ANALIZA STATYSTYCZNA POMIARÓW MORFOLOGICZNYCH CZASZEK U NIEMOWLĄT
|
|
- Piotr Pawlak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Aktualne Problemy Biomechaniki, nr 6/ Małgorzata OTRĘBSKA 1, Marek GZIK 2, Wojciech WOLAŃSKI 2, Edyta KAWLEWSKA 2, Piotr JANOSKA 3, Marek MANDERA 4 1 Studenckie Koło Naukowe Biomechatroniki Biokreatywni, Politechnika Śląska, 2 Katerdra Biomechatroniki, Politechnika Śląska. 3 Uniwersytet Śląski w Katowicach 4 Górnośląskie Centrum Zdrowia Dziecka w Katowicach ANALIZA STATYSTYCZNA POMIARÓW MORFOLOGICZNYCH CZASZEK U NIEMOWLĄT 1. WSTĘP Celem pracy było przeprowadzenie analizy statystycznej pomiarów morfologicznych czaszek u niemowląt [1], która umożliwiła wyznaczenie indeksów determinujących kształty główek dzieci. y te zostały wykorzystane do oceny kraniosynostozy, czyli przedwczesnego zrośnięcia szwów na czaszce dziecka. 2. METODYKA BADAŃ Badania przeprowadzono na modelach geometrycznych główek dzieci o prawidłowym kształcie, które wygenerowano z użyciem oprogramowania Mimics v14.1, na podstawie zdjęć tomograficznych, wykonanych w ramach rutynowej diagnozy. Zastosowano kraniometrię, wyznaczając 155 odległości pomiędzy 47 punktami anatomicznymi. Przeprowadzono analizę statystyczną opracowanej bazy danych, z użyciem testu ANOVA [3] [2] służącego do wyjaśniania, z jakim prawdopodobieństwem określony czynnik wpływa na różnice między średnimi danych badanych lub określającego istotność różnic pomiędzy tymi średnimi. W badaniu wyodrębniono 13 grup ze względu na wiek pacjentów oraz postawiono hipotezę zerową o równości wartości średnich pomiędzy poszczególnymi grupami. F, = (1) MSB wariacja nieobciążona zmienności pomiędzy grupami MSW wariacja nieobciążona zmienności wewnątrz grup df b liczba stopni swobody związana z wariancją MSB df w liczba stopni swobody związana z wariancją MSW Obliczoną z wzoru (1) wartość porównuje się z wartością krytyczną w tabelach rozkładu F-Snedecora, dla zadanych stopni swobody i odpowiedniego poziomu istotności. Jeśli wartość krytyczna jest mniejsza od wartości wyliczonej, hipoteza jest odrzucana. Dla bazy danych zawierającej odległości poszczególnych punktów na czaszce, wyznaczono wartość rozkładu F-Snedecora równą 1,833 oraz przyjęto poziom istotności równy 0,05. Na podstawie wyników przeprowadzonej analizy opracowano 16 odległości, dla których stwierdzono, że poszczególne średnie, uzyskane z kraniometrii różnią się między sobą w danych grupach wiekowych. Następnie bazując na wybranych wymiarach opracowano wskaźniki determinujące kształt główek dzieci.
2 106 M. Otrębska, M. Gzik, W. Wolański, E. Kawlewska, P. Janoska, M. Mandera 3. WYNIKI BADAŃ Poniżej przedstawiono wyznaczone indeksy określające wzrost główek dzieci przy scaphocephalii (łódkogłowiu) i trigonocephalii (trójkątnogłowiu). Tabela 1. y determinujące kształt główki dziecka przy scaphocephalii Wzór cefaliczny eu.r eu.l me op prawej/lewej przedniej i tylnej długości eu.r/l me eu.r/l op przedniej i tylnej długości sklepienia br n br la Rysunek
3 Analiza statystyczna pomiarów morfologicznych czaszek u niemowląt 107 Tabela 2. y determinujące kształt główki dziecka przy trigonocephalii Wzór Rysunek Kąt kości czołowej lor.r n lor.l Kąt międzyoczodołowy morfl.l n morfl.r szerokości zewnętrznej oczodołów i szerokości lor.r lor.l eu.r eu.l szerokości wewnętrznej oczodołów i szerokości morfl.r morfl.l eu.r eu.l 3.1. Zastosowanie indeksów do oceny deformacji Znormalizowane wartości indeksów dla dzieci zdrowych porównano z bazą danych pacjentów z kraniosynostozą. Na pokazanych wykresach można zauważyć, jak wcześniej wyznaczone indeksy powinny się zmienić po przeprowadzeniu operacji korygującej. Na podstawie porównania wartości indeksów do normy dzieci zdrowych stwierdzono, że zarówno w przypadku główki z łódkogłowiem (Tabela 3) jak i u pacjenta z trójkątnogłowiem (Tabela 4) po zastosowanej korekcji wartości wszystkie wymienione indeksy powinny wzrosnąć.
