Miscellanea. ARYTMETYKA, nauka o liczbach i działaniach z niemi.
|
|
- Krystian Kujawa
- 8 lat temu
- Przeglądów:
Transkrypt
1 . ALGIEBRA, nauka, której zadaniem jest badanie form, zbudowanych za pomocą skończonej liczby działań zasadniczych, równań z takich form utworzonych, liczb oraz funkcji przez takie równania określonych. ARYTMETYK, 1. zajmujący się arytmetyką, szczególnie badaniami teorji liczb. 2.człowiek liczący się, wyrachowany, oględny, oszczędny, skrupulant. ARYTMETYKA, nauka o liczbach i działaniach z niemi. Od Redakcji. W tomie 43 Wiadomości Matematycznych zamieściliśmy hasła matematyczne ze Słownika Języka Polskiego Samuela Lindego. W tomie 44 zamieszczamy te same hasła ze, sto lat późniejszego, Słownika Języka Polskiego, ułożonego pod redakcją Jana Karłowicza,, dzieła nagrodzonego przez Krakowską Akademię Umiejętności na Konkursie imienia Lindego i zalecanego przez Galicyjską Radę Szkolną do użytku szkół; wydanego z zapomogi Kasy im. Mianowskiego w drukarni Współczesnej, Warszawa 1919 r. Redakcja wyraża podziękowanie prof. Witoldowi Jarczykowi za jego udostępnienie.
2 CAŁKA, 1. rzepa całkiem mała w krajanych plastrach suszona lub wędzona. 2. niewinna dziewczyna. 3.ostawa, ściana z blatu surowiznowego, lanego w ognisku fryszerskim. 4. algorytm wyższego rachunku, suma nieskończonej liczby elementów nieskończenie małych, funkcja pierwotna względem funkcji pochodnej, rozwiązanie równania różniczkowego. CAŁKOWAĆ. 1. dopełniać, do całości uzupełniać. 2. zcalać. 3. szukać całki dla danej różniczki. CAŁKOWITKA, 1. liczba całkowita. 2. suma w dodawaniu.
3 GIEOMETRJA, JEOMETRJA, część matematyki zajmująca się badaniem form przestrzennych: G. początkowa, poglądowa, elementarna, wyższa, płaska, sferyczna. G. starożytnych, analityczna, syntetyczna, abstrakcyjna. G. miary, metryczna. G. położenia. G. wielowymiarowa, euklidesowa, nieeuklidesowa, paraboliczna, hiperboliczna, eliptyczna, różniczkowa, całkowa. G. przekształceń. GIEOMETRA, JEOMETRA, 1. matematyk, badacz zajmujący się poszukiwaniami matematycznemi. 2. zajmujący się specjalnie badaniami gieometrycznemi: Nie jest punkt gieometrów długi ni szeroki. 3. zajmujący się pomiarem gruntów i zdejmowaniem planów, mierniczy.
4 LICZMAN, 1. blaszka, znaczek w kształcie monety do liczenia, np. w grze. Ludzkie rozsądki nie liczmanami rachuj, ale waż sobie szalami. 2. rachownik, który przyjęcie i wydatek statecznie ma rachować. Teraz nie możemy mieć tak dobrych liczmanów, którzyby z nami około liczby tych złotych zasieść mieli (z listu Zygmunta Augusta). LICZBON, LICZMAN, Może połowiczny przekład (Rechen)bohne dosł. = bób (rachunkowy). LICZMANNICA, tablica do liczenia, np. abak, celbrat, szczoty. LICZYDŁO, 1. a) kokoryczka. b) konwalia. c) babia jagoda (streptopus amplexifolius) roś. z rodzaju lecznika 2. przyrząd do liczenia i do wykonywania prostych rachunków, używany w szkołach początkowych.
5 Tablica na ścianie budynku Instytutu Matematycznego UWr poświęcona profesorowi Stanisławowi Hartmanowi Fot. A. Raczyński
6 MATEMATYKA. 1. wielka gałąź wiedzy, złożona z arytmetyki, algiebry, rachunku wyższego i gieometrji we wszystkich ich działach, nauka o wszelkich formach liczbowych i przestrzennych. MATEMATYK. 1. zajmujący się matematyką, badacz uczony, pracujący nad matematyką. 2. student wydziału matematycznego. 3. astronom, astrolog. O którym to roku dawni matematycy pisali, że miał być dziwny, jakoż był po części.
7 PRAWDOPODOBIEŃSTWO. rzecz prawdopodobna. Prawdopodobieństwo matematyczne zdarzenia = stosunek liczby przypadków sprzyjających zdarzeniu do liczby wszystkich przypadków możliwych w założeniu, że wszystkie przypadki możliwe uważamy za równomożliwe. PRAWDOPODOBNY, PRAWDOPOZORNY. podobny do prawdy, mający pozór prawdy; przypuszczalny, możliwy, możebny na pozór; domniemany. Błąd prawdopodobny w pewnym szeregu spostrzeżeń określa się za pomocą rachunku prawdopodobieństwa.
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30
Zbiór zadań z matematyki dla studentów chemii
Zbiór zadań z matematyki dla studentów chemii NR 142 Justyna Sikorska Zbiór zadań z matematyki dla studentów chemii Wydanie piąte Wydawnictwo Uniwersytetu Śląskiego Katowice 2013 Redaktor serii: Matematyka
Spis treści: 3. Geometrii innych niż euklidesowa.
Matematyka Geometria Spis treści: 1. Co to jest geometria? 2. Kiedy powstała geometria? 3. Geometrii innych niż euklidesowa. 4. Geometrii różniczkowej. 5. Geometria. 6. Matematyka-konieckoniec Co to jest
SPIS TREŚCI PRZEDMOWA... 13
SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Opis poszczególnych przedmiotów (Sylabus)
Opis poszczególnych przedmiotów (Sylabus) Nazwa Przedmiotu: Analiza matematyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: podstawowy Rok studiów, semestr: rok pierwszy, semestr I
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: Ma 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Eksploatacja Systemów Mechatronicznych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I
PW Wydział Elektryczny Rok akad / Podstawowe Informacje dla studentów
PW Wydział Elektryczny Rok akad. 2017 / 2018 Podstawowe Informacje dla studentów Piotr Multarzyński, e-mail: multarynka@op.pl, konsultacje: Zob isod. Przedmiot: Matematyka 1 Cel przedmiotu: Zapoznanie
Zbiór zadań z matematyki dla studentów chemii
Zbiór zadań z matematyki dla studentów chemii NR 114 Justyna Sikorska Zbiór zadań z matematyki dla studentów chemii Wydanie czwarte Wydawnictwo Uniwersytetu Śląskiego Katowice 2010 Redaktor serii: Matematyka
Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE
Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści
Analiza matematyczna / Witold Kołodziej. wyd. 5. - Warszawa, 2010 Spis treści Wstęp 1. Podstawowe pojęcia mnogościowe 13 1. Zbiory 13 2. Działania na zbiorach 14 3. Produkty kartezjańskie 15 4. Relacje
Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (0310-CH-S1-001)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (001) 1. Informacje ogólne koordynator modułu rok akademicki 2013/2014 semestr forma studiów
KARTA PRZEDMIOTU. 1 Student ma wiedzę z matematyki wyższej Kolokwium Wykład, ćwiczenia L_K01(+) doskonalącą profesjonalny L_K03(+) warsztat logistyka.
(pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: ROZ-L1-3 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego stopnia
Poradnik encyklopedyczny
I.N.Bronsztejn K.A.Siemiendiajew Poradnik encyklopedyczny Tłumaczyli Stefan Czarnecki, Robert Bartoszyński Wydanie dziesiąte Wydawnictwo Naukowe PWN Warszawa 1995 SPIS RZECZY Przedmowa 5 Oznaczenia matematyczne
Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012.
Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012 Spis treści Przedmowa 9 CZĘŚĆ I. WSTĘP DO MATEMATYKI 11 Wykład 1. Rachunek
Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44
Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły
Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza zespolona (03-MO2S-12-AZes) 1. Informacje ogólne koordynator modułu rok akademicki
KIERUNEK STUDIÓW: ELEKTROTECHNIKA
1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III
Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE
S Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M dr hab. inż. Stanisław Cudziło, prof. WAT Dziekan Wydziału Nowych Technologii i Chemii Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: MATEMATYKA Wersja anglojęzyczna:
Z-LOG Calculus II
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/18 Z-LOG1-014 Analiza matematyczna II Calculus II A. USYTUOWANIE MODUŁU W
REPETYTORIUM Z ANALIZY MATEMATYCZNEJ FUNKCJE JEDNEJ ZMIENNEJ
MONIKA FABIJAŃCZYK ANNA WARĘŻAK REPETYTORIUM Z ANALIZY MATEMATYCZNEJ FUNKCJE JEDNEJ ZMIENNEJ DEFINICJE TWIERDZENIA PRZYKŁADY I KOMENTARZE Skrypt dla studentów przygotowujących się do egzaminu licencjackiego
PRZEWODNIK PO PRZEDMIOCIE MATEMATYKA II E. Logistyka (inżynierskie) niestacjonarne. I stopnia. dr inż. Władysław Pękała. ogólnoakademicki.
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień
Z-LOG-530I Analiza matematyczna II Calculus II
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/18 Z-LOG-530I Analiza matematyczna II Calculus II A. USYTUOWANIE MODUŁU W
Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK203 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
PRZEWODNIK PO PRZEDMIOCIE
Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:
OPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 1 2 Kod modułu 04-A-MAT1-60-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok
Opis przedmiotu: Matematyka II
24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów
Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie):
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)
SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia
SYLABUS Nazwa przedmiotu Analiza matematyczna Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy, przedmiot Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów
SYLABUS/KARTA PRZEDMIOTU
SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Analiza i modelowanie systemów. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek stopień tryb język status przedmiotu AiR I Stacjonarne/Niestacjonarne
Matematyka I i II - opis przedmiotu
Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska
NOWOŚCI DLA MATURZYSTÓW STYCZEŃ 2013
NOWOŚCI DLA MATURZYSTÓW STYCZEŃ 2013 Matematyka Matura 2013 Zbiór zadań maturalnych Zbiór zadań maturalnych i zestawy maturalne. Poziom podstawowy Pierwsza część publikacji jest poświęcona tematycznemu
Kurs matematyki dla chemików
Kurs matematyki dla chemików Joanna Ger Kurs matematyki dla chemików Wydanie szóste poprawione Wydawnictwo Uniwersytetu Śląskiego Katowice 2018 Redaktor serii: Matematyka Maciej Sablik Recenzenci I wydania
Słownik pojęć matematycznych
Słownik pojęć matematycznych Aksjomat (postulat) W systemie matematycznym lub logicznym jest to warunek początkowy lub założenie, które przyjmujemy jako prawdziwe bez dowodu i z którego można wyprowadzić
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Matematyka I Mathematics I Kierunek: biotechnologia Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy dla wszystkich I stopnia specjalności Rodzaj zajęć: Liczba godzin/tydzień: wykład,
Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK205 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym
Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim Analiza matematyczna Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Inżynieria zarządzania
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Matematyka II Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Wydział Nauk Technicznych i Ekonomicznych, Instytut Nauk Technicznych, Zakład
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
Matematyka Mathematics. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Matematyka Mathematics A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.
Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych
Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)
Opis przedmiotu: Matematyka I
24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Analiza zespolona Complex Analysis Matematyka Poziom kwalifikacji: II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I
MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Podstawowy obowiązkowy Rodzaj zajęć: wykład, ćwiczenia Inżynieria Materiałowa Poziom studiów: studia I stopnia MATEMATYKA MATHEMATICS Forma studiów: studia
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Matematyka 2 Rok akademicki: 2012/2013 Kod: JFM-1-201-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia Forma
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
Zał. nr do ZW WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów
Z-EKO-476 Analiza matematyczna Calculus. Ekonomia. I stopień ogólnoakademicki. studia stacjonarne Wszystkie Katedra Matematyki dr Mateusz Masternak
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 Z-EKO-476 Analiza matematyczna Calculus A. USYTUOWANIE MODUŁU W SYSTEMIE
Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Calculus Obowiązuje
Z-ZIP-0530 Analiza Matematyczna II Calculus II
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-0530 Analiza Matematyczna II Calculus II A. USYTUOWANIE MODUŁU
Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.NIK102 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
s. STRASZEWICZ (Warszawa)
s. STRASZEWICZ (Warszawa) Konferencja metodyczno-dydaktyczna matematyków w Politechnice Warszawskiej rrrzecia z kolei konferencja dotycząca metodyki nauczania matematyki na wyższych uczelniach technicznych
Matematyka Mathematics. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Matematyka Mathematics A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów Poziom kształcenia
Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Calculus Obowiązuje od roku akademickiego
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym
Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne
SYLABUS 1.Nazwa Matematyka 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod E/I/A.3 4.Studia Kierunek studiów/specjalność Poziom Forma studiów Ekonomia
Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka 1 Nazwa modułu w języku angielskim Mathematics 1 Obowiązuje od
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym
Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Odniesienie symbol I [1] [2] [3] [4] [5] Efekt kształcenia
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki, prowadzonych na kierunku Matematyka, na Wydziale Matematyki i Nauk Informacyjnych Użyte w poniższej tabeli: 1) w kolumnie 4 określenie Odniesienie
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2016/2017 Studia stacjonarne I
Z-ID-102 Analiza matematyczna I
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Calculus I Obowiązuje od roku akademickiego 2015/2016 Z-ID-102 Analiza matematyczna I A. USYTUOWANIE MODUŁU W SYSTEMIE
MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)
MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Potęgi. Logarytmy. Funkcja wykładnicza sprawnie wykonywać działania na
AiRZ-0531 Analiza matematyczna Mathematical analysis
KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
2. Opis zajęć dydaktycznych i pracy studenta
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Technologia chemiczna, I Sylabus modułu: Matematyka B (006) 1. Informacje ogólne koordynator modułu rok akademicki 2013/2014 semestr forma
Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka 3 Nazwa modułu w języku angielskim Mathematics 3 Obowiązuje od roku akademickiego 2016/17 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):
Podstawowy (podstawowy / kierunkowy / inny HES) Obowiązkowy (obowiązkowy / nieobowiązkowy) Semestr 2. Semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka 2 Nazwa modułu w języku angielskim Mathematics 2 Obowiązuje od
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL
KARTA PRZEDMIOTU WYMAGANIA WSTEPNE CELE KURSU
WYDZIAŁ KARTA PRZEDMIOTU Nazwa przedmiotu w języku polskim Nazwa przedmiotu w języku angielskim Kierunek studiów (jeśli dotyczy) Specjalność (jeśli dotyczy) Stopień studiów i forma Rodzaj przedmiotu Kod
KARTA KURSU. Mathematics
KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie
KARTA PRZEDMIOTU CELE PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):
GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka II Nazwa modułu w języku angielskim Mathematics II Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Sylabus - Matematyka
Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne
KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać
(pieczęć wydziału) KARTA MODUŁU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa modułu: MATEMATYKA 2. Kod przedmiotu: 3 3. Karta modułu ważna od roku akademickiego: 2013/2014 4. Forma kształcenia: studia pierwszego
Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)
Przedmiot: Matematyka I Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Kod przedmiotu: E05_1_D Typ przedmiotu/modułu: obowiązkowy X obieralny Rok: pierwszy Semestr: pierwszy
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia
Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30
Zał. nr do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 B Nazwa w języku angielskim Mathematical Analysis 1B Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):
Analiza matematyczna
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Mathematical analysis
Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału
Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)
ANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
AiRZ-0531 Analiza matematyczna Mathematical analysis
KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
WYDZIAŁ ***** KARTA PRZEDMIOTU
9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Zagadnienia na egzamin licencjacki
Zagadnienia na egzamin licencjacki Kierunek: matematyka, specjalność: nauczanie matematyki i informatyki w zakresie zajęć komputerowych Zaleca się, by egzamin dyplomowy składał się z co najmniej trzech