Program "FLiNN-GA" wersja 2.10.β

Wielkość: px
Rozpocząć pokaz od strony:

Download "Program "FLiNN-GA" wersja 2.10.β"

Transkrypt

1 POLSKIE TOWARZYSTWO SIECI NEURONOWYCH POLITECHNIKA CZĘSTOCHOWSKA Zakład Elektroniki, Informatyki i Automatyki Maciej Piliński Robert Nowicki - GA Program "FLiNN-GA" wersja 2.10.β Podręcznik użytkownika Częstochowa 1996

2

3 Spis treści SPIS TREŚCI...1 WSTĘP...2 OPIS ZMIAN...2 IMPORT FROM FLEXTOOL(EFM)...2 ALGORYTMY GENETYCZNE W DOBORZE PARAMETRÓW STRUKTURY...3 ALGORYTMY GENETYCZNE W DOBORZE PARAMETRÓW STEROWNIKA...4 WIZUALIZACJA PRZEBIEGU ALGORYTMÓW GENETYCZNYCH...5 REALIZACJA ALGORYTMÓW GENETYCZNYCH...5 KODOWANIE CHROMOSOMÓW...5 Parametry...5 Reguły...6 OKREŚLANIE FUNKCJI PRZYSTOSOWANIA...6 METODY SELEKCJI...6 Metoda koła ruletki...6 Metoda rankingowa...7 Metoda turniejowa...7 Steady-state...7 REALIZACJA OPERATORÓW GENETYCZNYCH...7 Krzyżowanie...7 Mutacja...7 FLiNN-GA - Suplement 1

4 Wstęp W niniejszej wersji program FLiNN został uzupełniony o nowe moduły uwzględniające obecnie prowadzone prace w kierunku komputerowych modeli sztucznej inteligencji. Modułami tymi są: moduł konwersji wyników otrzymywanych z pakietu FlexTool(EFM) wyprodukowanego przez Flexible Intelligence Group oraz moduł algorytmów genetycznych. Zostaną one omówione w następnych punktach. Opis zmian Import from FlexTool(EFM) Menu główne przedstawione poniżej zostało uzupełnione o przycisk umożliwiający uruchomienie modułu konwersji. Konwersji mogą podlegać pliki ftfsinfo.txt generowane przez pakiet FlexTool(EFM). Plik taki zawiera opis sterownika rozmytego z wyszczególnieniem funkcji opisujących wejściowe i wyjściowe zbiory rozmyte oraz reguł. Plik wynikowy może zawierać opis zbiorów rozmytych i reguł w formacie programu FLiNN (*.rul) lub opis struktury realizującej sterownik zbliżony do opisanego w pliku źródłowym(*.str). Jest to rozbudowana wersja uproszczonego sterownika Wanga. Na poniższym rysunku przedstawiony jest przykład takie struktury. W celu uniknięcia stanów nieokreślonych zrealizowane są w niej wszystkie możliwe reguły uzupełnione o 2 FLiNN-GA - Suplement

5 współczynniki prawdziwości kolejnych reguł. Reguły opisane w zbiorze źródłowym mają współczynnik ten równy 1, a pozostałe 0.2. Każda z reguł ma ponadto własny zbiór wyjściowy, co umożliwia bardziej elastyczny proces modyfikacji struktury w trakcie uczenia, będąc pewnym substytutem doboru reguł. O wyniku każdej przeprowadzonej konwersji informuje pasek stanu. Algorytmy genetyczne w doborze parametrów struktury Okienko dialogowe Setup zostało umożliwia rezygnację z mechanizmu propagacji wstecznej w celu modyfikacji bloków PARAM na rzecz algorytmu genetycznego. Dokonujemy tego za pomocą przycisku Genetic Algorithms. FLiNN-GA - Suplement 3

6 Pierwszym parametrem jest ilość bajtów przeznaczonych do przechowywania w chromosomie informacji o wartości jednego bloku typu PARAM. Od wartości tej zależy rozdzielczość dobierania wartości. Rozdzielczość ( x), przedział zmienności (x min x max ) i ilość przeznaczonych bajtów (b) związane są zależnością: xmax xmin x = 8 * b 2 1 Wybranie opcji FineTune powoduje, że wartość parametru będzie ulegać zmianie w zakresie ograniczonym do części zakresu zmienności ustalonego w procentach w okolicy wartości aktualnej. Parametr SteadyState ustala jaka część populacji rodzicielskiej ma przejść do nowej populacji zgodnie z mechanizmem Steady State. Zatem w wyniku krzyżowań powstanie n-k nowych chromosomów, gdzie n jest licznością populacji, a k parametrem Steady State. Kolejne parametry to liczność populacji, ilość punktów krzyżowania oraz prawdopodobieństwa krzyżowania i mutacji. Do wyboru mamy trzy metody selekcji: metoda koła ruletki, metoda rankingowa oraz turniejowa o dowolnie ustalanej wielkości turnieju. Podobnie jak w przypadku uczenia metodą wstecznej propagacji możemy wyszczególnić, które warstwy mają podlegać modyfikacji. Ustalone parametry GA dotyczą wówczas wszystkich wyszczególnionych warstw. Algorytmy genetyczne w doborze parametrów sterownika Wybierając z menu głównego opcję Load Table Lookup Scheme otrzymujemy oprócz dotychczasowych metod (Wang, Wang+, Lin-Lee) nową: GanAlgor. Po jej wybraniu i potwierdzeniu, na górnej listwie pojawia się nowy przycisk dzięki któremu mamy możliwość ustalenia parametrów działania algorytmów genetycznych. Możemy zdecydować czy dobierane będą tylko reguły (Rules), funkcje przynależności zbiorów rozmytych (Membership function), czy też jedne i drugie. Reguły kodowane są w sposób niezmienny, natomiast dla współczynników określających funkcje przynależności 4 FLiNN-GA - Suplement

7 możemy ustalić ilość bajtów przeznaczonych na parametr oraz ewentualnie wybrać opcję FineTune. Pozostałe parametry są identyczne jak opisane w poprzednim punkcie. Wizualizacja przebiegu algorytmów genetycznych W trakcie działania algorytmów genetycznych, w pliku ga_fitfn.dat zapisywane są wartości minimalne, średnie, i maksymalne błędu (będącego wartością funkcji przynależności) dla każdej kolejnej generacji. Można je obejrzeć (także w trakcie trwania uczenia) za pomocą opcji Plot 2D Graph programu FLiNN. Realizacja algorytmów genetycznych Kodowanie chromosomów Parametry Wielkościami podlegającymi działaniom algorytmu genetycznego w strukturze sterownika są wyłącznie wartości bloków PARAM. Dla każdej takiej wielkości zapamiętywany jest w specjalnej strukturze dopuszczalny przedział losowania (x min, x max - w obecnej wersji jest on ustalony z góry na <-200; 200>) oraz wartość początkowa. Użytkownik może ustawić ilość bajtów (b) jaka przeznaczona będzie w chromosomie na każdy parametr (domyślnie 2). Wartość ta jest wspólna dla wszystkich parametrów i determinuje ona rozdzielczość dobierania wartości. Wzór określający zależność między tymi parametrami zawarty jest w punkcie Algorytmy genetyczne w doborze parametrów struktury. Długość chromosomy jest iloczynem ilości parametrów w strukturze dopuszczonych do modyfikacji i ilości bajtów przeznaczonych na każdy parametr. Na potrzeby przechowywania informacji o wszystkich chromosomach alokowany jest obszar pamięci o wielkości będącym iloczynem długości chromosomu i liczności populacji. Zakodowana wartość parametru zapisana w b bitach traktowana jako liczba całkowita bez znaku (w) zawiera się w przedziale od 0 do 2 8*b -1. W trakcie rozkodowywania jest ona przeskalowywana na przedział od x min do x max zgodnie ze wzorem: xmax xmin x = xmin + x* w= xmin + 8 * b * w 2 1 Jeżeli opcja FineTune jest wyłączona, obliczona w ten sposób wartość staje się nową wartością odpowiedniego bloku PARAM. Jeżeli opcja FineTune jest włączona, obliczona FLiNN-GA - Suplement 5

8 wartość jest mnożona przez współczynnik podawany przy opcji i dodawana do wartości początkowej danego parametru. Parametry zbiorów rozmytych w module Load Table Lookup Scheme przy wybraniu algorytmów genetycznych traktowane są identycznie jak wartości bloków PARAM w strukturze, z tą różnicą, że dopuszczalne przedziały losowania są określone na podstawie podanych przez użytkownika przedziałów zmienności wielkości wejściowych i wyjściowych. Reguły W przypadku kodowania reguł zakłada się, że istnieją wszystkie reguły, określone przez wszystkie możliwe kombinacje poprzedników, a więc ilość reguł jest zdeterminowana przez ilość wejściowych zbiorów rozmytych na każdym z wejść. Przy takim założeniu kodowaniu podlegać muszą tylko następniki reguł. Ilość różnych następników jest równa ilości wyjściowych zbiorów rozmytych (N out ). Możliwe następniki są numerowane od 0 do N out -1, a ponieważ każdej regule poświęcony jest jeden bajt mogący posiadać wartość (w) od 0 do 255 konieczne jest przeskalowanie jego wartości aby otrzymać numer (n) właściwego danej regule następnika, według wzoru: Nout n = * w 256 W module Load Table Lookup Scheme chromosom składa się zatem z części opisującej parametry zbiorów rozmytych oraz z części opisującej następniki reguł. W szczególnym przypadku jedna z części może być zerowej długości. Określanie funkcji przystosowania W celu określenia funkcji przystosowania danego chromosomu jest on dekodowany. Powstała w ten sposób struktura o nowych parametrach jest testowana przez wszystkie elementy ciągu uczącego. W każdym takim teście określany jest błąd będący różnicą między wartością wyjściową określoną w ciągu uczącym, a faktycznie otrzymaną na wyjściu sterownika. Suma kwadratów tych błędów jest funkcją przystosowania. Operacja ta jest przeprowadzana dla każdego chromosomu w populacji. Metody selekcji Metoda koła ruletki Metoda ruletki jest metodą, którą możemy wykorzystać w procesie poszukiwania maksimum funkcji przystosowania. Opisana powyżej funkcja przystosowania jest sumą kwadratów błędów, a więc poszukujemy jej minimum. Dlatego przed przystąpieniem do właściwego procesu selekcji wykonywana jest konwersja obliczonych wartości funkcji przystosowania na wartość możliwą do wykorzystania w metodzie koła ruletki. Najprostszą metodą byłoby zastąpienie dotychczasowych wartości ich odwrotnościami. W obecnej wersji zastosowano jednak inny algorytm. Wyszukiwany jest najgorszy chromosom o największej wartości funkcji przystosowania (F maks ), a następnie wartości funkcji przystosowania wszystkich chromosomów są przeliczane według wzoru: F = 12, * F F nowa maks poprzednia W ten sposób sprowadzono problem minimalizacji do problemu maksymalizacji dla którego metoda koła ruletki została stworzona. 6 FLiNN-GA - Suplement

9 Algorytm koła ruletki został zrealizowany według klasycznych wzorców. Losowana jest N wartość (k) z przedziału 0 ; F i, gdzie N jest liczbą chromosomów w populacji. i= 1 Następnie poszukiwane jest takie najmniejsze n dla którego spełniona jest nierówność: n i= 1 F k Takie n jest numerem pierwszego chromosomu rodzicielskiego. Drugi chromosom rodzicielski wybierany jest w identyczny sposób. Metoda rankingowa Jest to metoda, w której krotność występowania danego chromosomu w puli rodzicielskiej powinna być odwrotnie proporcjonalna do jego wartości funkcji przystosowania. Ponieważ liczba chromosomów jest niewielką liczbą całkowitą, podobnie jak krotność występowania danego chromosomu w puli rodzicielskiej, nie jest możliwe dokładne spełnienie tego założenia. Realizacja tej metody w programie FLiNN-GA jest następujące: Do puli rodzicielskiej wybierane są kolejno najlepsze chromosomy (o najmniejszej wartości funkcji przystosowania) po czym ich wartość funkcji przystosowania zwiększana jest dwukrotnie. Metoda turniejowa W metodzie tej każdy chromosom rodzicielski jest wyłaniany z turnieju rozgrywanego na zasadzie lepszy zostaje. Wielkość grupy turniejowej (N t ) jest określana przez użytkownika. Z istniejącej populacji wybierana jest w sposób losowy określona liczba chromosomów. Kolejno porównywane są wartości funkcji przystosowania tych chromosomów. Chromosom o wyższej wartości funkcji przystosowania odpada, ten drugi pozostaje do dalszych porównań, przy czym prawdopodobieństwo zwycięstwa lepszego jest ustalone na 0,9. Po przeprowadzeniu N t -1 porównań wyłoniony zostaje jeden chromosom wykorzystywany następnie jako rodzic. Steady-state Opcja ta określa jaka liczba chromosomów starej populacji ma trafić bez operacji krzyżowania do nowej populacji. Nawet gdy wartość ta wynosi 0, jeden najlepszy chromosom jest kopiowany do populacji potomnej. Chromosom ten jest również chroniony przed operacją mutacji. Realizacja operatorów genetycznych Krzyżowanie Na podstawie wybranej metody selekcji wybierana jest para rodzicielska. Następnie chromosomy te są krzyżowane w punktach wybranych losowo na długości chromosomu. Punkt krzyżowania może być ustalony w dowolnym punkcie chromosomu, także w środku bajtu. Ilość punktów krzyżowania danej paru rodzicielskiej jest ustalana przez użytkownika (domyślnie 2). Operacja krzyżowania w wylosowanym punkcie jest wykonywana z prawdopodobieństwem określonym przez użytkownika (domyślnie 0,77). Mutacja Mutacja jest wykonywana na każdym bicie chromosomu z prawdopodobieństwem określonym przez użytkownika (domyślnie 0,077). Polega ona na zanegowaniu wartości i FLiNN-GA - Suplement 7

10 mutowanego bitu. Jest ona wykonywana na chromosomach populacji potomnej bezpośrednio po operacji krzyżowania. 8 FLiNN-GA - Suplement

ALGORYTMY GENETYCZNE ćwiczenia

ALGORYTMY GENETYCZNE ćwiczenia ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,

Bardziej szczegółowo

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów

Bardziej szczegółowo

Zadania laboratoryjne i projektowe - wersja β

Zadania laboratoryjne i projektowe - wersja β Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki

Bardziej szczegółowo

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana

Bardziej szczegółowo

Algorytmy genetyczne w optymalizacji

Algorytmy genetyczne w optymalizacji Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

Algorytmy ewolucyjne NAZEWNICTWO

Algorytmy ewolucyjne NAZEWNICTWO Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne

Bardziej szczegółowo

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,

Bardziej szczegółowo

Zadanie 5 - Algorytmy genetyczne (optymalizacja)

Zadanie 5 - Algorytmy genetyczne (optymalizacja) Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

Optymalizacja optymalizacji

Optymalizacja optymalizacji 7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania

Bardziej szczegółowo

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium

Bardziej szczegółowo

Dobór parametrów algorytmu ewolucyjnego

Dobór parametrów algorytmu ewolucyjnego Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.

Bardziej szczegółowo

BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza

BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii

Bardziej szczegółowo

Rozdział ten zawiera informacje na temat zarządzania Modułem Modbus TCP oraz jego konfiguracji.

Rozdział ten zawiera informacje na temat zarządzania Modułem Modbus TCP oraz jego konfiguracji. 1 Moduł Modbus TCP Moduł Modbus TCP daje użytkownikowi Systemu Vision możliwość zapisu oraz odczytu rejestrów urządzeń, które obsługują protokół Modbus TCP. Zapewnia on odwzorowanie rejestrów urządzeń

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

przetworzonego sygnału

przetworzonego sygnału Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego

Bardziej szczegółowo

7. Zagadnienie parkowania ciężarówki.

7. Zagadnienie parkowania ciężarówki. 7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

Standardowy algorytm genetyczny

Standardowy algorytm genetyczny Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

Automatyczny dobór parametrów algorytmu genetycznego

Automatyczny dobór parametrów algorytmu genetycznego Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja

Bardziej szczegółowo

6. Zagadnienie parkowania ciężarówki.

6. Zagadnienie parkowania ciężarówki. 6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

ALHE Z11 Jarosław Arabas wykład 11

ALHE Z11 Jarosław Arabas wykład 11 ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

Spis treści. 1 Moduł Modbus TCP 4

Spis treści. 1 Moduł Modbus TCP 4 Spis treści 1 Moduł Modbus TCP 4 1.1 Konfigurowanie Modułu Modbus TCP................. 4 1.1.1 Lista elementów Modułu Modbus TCP............ 4 1.1.2 Konfiguracja Modułu Modbus TCP.............. 5 1.1.3

Bardziej szczegółowo

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB...

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB... MIO - LABORATORIUM Temat ćwiczenia: TSP - Problem komiwojażera Imię i nazwisko Rok ak. Gr. Sem. Komputer Data Podpis prowadzącego... 20 / EC3 VIII LAB...... Zadanie Zapoznać się z problemem komiwojażera

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny

Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Strategie ewolucyjne (ang. evolu4on strategies)

Strategie ewolucyjne (ang. evolu4on strategies) Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje

Bardziej szczegółowo

Algorytmy ewolucyjne. wprowadzenie

Algorytmy ewolucyjne. wprowadzenie Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

Algorytmy genetyczne jako metoda wyszukiwania wzorców. Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż.

Algorytmy genetyczne jako metoda wyszukiwania wzorców. Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż. Algorytmy genetyczne jako metoda wyszukiwania wzorców Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż. Marcin Borkowski Krótko i na temat: Cel pracy Opis modyfikacji AG Zastosowania

Bardziej szczegółowo

1 Moduł Modbus ASCII/RTU

1 Moduł Modbus ASCII/RTU 1 Moduł Modbus ASCII/RTU Moduł Modbus ASCII/RTU daje użytkownikowi Systemu Vision możliwość komunikacji z urządzeniami za pomocą protokołu Modbus. Moduł jest konfigurowalny w taki sposób, aby umożliwiał

Bardziej szczegółowo

Programowanie genetyczne - gra SNAKE

Programowanie genetyczne - gra SNAKE PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

ALGORYTMY GENETYCZNE (wykład + ćwiczenia)

ALGORYTMY GENETYCZNE (wykład + ćwiczenia) ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja

Bardziej szczegółowo

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji

Bardziej szczegółowo

Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa

Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO

Bardziej szczegółowo

1 Moduł Modbus ASCII/RTU 3

1 Moduł Modbus ASCII/RTU 3 Spis treści 1 Moduł Modbus ASCII/RTU 3 1.1 Konfigurowanie Modułu Modbus ASCII/RTU............. 3 1.1.1 Lista elementów Modułu Modbus ASCII/RTU......... 3 1.1.2 Konfiguracja Modułu Modbus ASCII/RTU...........

Bardziej szczegółowo

Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta

Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Wprowadzenie Problemy

Bardziej szczegółowo

Problem Komiwojażera - algorytmy metaheurystyczne

Problem Komiwojażera - algorytmy metaheurystyczne Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman

Bardziej szczegółowo

LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE

LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH KLAUDIUSZ MIGAWA 1 Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Streszczenie Zagadnienia przedstawione w artykule

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek

Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania

Bardziej szczegółowo

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,

Bardziej szczegółowo

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice) WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach

Bardziej szczegółowo

Biologicznie motywowane metody sztucznej inteligencji

Biologicznie motywowane metody sztucznej inteligencji Biologicznie motywowane metody sztucznej inteligencji Problem marszrutyzacji Paweł Rychlik Jacek Gąsiorowski Informatyka, SSI, sem. 7 Grupa GKiO1 Prowadzący: dr inż. Grzegorz Baron 1. Wstęp Problem marszrutyzacji

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne

Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna

Bardziej szczegółowo

LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch

LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia

Bardziej szczegółowo

Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski

Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle

Bardziej szczegółowo

Import danych w formacie txt

Import danych w formacie txt Przewodnik Inżyniera Nr 27 Aktualizacja: 06/2017 Import danych w formacie txt Program powiązany: Fundament bezpośredni Plik GEO5: Demo_manual_27_1.gpa (przykład przygotowany do importu danych) Demo_manual_27_2.gpa

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

Microsoft EXCEL SOLVER

Microsoft EXCEL SOLVER Microsoft EXCEL SOLVER 1. Programowanie liniowe z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;

Bardziej szczegółowo

Rozdział 9 PROGRAMOWANIE DYNAMICZNE

Rozdział 9 PROGRAMOWANIE DYNAMICZNE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 9 PROGRAMOWANIE DYNAMICZNE 9.2. Ćwiczenia komputerowe Ćwiczenie 9.1 Wykorzystując

Bardziej szczegółowo

METODY HEURYSTYCZNE wykład 3

METODY HEURYSTYCZNE wykład 3 METODY HEURYSTYCZNE wykład 3 1 Przykład: Znaleźć max { f (x)=x 2 } dla wartości całkowitych x z zakresu 0-31. Populacja w chwili t: P(t)= {x t 1,...x t n} Założenia: - łańcuchy 5-bitowe (x=0,1,...,31);

Bardziej szczegółowo

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie

Bardziej szczegółowo

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Programowanie genetyczne

Programowanie genetyczne Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Programowanie genetyczne jest rozszerzeniem klasycznego algorytmu genetycznego i jest wykorzystywane do automatycznego generowania programów

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja

Bardziej szczegółowo

LABORATORIUM 1: Program Evolutionary Algorithms

LABORATORIUM 1: Program Evolutionary Algorithms Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 1: Program Evolutionary Algorithms opracował:

Bardziej szczegółowo

xx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy

xx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy Testowanie układów kombinacyjnych Przykładowy układ Wykrywanie błędów: 1. Sklejenie z 0 2. Sklejenie z 1 Testem danego uszkodzenia nazywa się takie wzbudzenie funkcji (wektor wejściowy), które daje błędną

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Kurs STARTER S5. Spis treści. Dzień 1. III Budowa wewnętrzna, działanie i obsługa sterownika (wersja 0504)

Kurs STARTER S5. Spis treści. Dzień 1. III Budowa wewnętrzna, działanie i obsługa sterownika (wersja 0504) I Dlaczego sterownik? (wersja 0504) Spis treści Dzień 1 I-3 Wady i zalety poszczególnych rodzajów układów sterowania I-4 Charakterystyka rodziny S5 I-5 II Podłączenie sterownika do obiektu (wersja 0504)

Bardziej szczegółowo

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Algorytmy genetyczne (AG)

Algorytmy genetyczne (AG) Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,

Bardziej szczegółowo

wiedzy Sieci neuronowe

wiedzy Sieci neuronowe Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci

Bardziej szczegółowo