4 108 M. Otrębska, M. Gzik, W. Wolański, E. Kawlewska, P. Janoska, M. Mandera Tabela 3. Wartości średnie indeksów w grupach wiekowych niemowląt zdrowych oraz z łódkogłowiem Norma cefaliczny cefaliczny 100,00 90,00 80,00 70,00 60,00 50, ZDROWE 81,28 85,73 84,31 83,80 SCP 66,95 70,78 69,81 70,39 przedniej i tylnej długości przedniej i tylnej długości 1,30 1,20 1,10 1,00 0,90 0, ZDROWE 1,11 1,09 1,10 1,13 SCP 1,09 1,07 1,14 1,07 przedniej i tylnej wysokości sklepienia przedniej i tylnej wysokości sklepienia 1,00 0,90 0,80 0,70 0, ZDROWE 0,87 0,89 0,90 0,91 SCP 0,81 0,84 0,81 0,80 przedniej i tylnej wysokości podstawy przedniej i tylnej wysokości podstawy 1,00 0,90 0,80 0,70 0, ZDROWE 0,87 0,89 0,90 0,91 SCP 0,81 0,84 0,81 0,80
5 Analiza statystyczna pomiarów morfologicznych czaszek u niemowląt 109 Tabela 4. Wartości średnie indeksów w grupach wiekowych niemowląt zdrowych oraz z trigonocephalią Kąt kości czołowej 145,00 140,00 135,00 130,00 125,00 120,00 115,00 110,00 Norma ZDROWE 133,07 136,74 138,84 137,48 TRI 125,52 126,52 130,07 128,26 Kąt międzyoczodołowy 140,00 120,00 100,00 80,00 60, ZDROWE 105,13 107,90 110,21 102,62 TRI 95,54 87,31 97,07 94,87 szerokości zewnętrznej oczodołów i szerokości 0,70 0,65 0,60 0,55 0,50 0,45 0, ZDROWE 0,65 0,62 0,62 0,61 TRI 0,57 0,58 0,54 0,58 0,21 y szerokości wewnętrznej oczodołów i szerokości 0,16 0,11 0, ZDROWE 0,16 0,15 0,15 0,14
6 110 M. Otrębska, M. Gzik, W. Wolański, E. Kawlewska, P. Janoska, M. Mandera 4. WNIOSKI Zastosowane badania wskazują na możliwość określenia determinantów wzrostu główki o prawidłowym kształcie i wykorzystania ich do oceny deformacji w przypadku wad budowy główki. Pomiary morfologiczne główek można zastosować także do oceny efektów leczenia w czasie symulacji operacji korygującej. Na podstawie przeprowadzonych badań można zaobserwować, że wszystkie przedstawione w pracy indeksy określające kształt główek dzieci po korekcji kraniosynostozy powinny wzrosnąć, aby osiągnąć wartości prawidłowe, zgodne z normą. Jednak nie wszystkie indeksy zwiększają się wraz z rozwojem pacjenta, na przykład indeks zewnętrznej szerokości oczodołów i szerokości. Często w ostatniej grupie wiekowej, widać zmniejszenie wartości indeksów, pomimo że we wcześniejszych miesiącach była tendencja wzrostowa. Taka zależność występuje na przykład dla kąta międzyoczodołowego przy trójkątnogłowiu. 5. LITERATURA [1] Tejszerska D., Wolański W., Larysz D., Gzik M., Sacha E.: Morphological analysis of the skull shape in craniosynostosis, Acta of Bioengineering and Biomechanics, 2011, Vol. 13, No. 1, s [2] Wolański W., Larysz D., Gzik M., Kawlewska E., Janoska P., Gruszczyńska K., Mandera M.: Zastosowanie kraniometrii w przedoperacyjnym planowaniu korekcji deformacji, Materiały Konferencyjne 51. Sympozjonu Modelowanie w Mechanice, Gliwice, [3] Internetowy Podręcznik Statystyki ( STATISTICAL ANALYSIS OF MORPHOLOGICAL MEASUREMENTS IN INFANTS SKULL.
Analiza wariancji - ANOVA
Analiza wariancji - ANOVA Analiza wariancji jest metodą pozwalającą na podział zmienności zaobserwowanej wśród wyników eksperymentalnych na oddzielne części. Każdą z tych części możemy przypisać oddzielnemu
PRZEDOPERACYJNE INŻYNIERSKIE WSPOMAGANIE ZABIEGU NEUROCHIRURGICZNEGO KOREKCJI DEFORMACJI GŁÓWKI DZIECKA
Aktualne Problemy Biomechaniki, nr 5/2011 Małgorzata OTRĘBSKA, Koło Biomechaniki, Politechnika Śląska, Marek GZIK, Edyta KAWLEWSKA, Katedra Biomechatroniki, Politechnika Śląska, Dawid LARYSZ, Śląski Uniwersytet
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -
KOMPUTEROWE METODY WSPOMAGANIA LECZENIA KRANIOSYNOSTOZY
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 41, s. 437-444, Gliwice 2011 KOMPUTEROWE METODY WSPOMAGANIA LECZENIA KRANIOSYNOSTOZY WOJCIECH WOLAŃSKI 1, DAWID LARYSZ 2, MAREK GZIK 1, EDYTA KAWLEWSKA 1 1 Katedra
Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
BADANIA ANTROPOMETRYCZNE KOŃCZYNY GÓRNEJ ORAZ POMIAR SIŁY ŚCISKU DŁONI I KCIUKA
Aktualne Problemy Biomechaniki, nr 6/2012 93 Maria ŁOPATKA, SKN Biomechatroniki Biokreatywni, Gliwice Agata GUZIK-KOPYTO, Robert MICHNIK, Katedra Biomechatroniki, Politechnika Śląska Wiesław RYCERSKI,
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je
Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych
dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo
Przykład 1. (A. Łomnicki)
Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele
WNIOSKOWANIE STATYSTYCZNE
STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących
Wprowadzenie do statystyki dla. chemików testowanie hipotez
chemików testowanie hipotez Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl http://www.sites.google.com/site/chemomlab/
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X
Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich
Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa
WPŁYW STABILIZACJI PRZEDNIEJ NA BIOMECHANIKĘ ODCINKA SZYJNEGO KRĘGOSŁUPA CZŁOWIEKA
Aktualne Problemy Biomechaniki, nr 5/2011 Piotr ŚLIMAK, Koło Naukowe Biomechaniki przy Katedrze Mechaniki Stosowanej Politechniki Śląskiej w Gliwicach Wojciech WOLAŃSKI, Katedra Biomechatroniki, Politechnika
Weryfikacja hipotez statystycznych testy t Studenta
Weryfikacja hipotez statystycznych testy t Studenta JERZY STEFANOWSKI Marek Kubiak Instytut Informatyki Politechnika Poznańska Standardowy schemat postępowania (znane σ) Założenia: X ma rozkład normalny
Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy
Ćwiczenie: Analiza zmienności prosta Przykład w MS EXCEL Sprawdź czy genotyp jagniąt wpływa statystycznie na cechy użytkowości rzeźnej? Obliczenia wykonaj za pomocą modułu Analizy danych (jaganova.xls).
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy
Ćwiczenie: Doświadczenia 2-grupowe EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w Excelu wykorzystujemy funkcję o nazwie TEST.T. Zastosowana funkcja (test statystyczny) pozwala
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Żródło:
Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Test
Zadania ze statystyki cz.8. Zadanie 1.
Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,
ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA
ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że dwie populacje o rozkładach normalnych mają jednakowe wartości średnie. Co jednak
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia związku pomiędzy dwiema zmiennymi nominalnymi (lub porządkowymi)
Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia związku pomiędzy dwiema zmiennymi nominalnymi (lub porządkowymi) Czy miejsce zamieszkania różnicuje uprawianie sportu? Mieszkańcy
BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
Wszystkie wyniki w postaci ułamków należy podawać z dokładnością do czterech miejsc po przecinku!
Pracownia statystyczno-filogenetyczna Liczba punktów (wypełnia KGOB) / 30 PESEL Imię i nazwisko Grupa Nr Czas: 90 min. Łączna liczba punktów do zdobycia: 30 Czerwona Niebieska Zielona Żółta Zaznacz znakiem
Jak sprawdzić normalność rozkładu w teście dla prób zależnych?
Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
Analiza wariancji. dr Janusz Górczyński
Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik
Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska
Porównanie modeli statystycznych Monika Wawrzyniak Katarzyna Kociałkowska Jaka jest miara podobieństwa? Aby porównywać rozkłady prawdopodobieństwa dwóch modeli statystycznych możemy użyć: metryki dywergencji
Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich.
Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w Excelu wykorzystujemy funkcję o nazwie T.TEST. Zastosowana
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Analiza porównawcza dwóch metod wyznaczania wskaźnika wytrzymałości na przebicie kulką dla dzianin
Analiza porównawcza dwóch metod wyznaczania wskaźnika wytrzymałości na przebicie kulką dla dzianin B. Wilbik-Hałgas, E. Ledwoń Instytut Technologii Bezpieczeństwa MORATEX Wprowadzenie Wytrzymałość na działanie
Katedra Biotechnologii i Genetyki Zwierząt, Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy
Temat: Analiza wariancji jednoczynnikowa Przykład 1 MS EXCEL Sprawdź czy genotyp jagniąt wpływa statystycznie na cechy użytkowości rzeźnej? Obliczenia wykonaj za pomocą modułu Analizy danych (jaganova.xlsx).
INŻYNIERSKIE WSPOMAGANIE ENDOSKOPOWYCH ZABIEGÓW NEUROCHIRURGICZNYCH
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 41, s. 429-436, Gliwice 2011 INŻYNIERSKIE WSPOMAGANIE ENDOSKOPOWYCH ZABIEGÓW NEUROCHIRURGICZNYCH WOJCIECH WOLAŃSKI 1, DAWID LARYSZ 2, MAREK GZIK 1 1 Katedra Mechaniki
TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM
Badanie pilotażowe TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM Czy łatwa prośba etyczna zostanie spełniona istotnie częściej jeśli poprzedzi się ją nieetyczną prośbą trudną? H0 nie, H1 tak. Schemat eksperymentu
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
dr hab. Dariusz Piwczyński, prof. nadzw. UTP
dr hab. Dariusz Piwczyński, prof. nadzw. UTP Cechy jakościowe są to cechy, których jednoznaczne i oczywiste scharakteryzowanie za pomocą liczb jest niemożliwe lub bardzo utrudnione. nominalna porządek
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE
1 JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE Precyzja Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/1 80-95 GDAŃSK e-mail: kaczor@chem.pg.gda.pl
JEDNOCZYNNIKOWA ANOVA
Analizę ANOVA wykorzystujemy do wykrycia różnic pomiędzy średnimi w więcej niż dwóch grupach/więcej niż w dwóch pomiarach JEDNOCZYNNIKOWA ANOVA porównania jednej zmiennej pomiędzy więcej niż dwoma grupami
), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0
Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
BIOMECHANIKA NARZĄDU RUCHU CZŁOWIEKA
Praca zbiorowa pod redakcją Dagmary Tejszerskiej, Eugeniusza Świtońskiego, Marka Gzika BIOMECHANIKA NARZĄDU RUCHU CZŁOWIEKA BIOMECHANIKA narządu ruchu człowieka Praca zbiorowa pod redakcją: Dagmary Tejszerskiej
Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE
WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE Było: Przykład. W doświadczeniu polowym załoŝonym w układzie całkowicie losowym w czterech powtórzeniach porównano
Metody Statystyczne. Metody Statystyczne
#7 1 Czy straszenie jest bardziej skuteczne niż zachęcanie? Przykład 5.2. s.197 Grupa straszona: 8,5,8,7 M 1 =7 Grupa zachęcana: 1, 1, 2,4 M 2 =2 Średnia ogólna M=(M1+M2)/2= 4,5 Wnioskowanie statystyczne
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym
Wiesława MALSKA Politechnika Rzeszowska, Polska Anna KOZIOROWSKA Uniwersytet Rzeszowski, Polska Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wstęp Wnioskowanie statystyczne
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
SKANOWANIE 3D JAKO NARZĘDZIE DO PROJEKTOWANIA KASKÓW KOREKCYJNYCH 3D SCANNING AS TOOL FOR DESIGN OF CORRECTION HELMETS
Mgr inż. Ewa STACHOWIAK ewa.stachowiak@polsl.pl Katedra Biomechatroniki, Wydział Inżynierii Biomedycznej, Politechnika Śląska Dr inż. Wojciech WOLAŃSKI wojciech.wolanski@posl.pl Katedra Biomechatroniki,
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,
Porównanie dwóch rozkładów normalnych
Porównanie dwóch rozkładów normalnych Założenia: 1. X 1 N(µ 1, σ 2 1), X 2 N(µ 2, σ 2 2) 2. X 1, X 2 są niezależne Ocena µ 1 µ 2 oraz σ 2 1/σ 2 2. Próby: X 11,..., X 1n1 ; X 21,..., X 2n2 X 1, varx 1,
Katedra Biotechnologii i Genetyki Zwierząt, Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy
Temat: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. MS EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w MS Excelu wykorzystujemy funkcję o nazwie T.TEST.
WYZNACZANIE SIŁY WYRYWAJĄCEJ NIĆ CHIRURGICZNĄ Z TRZUSTEK PRZY UŻYCIU MASZYNY WYTRZYMAŁOŚCIOWEJ MTS INSIGHT
Aktualne Problemy Biomechaniki, nr 10/2016 31. Katarzyna MAN 1, Bożena GZIK-ZROSKA 2 1 Studenckie Koło Naukowe Biomechatroniki Biokreatywni przy Katedrze Biomechatroniki Politechniki Śląskiej 2 Katedra
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Testy post-hoc. Wrocław, 6 czerwca 2016
Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference
P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?
2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
Wykorzystanie testu Levene a i testu Browna-Forsythe a w badaniach jednorodności wariancji
Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.48 WIESŁAWA MALSKA Wykorzystanie testu Levene a i testu Browna-Forsythe
Rozwiązanie n1=n2=n=8 F=(4,50) 2 /(2,11) 2 =4,55 Fkr (0,05; 7; 7)=3,79
Test F =służy do porównania precyzji dwóch niezależnych serii pomiarowych uzyskanych w trakcie analizy próbek o zawartości analitu na takim samym poziomie #obliczyć wartość odchyleń standardowych dla serii
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
WNIOSKOWANIE STATYSTYCZNE
STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących
46 Olimpiada Biologiczna
46 Olimpiada Biologiczna Pracownia statystyczno-filogenetyczna Łukasz Banasiak i Jakub Baczyński 22 kwietnia 2017 r. Statystyka i filogenetyka / 30 Liczba punktów (wypełnia KGOB) PESEL Imię i nazwisko
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją
Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór.
L a b o r a t o r i u m S P S S S t r o n a 1 W zbiorze Pytania zamieszczono odpowiedzi 25 opiekunów dzieci w wieku 8. lat na następujące pytania 1 : P1. Dziecko nie reaguje na bieżące uwagi opiekuna gdy
Pacjenci zostali podzieleni na trzy grupy liczące po 20 osób. Grupa I i II to osoby, u których na podstawie wartości pomiaru kąta ANB oraz WITS w
STRESZCZENIE Wady zgryzu klasy III wg Angle'a uwarunkowane są niedorozwojem szczęki lub nadmiernym wzrostem żuchwy, a często połączeniem obu nieprawidłowości. Pacjenci z przodożuchwiem morfologicznym ze
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl
Statystyka Opisowa z Demografią oraz Biostatystyka TesttStudenta Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Testy dla dwóch prób w rodzinie rozkładów normalnych
Testy dla dwóch prób w rodzinie rozkładów normalnych dr Mariusz Grządziel Wykład 12; 18 maja 2009 Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego)
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych
Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008
Redaktor: Alicja Zagrodzka Korekta: Krystyna Chludzińska Projekt okładki: Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 ISBN 978-83-7383-296-1 Wydawnictwo Naukowe Scholar
Matematyka i statystyka matematyczna dla rolników w SGGW
Było: Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 5 Analiza współzależności ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 W analizie współzależności a) badamy
SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
Katedra Mechaniki i Mechatroniki Inżynieria mechaniczno-medyczna. Obszary kształcenia
Nazwa przedmiotu Kod przedmiotu Jednostka Kierunek Obszary kształcenia BIOMECHANIKA INŻYNIERSKA I M:03516W0 Katedra Mechaniki i Mechatroniki Inżynieria mechaniczno-medyczna nauki medyczne i nauki o zdrowiu
ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną