Regulamin konkursu, zestawy zadań iichrozwiązania opracowała Alina Szałęga nauczyciel matematyki Publicznego Gimnazjum w Rudniku nad Sanem.
|
|
- Julian Kowalski
- 8 lat temu
- Przeglądów:
Transkrypt
1 . Regulamin Szkolnego Konkursu Matematycznego Rachmistrz na plus w Publicznym Gimnazjum w Rudniku nad Sanem. 2. Przykłady zestawów zadań iichrozwiązań. Regulamin konkursu, zestawy zadań iichrozwiązania opracowała Alina Szałęga nauczyciel matematyki Publicznego Gimnazjum w Rudniku nad Sanem. SZKOLNY KONKURS MATEMATYCZNY RACHMISTRZ NA PLUS Opiekunowie: Alina Szałęga Monika Łachman Katarzyna Pytlak Regulamin:. W konkursie możewziąć udział każdy uczeń gimnazjum. 2. Konkurs trwa cały rok szkolny.. Składa się z trzech części. Iczęść zadaniowa co dwa tygodnie we wtorek pojawiać się będzie nowy zestaw 5 zadań, zadania należyrozwiązać, następnie oddać nauczycielowi opiekunowi przed ukazaniem się kolejnego zestawu, zadania powinny być rozwiązane starannie, wymagające uzasadnienia dokładnie opisane, za każde prawidłowo rozwiązane zadanie uczeń otrzymuje 2 plusy (+2), za źle rozwiązane zadanie, bądź brak rozwiązania uczeń traci plusa (-), za błędy w rozwiązaniu (tzn. prawidłowy tok myśleniaabłędna odpowiedź), uczeń nie zyskuje plusów i ich nie traci (0), wciągu roku można nie oddać tylko jednego zestawu. II część praktyczna uczeń wykonuje pomoc matematyczną według własnego pomysłu, komisja składająca się z przedstawiciela Rady Rodziców, nauczycieli-opiekunów i 2 uczniów-reprezentantów Samorządu Uczniowskiego ocenia prace w obecności uczestników konkursu, przyznającłącznieod0do20plusów, ocena uwzględnia: pomysłowość, przydatność podczas nauki przedmiotu, estetykę wykonania, sposób prezentacji, ostateczny termin oddania pracy, to pierwszy tydzień po feriach zimowych. III część test w maju uczniowie piszą test uzupełnień zzadań, które otrzymywali w ciągu roku, test zawiera 20 zadań i trwa 60 minut, podczas trwania testu nie można używać kalkulatorów,
2 za każde prawidłowo rozwiązane zadanie uczeń otrzymuje 2 plusy (łącznie można uzyskać 40 plusów). Łączna ilość plusów wyłoni zwycięzców. Na zwycięzców czekają nagrody. Osoba, która zdobędzie największą ilość plusów, uzyska dodatkowo tytuł RACHMISTRZ NA PLUS oraz ocenę celującą z matematyki na koniec roku szkolnego. Zapraszamy! zestaw III Termin oddania: do 26 listopada 2002 roku Zad. Znajdź liczby naturalne a, b, c i d, dla których 5 a + 5 b + c + d Zad. 2 Wypisz wszystkie liczby naturalne podzielne przez 5, które są dzielnikami liczby 5. Zad. Ola obliczyła, że średnia arytmetyczna jej ocen z pierwszego semestru z 0 przedmiotów jest równa,9. Zaplanowała, żewnastępnym semestrze poprawi ocenę z matematyki z na 4, a zgeografiiz4na5.ojakiejśredniej marzy Ola? Śmietana stanowi 25% przerobionego mleka, a masło 20% śmietany. Ile masła otrzymasz z 52 kg mleka? Stosunek miar kątów danego czworokąta jest równy 2::4:6. Ile wynoszą kąty tego czworokąta?
3 Rozwiązania zadań z zestawu III Zad. 5 5 a b c5 d Zad Dzielniki liczby 5, to: 5, 05, 5,,,, 5, 9, 5, 2, 45, 6. Liczba dzieli się przez 5, jeśli dzieli się równocześnie przez 5 i przez. Szukane liczby to: 5, 05, 5, 45. Zad. suma ocen w I semestrze 0, (dwie oceny poprawi o jeden stopień) 4 4, 0 Ola marzy o średniej 4,. 52 kg ilość mleka 25% z 52 8,5 8,5 kg ilość śmietany 20% z 8,5 6,5 6,5 kg ilość masła 60 0 sumamiarkątów wewnętrznych czworokąta
4 ( ) spr Kąty tego czworokąta wynoszą:48 0,2 0,96 0, zestaw VI Termin oddania: do 2 stycznia 200 roku Zad. W trapezie ABCD podstawa AB ma długość 2 cm, a podstawa CD ma długość cm. Jak podzielić trapez na trójkąt i czworokąt o jednakowych polach? Zad. 2 Znajdź wszystkie pary liczb całkowitych, y, spełniające równanie: + y 2 Zad. W kongresie uczestniczyło 000 osób: w tym 900 osób znało język angielski, 50 osób znało język francuski, 00 osób znało język rosyjski, 65 osób znało język niemiecki. Wykaż, że przynajmniej uczestnik kongresu władał wszystkimi czterema wymienionymi językami. Wciągu roku pewna cena wzrosła trzy razy po 0%. Jaka była na początku, jeżeli teraz jest równa 00 zł? Piąta część pszczelej gromadki usiadła na kwiatach magnolii, trzecia część tej gromadki na kwiatach lotosu, potrojona różnica drugiej z tych liczb i pierwszej odleciała ku kwiatom jaśminu. Jedna tylko pszczółka, zwabiona pachnącym kwiatem koniczyny, krążyła nad nim. Ile pszczół było w tej gromadce?
5 Rozwiązania zadań zzestawuvi Zad. D b C h A B a a bcm a+a 2cm,stąd a 2 - a Jeśli podzielimy trapez na trójkąt i czworokąt, to otrzymany czworokąt z całą pewnością również będzie trapezem, wynika to z definicji trapezu. Trapez, to taki czworokąt, który ma co najmniej jedną parę boków równoległych. P P liczymy ze wzoru liczymy ze wzoru a h 2 (a + b) h 2 P P a h (a + b) h : h a a+b, a a+, 2 aa+, 2a5, a 2,5 cm, a 9,5 cm Zad. 2 +, 0iy 0 y y Zad. Język angielski zna 900 osób, 250 nie zna francuskiego, tak więc w najgorszym przypadku wszystkie one mogą się rekrutować spośród 900 osób znających angielski. Zatem zna język angielski i francuski. 00 osób nie zna języka rosyjskiego, wobec tego mogą one rekrutować się w najgorszym wypadku z osób, które znają język angielski i rosyjski, a więc Zatem 50 osób zna język angielski, francuski
6 i rosyjski. Z kolei 49 osób nie zna języka niemieckiego, co daje, że Wobec tego stwierdzamy, że co najmniej jedna osoba uczestnicząca w kongresie zna wszystkie cztery języki. cena początkowa 0% cena po pierwszej podwyżce 0%0% cena po drugiej podwyżce 0%0%0% cena po trzeciej podwyżce 0%0%0% Po skróceniu ułamków i pomnożeniu przez 00 równanie przyjmuje postać: , stąd zł ilość wszystkich pszczół ilość pszczół na kwiatach magnolii 5 - ilość pszczół na kwiatach lotosu - ilość pszczół na kwiatach jaśminu 5 - ilość pszczół na kwiatach koniczyny
7 Zestaw IX Termin oddania: do kwietnia 200 roku Zad. W pewnym banku podano klientom ofertę promocyjną lokat terminowych w postaci tabeli. Lokaty Poniżej zł Od zł dni 0,5 % 0,5 % 4 dni,5 % 2,25 % miesiąc 2,0 % 2,5 % 2miesiące 2, % 2,5 % miesiące 2, %,0 % Oprocentowanie w tabeli podane jest w skali roku. Oznacza to, że odsetki obliczane są tak, jakby kwota leżała przez cały rok, a następnie wypłacane w części stosownej do zadeklarowanego okresu lokaty. Pan A ipanb mieli po złotych oszczędności. Korzystając z oferty promocyjnej, każdy z nich ulokował je w banku na dwa miesiące. Pan A ulokował je w banku na 2 miesiące, ale podzielił kwotę na dwie części po zł. Pan B ulokował wszystkie oszczędności najpierw na miesiąc, a następnie jeszcze raz na miesiąc, ale z odsetkami, które już otrzymał. Który z panów zyskał więcejioile? Zad. 2 Oto plan działki wykonany w skali : 000. Oblicz, ile metrów siatki potrzeba na jej ogrodzenie, oraz ile metrów kwadratowych ma ta działka w rzeczywistości. 2,85 cm 4cm Zad. 5,85 cm Krysia zbierała jagody w czwartek, piątek i sobotę. Razem zerwała 9,5 litra. W czwartek zebrała o,5 l mniej niż w sobotę. W sobotę zerwała dwa razy więcej niż w piątek. Zapisz za pomocą równania model przedstawionej sytuacji, przez oznaczając:. objętość jagód zebranych w czwartek,
8 2. objętość jagód zebranych w piątek,. objętość jagód zebranych w sobotę. Różnica kwadratu pewnej liczby i iloczynu liczb, i 0, wynosi 0,2. Znajdź tę liczbę. Wprzeszłości w Polsce używano jednostek powierzchni zwanych prętem, morgą iwłóką. Jeden pręt równy był 86, m 2. Jedna morga miała 0 prętów, a jedna włóka 0 mórg. Zamień jedną morgę ijedną włókę na hektary. Wynik zaokrąglij do części setnych. Rozwiązania zadań zzestawuix Zad. Pan A: 2,% z , miesiące 6 roku ,5 02, zł - zysk pana A Pan B: 2,5% z , miesiąc 2 roku ,25 06,25 zł odsetki pana B po miesiącu ,25 006,25 2,5% z 006,25 0,25 006,25 288,55 288,55 2 0,8 0,8 zł odsetki pana B po 2 miesiącu 006,25 +0,8 02,6 02, ,6 2,6 zł zysk pana B 2,6 zł zł 8,6 zł Odp.: Pan B zyskał o 8,6 zł więcej. Zad ,85 cm 4 4cm 5,85cm 5,85 2,
9 Obw. 5, ,85 + 5,0, 0 cm obwód trapezu w skali : 000, cm m obwód trapezu w rzeczywistości P 2 (a + b) h a 5,85 cm cm 58,5 m h4cm cm 40 m b 2,85 cm cm 28,5 m P 2 (58,5 + 28,5) m 2 - pole trapezu Zad. w rzeczywistości. objętość jagód zebranych w czwartek +,5 - objętość jagód zebranych w sobotę ( +,5) - objętość jagód zebranych w piątek 2 ++,5+ 2 ( +,5) 9, objętość jagód zebranych w piątek 2 - objętość jagód zebranych w sobotę 2,5 - objętość jagód zebranych w czwartek +2+2,59,5. - objętość jagód zebranych w sobotę,5 - objętość jagód zebranych w czwartek - objętość jagód zebranych w piątek 2 +,5+ 2 9,5 szukana liczba, (- 0,) 0,9 iloczyn liczb 2 0,9-0,2 2-0,2 + 0,9 2 0,64 0,8 lub - 0,8 pręt 86, m 2 morga0prętów morga 86, m 2 0,560 ha 0, 56 ha włóka 0 mórg włóka m 2 6,800 ha 6, 80 ha
10 zestaw XII Termin oddania: do 20 maja 200 roku Zad. Suma pól trójkąta i kwadratu jest równa 80. Pole trójkąta stanowi 5% pola kwadratu. Oblicz pole kwadratu. Zad. 2 Zwiększająco2pewną liczbę naturalną n, która jest większa od 2, zwiększamy ją owięcej niż 9%. Jaka to liczba? Zad. Arkusz tektury ma 2 cm długościi60cmszerokości. W każdym rogu wycięto kwadrat o boku 8 cm. Przez nagięcie czterech prostokątów powstałych na bokach, otrzymano otwarte pudełko. Oblicz objętość pudełka. Dane są dwie liczby czterocyfrowe, z których jedna powstaje z drugiej przez napisanie cyfr drugiej w odwrotnym porządku. Uzasadnij, że suma tych liczb jest podzielna przez. Rozwiąż równanie 6 0,5 2 2,8 25 0, Rozwiązania zadań zzestawuxii Zad. P +P 80 P 5% P 5% P + P 80 P 4 + P 80 P 4 80 P 5 45
11 Zad.2 n > 2 - warunek I n+2>n+9%n n+2>,09n n,09n>-2-0,09n> n>-2 00 n< warunek II Liczba spełniająca warunki I i II, to 22. Zad. 8cm 8cm 60 cm 2 cm VPp H b cm Pp a b H8cm a cm V cm Zad.4 a cyfratysięcy b cyfrasetek c cyfradziesiątek d cyfrajedności 000 a + 00b + 0 c + d - liczba czterocyfrowa 000 d + 00c + 0b + a - liczba czterocyfrowa po przestawieniu cyfr 000 a + 00b + 0 c + d d + 00c + 0b + a 00 a + 0b + 0c + 00d 9 a +0 b + 0 c + 9 d (9a + 0b + 0c + 9d) Jeśli jeden z czynników wynosi, to cała liczba dzieli się przez. Zad.5 6 0,5 2 2,8 25 0,5 4 20
12
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 6.11.2018 R. 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY Numer zadania Poprawna odpowiedź Liczba punktów. B 2. C 3. D 4. D 5. B 6. B 7. D 8. C 9. A 0. C. B 2. A 3. P,
ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP TRZECI
Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 Instrukcja dla ucznia ETAP TRZECI 1. Zestaw
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dla uczniów gimnazjów oraz oddziałów gimnazjalnych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie,
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2014/2015 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny
ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI
A- ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 14 stron. W zadaniach 1. do 5. są podane 4 odpowiedzi: A, B, C, D, z
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2012
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Poprawna odpowiedź Zad. 4 Zad. 5 Zad.
Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?
Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2015/2016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 14 stron.
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7
Małe Olimpiady Przedmiotowe. Test z matematyki
Małe Olimpiady Przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa nr 17 Szkoła Podstawowa nr 18 Drogi Uczniu, Test składa się z
Sprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum. Kartoteka
Sprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum Kartoteka Nr zad. 1. 2. 3. 4. 5. 6. 7. 8. 9. Sprawdzana umiejętność Uczeń: Oblicza potęgi liczb wymiernych o wykładnikach naturalnych
I Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 03 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron (zadania 30).. Arkusz zawiera 0 zadań zamkniętych i 0 zadań
KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:
KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 20/205 KOD UCZNIA Etap: Data: Czas pracy: szkolny 7 listopada 20 r. 90 minut Informacje
MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 200 / 20 ETAP SZKOLNY - 7 października 200 roku. Przed Tobą zestaw 20 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.
3 zawartości szklanki obliczył, że w pozostałej
Klasa I - zakres podstawowy Etap rejonowy 07.0.004 rok Zadanie 1 ( pkt ) Uzasadnij, że 7 50 : 81 37 jest liczbą większą od 8. Zadanie ( pkt ) Spośród 40 uczniów pewnej klasy 17 gra w szachy, 1 w brydża,
ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA
ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest
Obwody i pola figur -klasa 4
Obwody i pola figur -klasa 4 str. 1/6...... imię i nazwisko lp. w dzienniku...... klasa data 1. Przyjmij za jednostkę. Zapisz, jakie pole ma narysowana figura. Pole =.......................... 2. Jakie
Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu,
Małe olimpiady przedmiotowe Test z matematyki ORGANIZATORZY: Wydział Edukacji Urzędu Miasta w Koszalinie Centrum Edukacji Nauczycieli w Koszalinie Imię i nazwisko. Szkoła Szkoła Podstawowa nr 7 w Koszalinie
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2017/2018 ETAP TRZECI
Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły Liczba uzyskanych punktów Instrukcja dla ucznia ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2016/2017 ETAP SZKOLNY - 8 listopada 2016 roku
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 016/017 ETAP SZKOLNY - listopada 016 roku 1. Przed Tobą zestaw 1 zadań konkursowych.. Na ich rozwiązanie masz 90 minut. Piętnaście
Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.
Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2017/2018
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 017/018 etap wojewódzki Kryteria oceniania Zad.1.(0 3) Michał, Romek, Staszek, Tomek
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 28.02.2019 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2016/2017 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny
KONKURS MATEMATYCZNY
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W CHEŁMIE INSTYTUT MATEMATYKI i INFORMATYKI 22-100 Chełm, ul. Pocztowa 54 tel./fax. (082) 562 11 24 KONKURS MATEMATYCZNY im. Samuela Chróścikowskiego 30 marzec 2017r. godz.
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 22 zadań.
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2013/2014 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 10 stron.
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny
Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:
Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów
P o w o d z e n i a!
Powiatowy Konkurs Matematyczny dla uczniów klas V Etap finałowy Imię i nazwisko Szkoła Miejscowość Gratulujemy Ci zakwalifikowania się do etapu finałowego konkursu. Na rozwiązanie 14 zadań masz 75 minut.
Sprawdzian z matematyki na zakończenie nauki w pierwszej klasie gimnazjum
Wypełnia uczeń Kod ucznia Sprawdzian z matematyki na zakończenie nauki w pierwszej klasie gimnazjum Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj
Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum
1 Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum Zagadnienia, które uczeń powinien znać przy rozwiązywaniu opisanych zadań: zastosowanie równań w zadaniach tekstowych, funkcje i ich monotoniczność,
IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ROK SZKOLNY 2017/2018 ELIMINACJE REJONOWE Kod pracy - M A T - Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 6 stron
PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE
PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE (opracowali Janina Kurek, Henryk Zarach, Katarzyna Matusz) ZASADY PSO 1. PSO ma na celu czytelne przedstawienie wymagań
Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy rok Czas rozwiązywania zadań 150 minut
Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy 0..005 rok Czas rozwiązywania zadań 50 minut Zadanie ( pkt) a b a Wiedząc, że dla b 0. Oblicz b a b Zadanie
WYPEŁNIA KOMISJA KONKURSOWA. Nr zadania Razem Liczba punktów możliwych do zdobycia
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 31 zadań.
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki Zad.1. (0-3) PRZYKŁADOWE ROZWIĄZANIA I KRYTERIA OCENIANIA
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 13 STYCZNIA 2016 R. 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
Wymagania z matematyki klasa V Matematyka z plusem. Wymagania. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu
Wymagania z matematyki klasa V Matematyka z plusem Wymagania Lp. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu 1. Czyta ze zrozumieniem treści zadań. 2. Sprawdza uzyskane rozwiązania. C/D + + + 3. Znajduje
Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut
Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. Ocena niedostateczna. Zna nazwy argumentów działań Pamięciowo i pisemnie wykonuje każde z czterech działań na liczbach
Życzymy powodzenia w rozwiązywaniu zadań!
Kod Ucznia Porąbka Uszewska, 21 maja 2014 r. Test Liczba punktów za zadanie otwarte Zad. 1-13 1 2 3 4 5 6 7 8 9 10 razem POWIATOWY KONKURS MATEMATYCZNY DLA UCZNIÓW KLAS V ETAP FINAŁOWY Celem obliczeń nie
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8
Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2017/2018 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Uczeń na ocenę dopuszczającą potrafi: - Oszacować wyniki obliczeń na liczbach dziesiętnych w kontekście zakupów. - Korzystać z gotowego planu. - Narysować prostokąt
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 017 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron
Egzamin wstępny z Matematyki 1 lipca 2011 r.
Egzamin wstępny z Matematyki 1 lipca 011 r. 1. Mamy 6 elementów. Ile jest możliwych permutacji tych elementów jeśli: a) wszystkie elementy są różne, b) dwa elementy wśród nich są identyczne, a wszystkie
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 01/019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie, inne niż przewidziane
KURS MATURA PODSTAWOWA
KURS MATURA PODSTAWOWA LEKCJA Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona Część : TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie Ile liczb całkowitych należy do przedziału,
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
...................................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 014 Rozwiązania zadań ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Jaka jest cyfra jedności liczby 3 014 + 3 01? a) 0 b) 1 c) 3
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 23 lutego 2013 r. zawody III stopnia (wojewódzkie)
Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 23 lutego 2013 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2010/2011
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2010/2011 KOD UCZNIA Etap: Data: Czas pracy: szkolny 18 listopada 2010 r. 90 minut Informacje dla
Matematyk Roku gminny konkurs matematyczny. FINAŁ 19 maja 2017 KLASA PIERWSZA
Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2017 - gminny konkurs matematyczny FINAŁ 19 maja 2017 KLASA PIERWSZA 1. Przed Tobą zestaw 20 zadań konkursowych. Zanim rozpoczniesz
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 183264 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dziedzina funkcji
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2016/2017 ETAP WOJEWÓDZKI 13 marca 2017 roku
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 016/017 ETAP WOJEWÓDZKI 13 marca 017 roku 1. Przed Tobą zestaw 15 zadań konkursowych.. Na ich rozwiązanie masz 10 minut. Piętnaście minut
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka
WYPEŁNIA UCZEŃ PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10
Kryteria ocen z matematyki w klasie IV
Kryteria ocen z matematyki w klasie IV odejmuje liczby w zakresie 100 z przekroczeniem progu dziesiętnego, zna kolejność wykonywania działań, gdy nie występuję nawiasy, odczytuje współrzędne punktu na
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
Konkurs dla gimnazjalistów Etap II 5 luty 2013 roku
Strona1 Konkurs dla gimnazjalistów Etap II 5 luty 2013 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 15. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI STYCZEŃ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM. Powtórzenie i utrwalenie wiadomości dotyczących geometrii figur płaskich.
Katarzyna Gawinkowska Hanna Małecka VI L.O im J. Korczaka w ZSO nr 2 w Sosnowcu SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM Temat: Powtórzenie i utrwalenie wiadomości dotyczących geometrii
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018
Etap szkolny 20 listopada 2017 r. Godzina 9.00 Imię/ Imiona ucznia - Nazwisko ucznia - klasa - Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś
Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki. Zadania zamknię te. A. całkowitą B. ujemną C. niewymierną D.
Elżbieta Friedrich mailto:elaf@interia.pl nauczyciel matematyki i informatyki Gimnazjum nr 5 w Tychach Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki Zadania zamknię te Zadanie. a) b)
Scenariusz lekcji matematyki, klasa 1 LO.
Scenariusz lekcji matematyki, klasa 1 LO. Temat lekcji: Czworokąty: rodzaje, własności, pola czworokątów. Cele: po lekcji uczeń: - rozpoznaje czworokąty, - zna własności czworokątów, - potrafi wskazać
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2018 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera