: Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Autorzy: Tomasz Małyszko, Edyta Łukasik 1. Definicja eksploracji danych Eksploracja
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Zarządzanie kompetencjami pracowników
Zarządzanie kompetencjami pracowników Kompetencje IT w dobie cyfryzacji i informatyzacji życia gospodarczego Baza wymaganych kompetencji i jej zmiana w czasie Kompetencje a stanowisko pracy Indywidualizacja
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32
Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:
ZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA. dr inż. Aleksander Astel
ZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA dr inż. Aleksander Astel Gdańsk, 22.12.2004 CHEMOMETRIA dziedzina nauki i techniki zajmująca się wydobywaniem użytecznej informacji z wielowymiarowych
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber
Drzewa decyzyjne Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Drzewa decyzyjne Anna Sztyber / Drzewa decyzyjne w podstawowej wersji algorytm klasyfikacji
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Drzewa Decyzyjne, cz.2
Drzewa Decyzyjne, cz.2 Inteligentne Systemy Decyzyjne Katedra Systemów Multimedialnych WETI, PG Opracowanie: dr inŝ. Piotr Szczuko Podsumowanie poprzedniego wykładu Cel: przewidywanie wyniku (określania
... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...
4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Funkcje analityczne w SAP CRM
Akademia Wiedzy BCC /akademia Funkcje analityczne w SAP CRM Wiedzieć więcej i lepiej Kompletne rozwiązanie CRM SAP CRM bywa postrzegany jako narzędzie służące zautomatyzowaniu procesów interakcji z klientami.
WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów
WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania
Część 2: Data Mining
Łukasz Przywarty 171018 Wrocław, 18.01.2013 r. Grupa: CZW/N 10:00-13:00 Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych Część 2: Data Mining Prowadzący: dr inż. Henryk
Dopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
Co warto wiedzieć o reklamie w wyszukiwarce Google, gdy prowadzisz lokal gastronomiczny?
Co warto wiedzieć o reklamie w wyszukiwarce Google, gdy prowadzisz lokal gastronomiczny? Czy w Krakowie przez internet restauracji szukają częściej niż w Gdańsku? Gdzie znajdziesz smakoszy kuchni chińskiej?
Inteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Proces odkrywania wiedzy z baz danych
Proces odkrywania wiedzy z baz danych Wydział Informatyki Politechnika Białostocka Marcin Czajkowski email: m.czajkowski@pb.edu.pl Świat pełen danych Świat pełen danych Możliwości analizowania i zrozumienia
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego