WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
|
|
- Grzegorz Lech Pietrzyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej, Laboratorium Biocybernetyki Kraków, al. Mickiewicza 30, paw. C3/205 horzyk@agh.edu.pl, Google: Adrian Horzyk
2 INŻYNIERIA WIEDZY KNOWLEDGE ENGINEERING (KE) UCZENIE MASZYNOWE STATYSTYKA MATEMATYCZNA TECHNOLOGIE BAZODANOWE ROZPOZNAWA NIE WZORCÓW DANYCH SYSTEMY KOGNITYWNE INŻYNIERIA WIEDZY INŻYNIERIA OPROGRAMOWNIA PROBLEMATYKA BIG-DATA OBLICZENIA ROZPROSZONE (CLOUD COMPUTING) ALGORYTMIKA to obszar informatyki zajmujący się metodami eksploracji, reprezentacji i modelowania wiedzy z danych (ich zbiorów, reguł, baz danych) oraz metodami wnioskowania na ich podstawie.
3 EKSPLORACJA WIEDZY Z DANYCH KNOWLEDGE DISCOVERY IN DATABASES (KDD) to proces odkrywania wiedzy ukrytej w danych lub ich zbiorach (czyli baza danych) polegający na wyszukiwaniu prawidłowości, powtarzalności i zależności (relacji) pomiędzy danymi. INŻYNIERIA WIEDZY EKSPLORACJA DANYCH (DATA MINING) ODKRYWANIE WIEDZY (KNOWLEDGE DISCOVERY) MODELOWANIE WIEDZY (KNOWLEDGE MODELING)
4 ZADANIA EKSPLORACJI DANYCH DATA MINING TASKS DANYCH RELACJI PODOBIEŃSTW RÓŻNIC WYDOBYWANIE WIEDZY Z DANYCH ZADANIA EKSPLORACJI CZYSZCZENIE DANYCH TRANSFORMACJA DANYCH INTEGRACJA (FUZJA) DANYCH GRUP ZBIORY DANYCH GRUPOWANIE I SELEKCJA DANYCH Eksploracja danych to zwykle proces wieloetapowy związany z wstępną obróbką danych (czyszczenie, normalizacja, standaryzacja lub inny rodzaj transformacji), porównywaniem, integracją, grupowaniem i selekcją danych oraz wizualizacją danych, ich cech, grup, podobieństw, różnic i zależności (relacji).
5 NARZĘDZIA EKSPLORACJI DANYCH DATA MINING METHODS AND TOOLS KLASYFIKACJA WYDOBYWANIE WIEDZY Z DANYCH TRASFORMACJA KLASTERYZACJA REDUKCJA PREDYKCJA AGREGACJA I KONSOLIDACJA ASOCJACJA NARZĘDZIA EKSPLORACJI ZBIORY DANYCH SELEKCJA PREZENTACJA Eksploracja danych to zwykle proces wieloetapowy związany z wstępną obróbką danych (czyszczenie, normalizacja, standaryzacja lub inny rodzaj transformacji), porównywaniem, integracją, grupowaniem i selekcją danych oraz wizualizacją danych, ich cech, grup, podobieństw, różnic i zależności (relacji).
6 KLASYFIKACJA - CLASSIFICATION to zadanie przyporządkowania wzorca do pewnej klasy. to zadanie rozpoznawania wzorca jako elementu pewnej klasy. Klasa to pewna grupa wzorców charakteryzujących się podobnymi cechami/właściwościami dla określających je atrybutów/parametrów. W wyniku klasyfikacji wzorcowi zostaje przyporządkowana pewna klasa, reprezentowana zwykle przez pewną etykietę klasy. Jeśli wzorzec należy równocześnie do kilku klas, wtedy mówimy o zagadnieniu multiklasyfikacji (multiclass classification), np.: ser Mozzarella należy do klas: serów, nabiału, produktów spożywczych Sklasyfikowanie wzorca jako przynależnego do określonej klasy może być rozważane jako proces: Binarny / zero-jedynkowy / dyskretny: należy lub nie należy do klasy Rozmyty / predyktywny / ciągły: o określonym stopniu przynależności do klasy
7 REDUKCJA I TRANSFORMACJA DANYCH Metody redukcji i transformacji danych mają za zadanie doprowadzić do optymalnej reprezentacji dużych ilości danych, tj. takiej reprezentacji, żeby dane w dalszym ciągu były reprezentatywne dla rozważanego problemu, np. klasyfikacji, czyli umożliwiały poprawną dyskryminację wzorców, tj. rozróżnienie ich według pozostałych po redukcji danych. Optymalna reprezentacja danych może być osiągnięta na skutek: Redukcji wymiaru danych czyli usuwania mniej istotnych atrybutów danych, oraz Selekcji atrybutów najistotniejszych pod kątem rozwiązywanego zadania. Transformacji danych czyli przekształcenia danych do innej, bardziej oszczędnej lub mniej wymiarowej postaci, która dalej pozwala na ich poprawne rozróżnianie i przetwarzanie, np.: metoda analizy głównych składowych (PCA Principal Component Analysis) metoda analizy składowych niezależnych (ICA Independent Component Analysis) Agregacji i Asocjacji danych (Aggregate & Associate) czyli takiej reprezentacji danych, która polega na zagregowaniu reprezentacji takich samych i/lub podobnych danych i ich grup oraz ich odpowiednim do rozwiązywanego zadania powiązaniu w celu przyspieszenia ich przeszukiwania i przetwarzania.
8 I PREZENTACJA VISUALIZATION & PRESENTATION to zadania związane z graficzną reprezentacją danych w takiej postaci, żeby zaprezentować dane w taki sposób, aby możliwe było: porównanie liczności danych określonego typu/grupy/zbioru/klasy, wskazanie zależności (relacji) pomiędzy danymi i ich grupami, wskazanie minimów, maksimów, średnich, odchyleń i wariancji danych, wskazanie rozkładów, agregacji, środków ciężkości, wskazanie podobieństw i różnic pomiędzy danymi i ich grupami, wskazanie reprezentantów, typowych i nietypowych danych, wskazanie wzorców lub wartości odstających od przeciętnych (outlier), błędnych, brakujących lub szczególnych, podział, odfiltrowanie lub selekcja pewnej grupy wzorców, oceny pokrycia przestrzeni danych i ich reprezentatywności dla zadania, oceny jakości, zaszumienia, poprawności, dokładności i pełności danych.
9 GŁÓWNE ETAPY EKSPLORACJI DANYCH 1. Zrozumienie zadania i zdefiniowanie celu praktycznego eksploracji, czyli przyporządkowanie zadania do grupy: klasyfikacji, grupowania, predykcji lub asocjacji. 2. Przygotowanie bazy danych do analizy poprzez wyselekcjonowanie rekordów z baz danych najlepiej charakteryzujących rozważany problem. 3. Czyszczenie i wstępna transformacja danych poprzez ich normalizację, standaryzację, usuwanie danych odstających, usuwanie lub uzupełnianie niekompletnych wzorców. 4. Transformacja danych z postaci symbolicznej na postać numeryczną poprzez przypisanie im wartości lub rozmywanie (fuzzification) w zależności od stosowanej metody ich dalszego przetwarzania. 5. Redukcja wymiaru danych i selekcja najbardziej znaczących i dyskryminujących cech pozwalających uzyskać najlepsze zdolności uogólniające projektowanego systemu. 6. Wybór techniki i metody eksploracji danych na podstawie możliwości danej metody oraz rodzaju i liczności danych: numeryczne, symboliczne, sekwencyjne Wybór algorytmu lub aplikacji implementującej wybraną technikę eksploracji danych oraz określenie optymalnych parametrów adaptacji/uczenia wybranej metody (przydatne mogą tutaj być metody ewolucyjne, genetyczne, walidacja krzyżowa). 8. Przeprowadzenie procesu konstrukcji, adaptacji lub uczenia wybraną metodą. 9. Eksploatacja systemu: wnioskowanie, określanie grup, podobieństw, różnic, zależności, następstwa, implikacji. 10. Douczanie systemu na nowych danych lub utrwalanie zebranych wniosków z eksploracji.
10 PODSTAWOWE POJĘCIA I TERMINOLOGIA Asocjacja to proces stowarzyszenia ze sobą dwu lub więcej obserwacji. W najprostszej postaci opisywana jest często przez reguły asocjacyjne. Asocjacje są również postawą działania ludzkiego mózgu, pamięci i inteligencji, więc mogą być reprezentowane przez skomplikowane sieci neuronowe. Atrybut to jedna z cech (parametrów) opisujących obiekt za pośrednictwem wartości reprezentujących ten atrybut. Wartości te są określonego typu i mogą posiadać wartości z pewnego zakresu lub zbioru. Cecha diagnostyczna deskryptor numeryczny opisujący i charakteryzujący analizowany proces, zwany również atrybutem procesu. Ekstrakcja cech diagnostycznych to proces tworzenia atrybutów wejściowych dla modelu eksploracji na podstawie wyników pomiarowych. Proces ten nazywany jest również generacją cech. Proces ten może być powiązany z normalizacją, standaryzacją lub inną transformacją danych, mających na celu uwydatnienie głównych cech modelowanego procesu, które mają istotny wpływ na budowę modelu oraz uzyskiwane wyniki i uogólnienie. Generalizacja to zdolność lub właściwość modelu eksploracji danych polagająca na możliwości poprawnego działania (np. przewidywania, klasyfikacji, regresji) modelu na innych danych niż dane uczące.
11 PODSTAWOWE POJĘCIA I TERMINOLOGIA Grupowanie (klasteryzacja) to proces wyszukiwania obiektów zdefiniowanych przy pomocy danych podobnych do siebie. Klasyfikacja to proces przyporządkowywania obiektów do określonych klas na podstawie podobieństwa lub innych procesów skojarzeniowych albo w wyniku regresji na podstawie analizy i przetwarzania danych wejściowych, której wynikiem jest wartość odpowiadającą klasie lub stopniu podobieństwa do niej. Model to zwykle algorytm lub wzór matematyczny połączony z pewną strukturą lub sposobem reprezentacji przetworzonych danych źródłowych, określany w trakcie procesu uczenia, adaptacji lub konstrukcji. Obserwacja to zestaw pomiarów tworzących jeden rekord danych (krotkę). Predykcja to wynik procesu regresji lub kojarzenia, w którym otrzymujemy odpowiedź w postaci liczbowej lub innego obiektu. Redukcja to proces kompresji stratnej polegający na zmniejszeniu wymiaru wektorów lub macierzy obserwacji poprzez eliminację mało reprezentatywnych lub niekompletnych atrybutów albo w wyniku określania pochodnych reprezentatywnych cech (np. PCA, ICA).
12 PODSTAWOWE POJĘCIA I TERMINOLOGIA Adaptacja to polegający na przedstawieniu danych uczących oraz dobraniu, dopasowaniu lub obliczeniu wartości modelu tak, aby dostosował swoje działanie do określonego zbioru, typu i ew. pożądanych wartości wyjściowych danych uczących. Uczenie to proces iteracyjny polegający na wielokrotnym przedstawianiu danych uczących oraz poprawianiu wartości modelu tak, aby dostosował swoje działanie do określonego zbioru, typu i ew. pożądanych wartości wyjściowych danych uczących. Uczenie może być np.: nienadzorowane (bez nauczyciela, unsupervised), nadzorowane (z nauczycielem, supervised), przez wzmacnianie (reinforcement), konkurencyjne (competitive), motywowane, Bayesowskie, asocjacyjne Testowanie to proces sprawdzania jakości modelu przeprowadzanym w trakcie procesu uczenia lub adaptacji modelu na zbiorze danych chwilowo wydzielonych i wykluczonych z procesu uczenia (tzw. walidacja np. krzyżowa n-fold cross validation) lub na zbiorze danych testowych całkowicie wykluczonych z procesu uczenia/adaptacji modelu (testowanie właściwe). Wzorzec to zestaw lub sekwencja albo inna struktura danych reprezentowanych w postaci wektora, macierzy, sekwencji albo grafu danych stosowana do budowy, adaptacji, uczenia, walidacji i testowania modelu.
TRANSFORMACJE I JAKOŚĆ DANYCH
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING TRANSFORMACJE I JAKOŚĆ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
WIEDZA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WIEDZA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
Adrian Horzyk
Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. EKSPLORACJA DANYCH Ćwiczenia. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING EKSPLORACJA DANYCH Ćwiczenia Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Pattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
BAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access NORMALIZACJA BAZ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Adrian Horzyk
Sztuczne Systemy Skojarzeniowe SSS Asocjacyjne grafowe struktury danych AGDS Associative Graph Data Structure Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
PROLOG WSTĘP DO INFORMATYKI. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk PROLOG www.agh.edu.pl Pewnego dnia przyszedł na świat komputer Komputery
Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski
Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ ĆWICZENIA Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
HURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
SPOTKANIE 2: Wprowadzenie cz. I
Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie
BAZY DANYCH MAKRA I PRZYCISKI. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access MAKRA I PRZYCISKI Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej
data mining machine learning data science
data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe
BAZY DANYCH. NIERELACYJNE BAZY DANYCH NoSQL I ASOCJACYJNE STRUKTURY DANYCH. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH NIERELACYJNE BAZY DANYCH NoSQL I ASOCJACYJNE STRUKTURY DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Analiza i wizualizacja danych Data analysis and visualization
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów
Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów Wojciech Moczulski Politechnika Śląska Katedra Podstaw Konstrukcji Maszyn Sztuczna inteligencja w automatyce i robotyce Zielona Góra,
Szczegółowy opis przedmiotu zamówienia
ZP/ITS/19/2013 SIWZ Załącznik nr 1.1 do Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych dla studentów
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych
- Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 14 listopada 2011 roku 1 - - 2 3 4 5 - The purpose of computing is insight, not numbers Richard Hamming Motywacja - Mamy informację,
Metody Inżynierii Wiedzy
Metody Inżynierii Wiedzy Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology Mateusz Burcon Kraków, czerwiec 2017 Wykorzystane technologie Python 3.4
w ekonomii, finansach i towaroznawstwie
w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble
METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI
METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI CELE PROJEKTU Transformacja dowolnej bazy danych w min. 3 postaci normalnej do postaci Asocjacyjnej Grafowej
Analiza głównych składowych- redukcja wymiaru, wykł. 12
Analiza głównych składowych- redukcja wymiaru, wykł. 12 Joanna Jędrzejowicz Instytut Informatyki Konieczność redukcji wymiaru w eksploracji danych bazy danych spotykane w zadaniach eksploracji danych mają
Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych
Temat: Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Autorzy: Tomasz Małyszko, Edyta Łukasik 1. Definicja eksploracji danych Eksploracja
BAZY DANYCH. Microsoft Access NAWIGACJA, MENU I PARAMETRY WYSZUKIWANIA. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access NAWIGACJA, MENU I PARAMETRY WYSZUKIWANIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
Modelowanie glikemii w procesie insulinoterapii
Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą
BAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access NORMALIZACJA BAZ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON 3
Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.46 TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop. 2017 Spis treści O autorach 9 0 recenzencie 10 Wprowadzenie 11 Rozdział 1. Pierwsze kroki 15 Wprowadzenie do nauki o danych
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
Proces odkrywania wiedzy z baz danych
Proces odkrywania wiedzy z baz danych Wydział Informatyki Politechnika Białostocka Marcin Czajkowski email: m.czajkowski@pb.edu.pl Świat pełen danych Świat pełen danych Możliwości analizowania i zrozumienia
Sztuczna inteligencja : Zbiory rozmyte cz. 2
Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:
Adrian Horzyk
Sztuczne Systemy Skojarzeniowe SSS Relacje Bazodanowe czy Asocjacje AGDS? DB Relations v AGDS Associations? Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych
Zagadnienia (1/3) Data-flow diagramy przepływów danych ERD diagramy związków encji Diagramy obiektowe w UML (ang. Unified Modeling Language)
Zagadnienia (1/3) Rola modelu systemu w procesie analizy wymagań (inżynierii wymagań) Prezentacja różnego rodzaju informacji o systemie w zależności od rodzaju modelu. Budowanie pełnego obrazu systemu
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie
Wprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
SYLABUS. Dotyczy cyklu kształcenia Realizacja w roku akademickim 2016/2017. Wydział Matematyczno - Przyrodniczy
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS Dotyczy cyklu kształcenia 2014-2018 Realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Przykładowa analiza danych
Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór
Mail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
Data Mining Kopalnie Wiedzy
Data Mining Kopalnie Wiedzy Janusz z Będzina Instytut Informatyki i Nauki o Materiałach Sosnowiec, 30 listopada 2006 Kopalnie złota XIX Wiek. Odkrycie pokładów złota spowodowało napływ poszukiwaczy. Przeczesywali
Bazy danych. dr inż. Andrzej Macioł
Bazy danych dr inż. Andrzej Macioł http://amber.zarz.agh.edu.pl/amaciol/ Ontologia Dziedzina metafizyki, która para się badaniem i wyjaśnianiem natury jak i kluczowych właściwości oraz relacji rządzących
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g
Eksploracja danych Jacek Rumiński
Eksploracja danych Jacek Rumiński slajd 1 Kontakt: Katedra Inżynierii Biomedycznej, pk. 106, tel.: 3472678, fax: 3461757, e-mail: jwr@eti.pg.gda.pl Źródła, Internet, SQL/MM i inne standardy (dodatkowy
Technologia informacyjna
Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów
Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
Klasyfikacja LDA + walidacja
Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
Bazy danych. dr inż. Andrzej Macioł
Bazy danych dr inż. Andrzej Macioł http://amber.zarz.agh.edu.pl/amaciol/ Ontologia Dziedzina metafizyki, która para się badaniem i wyjaśnianiem natury jak i kluczowych właściwości oraz relacji rządzących
KLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
WYKŁAD 1. Wprowadzenie w tematykę kursu
Wrocław University of Technology WYKŁAD 1 Wprowadzenie w tematykę kursu autor: Maciej Zięba Politechnika Wrocławska Informacje dotyczące zajęć Cykl 8 wykładów. Konsultacje odbywają się w sali 121 w budynku
Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl
Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki
2
1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem
AUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Eksploracja danych (data mining)
Eksploracja (data mining) Tadeusz Pankowski www.put.poznan.pl/~pankowsk Czym jest eksploracja? Eksploracja oznacza wydobywanie wiedzy z dużych zbiorów. Eksploracja badanie, przeszukiwanie; np. dziewiczych
Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec
Systemy agentowe Uwagi organizacyjne i wprowadzenie Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa
10. Redukcja wymiaru - metoda PCA
Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte
Sieci Neuronowe Wykład 11 Algorytmy genetyczne; Systemy rozmyte wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 4, PWNT, Warszawa 1996. W. Duch, J. Korbicz,
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA REALIZACJA W ROKU AKADEMICKIM 2016/2017
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2014-2018 REALIZACJA W ROKU AKADEMICKIM 2016/2017 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu Metody eksploracji danych Kod przedmiotu/ modułu*
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:
Monitorowanie sytuacji drogowej w oparciu o dane z sieci GSM. promotor: dr hab. inż. Andrzej Jaszkiewicz
Monitorowanie sytuacji drogowej w oparciu o dane z sieci GSM promotor: dr hab. inż. Andrzej Jaszkiewicz Plan prezentacji motywacje i cele etapy projektu: dane wejściowe wizualizacja danych model statystyczny
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Efekt kształcenia. Wiedza
Efekty dla studiów drugiego stopnia profil ogólnoakademicki na kierunku Informatyka na specjalności Przetwarzanie i analiza danych, na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie oznacza
Wykaz tematów prac magisterskich w roku akademickim 2018/2019 kierunek: informatyka
Wykaz tematów prac magisterskich w roku akademickim 2018/2019 kierunek: informatyka L.p. Nazwisko i imię studenta Promotor Temat pracy magisterskiej 1. Wojciech Kłopocki dr Bartosz Ziemkiewicz Automatyczne
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt