Spis treści. Wyrażenia wymierne. Prawdopodobieństwo. Stereometria
|
|
- Feliks Markowski
- 8 lat temu
- Przeglądów:
Transkrypt
1
2 Spis treści Wyrażenia wymierne Przekształcanie wielomianów... 8 Równania wymierne Hiperbola. Przesuwanie hiperboli Powtórzenie Praca badawcza Hiperbola, elipsa, parabola Prawdopodobieństwo Zdarzenia losowe Drzewka Własności prawdopodobieństwa Elementy kombinatoryki Kombinatoryka i prawdopodobieństwo Powtórzenie Praca badawcza. Metoda Monte Carlo Stereometria Wielościany Wielościany foremne Kąty w wielościanach Pola powierzchni i objętości graniastosłupów i ostrosłupów Przekroje prostopadłościanów Pola powierzchni i objętości wielościanów Walec Stożek Kula Powtórzenie Praca badawcza. Linie geodezyjne ODPOWIEDZI W podręczniku przyjęto następujące oznaczenia: zadanie nieelementarne (niekoniecznie trudne) zadanie trudne
3 77 MLK3x str. 77
4 WIELOŚCIANY WIELOŚCIANY Na rysunku przedstawiono kilkanaście brył zwanych wielościanami. W zrozumieniu rysunków pomoże ci budowanie modeli. Każdy wielościan jest ograniczony wielokątami ścianami wielościanu w taki sposób, że każda krawędź wielościanu jest wspólnym bokiem dwóch ścian. A Wśród powyższych wielościanów wskaż te, które nie są wypukłe. Figurę (płaską lub przestrzenną) nazywamy wypukłą, gdy każdy z odcinków łączących dwa dowolne punkty figury cały zawiera się w tej figurze. Istnieje wiele różnych definicji wielościanu, jednak wszystkie są dosyć skomplikowane. Co więcej, pewne bryły zgodnie z jedną definicją są wielościanami, a według innych definicji nimi nie są. Nie ma jednak wątpliwości, że według każdej z tych definicji znane ci z wcześniejszej nauki graniastosłupy i ostrosłupy są wielościanami. B Znajdź wśród powyższych wielościanów te, które są graniastosłupami, oraz te, które są ostrosłupami. 78 STEREOMETRIA
5 Poniżej przypominamy podstawowe wiadomości o graniastosłupach i ostrosłupach. GRANIASTOSŁUP Graniastosłup to wielościan, w którym można wskazać dwie ściany (podstawy) będące przystającymi wielokątami, leżącymi na równoległych płaszczyznach, oraz pozostałe ściany (ściany boczne) będące równoległobokami. Krawędzie boczne graniastosłupa mają równe długości i są równoległe. OSTROSŁUP Ostrosłup to wielościan, w którym można wskazać jedną ścianę (podstawę) będącą dowolnym wielokątem oraz pozostałe ściany (ściany boczne) będące trójkątami o wspólnym wierzchołku. Wspólny wierzchołek wszystkich ścian bocznych ostrosłupa nazywamy wierzchołkiem ostrosłupa. C Naszkicuj albo opisz wielościan, który nie jest graniastosłupem, ale można w nim wskazać dwie ściany, które są: 1. wielokątami leżącymi na równoległych płaszczyznach, 2. przystającymi wielokątami, 3. przystającymi wielokątami leżącymi na równoległych płaszczyznach. Wysokością graniastosłupa nazywamy każdy odcinek łączący płaszczyzny podstaw i prostopadły do obu tych płaszczyzn. Uwaga. Pojęcie odcinka prostopadłego do płaszczyzny jest intuicyjnie jasne i taka intuicja wystarcza na potrzeby tego rozdziału. Dokładniej prostopadłość prostych i płaszczyzn w przestrzeni omawiamy w następnym rozdziale. WIELOŚCIANY 79
6 Jeśli podstawy graniastosłupa są trójkątami, to nazywamy go graniastosłupem trójkątnym, jeśli podstawy są czworokątami, to nazywamy go graniastosłupem czworokątnym itd. D Ile wszystkich krawędzi, ile wierzchołków i ile ścian ma graniastosłup dwunastokątny, a ile n-kątny? Graniastosłup, w którym krawędzie boczne są prostopadłe do podstaw, nazywamy graniastosłupem prostym. Uwaga. Wszystkie ściany boczne graniastosłupa prostego są prostokątami. Graniastosłup, w którym wszystkie ściany są prostokątami, nazywamy prostopadłościanem. Uwaga. W prostopadłościanie za podstawy można przyjąć dowolną parę ścian równoległych. Graniastosłup, w którym krawędzie boczne nie są prostopadłe do podstaw, nazywamy graniastosłupem pochyłym. Graniastosłup prosty, w którym podstawy są wielokątami foremnymi, nazywamy graniastosłupem prawidłowym. E Oblicz sumę długości wszystkich krawędzi graniastosłupa prawidłowego siedmiokątnego o wysokości 3 i krawędzi podstawy długości 2. Uwaga. Na podstawie rysunku graniastosłupa na ogół nie możemy rozstrzygnąć, czy jest to graniastosłup prawidłowy. Na przykład rysunek poniżej (pierwszy z lewej strony) mógłby przedstawiać każdy z graniastosłupów, których siatki są narysowane obok, czyli zarówno graniastosłup prawidłowy, jak również taki, który prawidłowy nie jest. 80 STEREOMETRIA
7 Wysokością ostrosłupa nazywamy odcinek łączący wierzchołek ostrosłupa z płaszczyzną podstawy, prostopadły do tej płaszczyzny. Koniec wysokości leżący na płaszczyźnie podstawy nazywamy spodkiem wysokości. Zauważ, że w graniastosłupie można wskazać wiele odcinków, które są wysokościami, a ostrosłup, który nie jest trójkątny, ma tylko jedną wysokość. F Naszkicuj ostrosłup czworokątny, który spełnia podany warunek. 1. Jedna z krawędzi bocznych jest jednocześnie wysokością ostrosłupa. 2. Spodek wysokości leży poza podstawą ostrosłupa. 3. Spodek wysokości ostrosłupa jest środkiem krawędzi podstawy. Jeśli podstawa ostrosłupa jest trójkątem, to ostrosłup nazywamy trójkątnym, jeśli podstawa jest czworokątem, to nazywamy go czworokątnym itd. G Ile wszystkich wierzchołków, ile ścian i ile krawędzi ma ostrosłup dwunastokątny, a ile n-kątny? Ostrosłup trójkątny nazywany jest czworościanem. Uwaga. W czworościanie każdą ze ścian możemy uznać za podstawę. Czworościan ma zatem cztery wysokości. Ostrosłup, w którym podstawa jest wielokątem foremnym i krawędzie boczne mają równe długości, nazywamy ostrosłupem prawidłowym. Uwaga. W ostrosłupie prawidłowym ściany boczne są przystającymi trójkątami równoramiennymi. H I Oblicz sumę długości wszystkich krawędzi ostrosłupa prawidłowego czworokątnego o krawędzi podstawy długości 2 i wysokości 3. Jakie wielokąty mogą być podstawami ostrosłupa prawidłowego, w którym wszystkie krawędzie mają jednakową długość? WIELOŚCIANY 81
8 Oto ważne twierdzenie dotyczące ostrosłupów prawidłowych. W ostrosłupie prawidłowym spodek wysokości jest środkiem okręgu opisanego na podstawie. Dowód Aby udowodnić powyższe twierdzenie, wystarczy wykazać, że spodek wysokości jest jednakowo odległy od wszystkich wierzchołków podstawy. Rozważmy w ostrosłupie prawidłowym trójkąty, których dwoma bokami są wysokość ostrosłupa ikrawędźboczna. Wszystkie takie trójkąty są prostokątne, mają wspólną przyprostokątną i przeciwprostokątne o tej samej długości. Wobec tego we wszystkich tych trójkątach trzeci bok odcinek łączący spodek wysokości z wierzchołkiem podstawy ma taką samą długość. Zauważ, że taki sam dowód można przeprowadzić dla nieco ogólniejszego twierdzenia: Jeśli wszystkie krawędzie boczne ostrosłupa mają równe długości, to na podstawie ostrosłupa można opisać okrąg i środek tego okręgu jest spodkiem wysokości ostrosłupa. J Na rysunkach przedstawiono ostrosłupy prawidłowe. Oblicz długości odcinków oznaczonych literami. Z powyższego twierdzenia wynika, że spodek wysokości ostrosłupa prawidłowego trójkątnego pada w punkcie, w którym przecinają się wysokości podstawy. Punkt ten dzieli każdą z wysokości w stosunku 1 : 2. K Na poniższym rysunku przedstawiono ostrosłup prawidłowy trójkątny. Jakie długości mają odcinki x i y? 82 STEREOMETRIA
9 P Krawędź podstawy ostrosłupa prawidłowego trójkątnego ma długość 3, a jego krawędź boczna ma długość 4. Jaką wysokość ma ten ostrosłup? AF = Korzystamy ze wzoru na wysokość trójkąta równobocznego h = a 3 2. AE = 2 3 AF = = 3 AE 2 + DE 2 = DA 2 Odcinek AE to 2 3 wysokości podstawy ostrosłupa. Korzystamy z tw. Pitagorasa. ( 3) 2 + DE 2 =4 2 DE = 13 Odp. Wysokość ostrosłupa jest równa 13. Podstawą graniastosłupa prostego o wysokości 3 jest romb o boku 2. Kąt ostry rombu ma miarę 60. Oblicz długości przekątnych tego graniastosłupa. Trójkąt ABD jest równoboczny, a odcinek AS to wysokość tego trójkąta. BD =2 AS = = 3 AC =2 3 AG 2 = AC 2 + CG 2 AG 2 =(2 3) AG = 21 HB 2 = BD 2 + DH 2 HB 2 = HB = 13 Korzystamy z tw. Pitagorasa dla trójkątów prostokątnych ACG i HDB. Odp. Przekątne tego graniastosłupa mają długości 21 i 13. KILKA UWAG O RYSOWANIU BRYŁ Na zdjęciu model sześcianu oświetlony jest światłem o równoległych promieniach. Na białym ekranie widać cień modelu. Sporządzając rysunek wielościanu na kartce, wykonujemy go tak, jakbyśmy rysowali cień rzucany przez krawędzie tego wielościanu. WIELOŚCIANY 83
10 Poniższe zdjęcia wykonano w ten sposób, że ramkę w kształcie kwadratu (na zdjęciu: zielony czworokąt) ustawiono w różnych położeniach względem ekranu, otrzymując cienie o różnych kształtach. Przyglądając się zdjęciom, można zauważyć, że cienie równoległych boków ramki są równoległe, cień kwadratowej ramki ma zawsze kształt równoległoboku. Kolejna ramka miała kształt trapezu równoramiennego, w którym poprowadzono wysokość (czerwony odcinek) łączącą środki podstaw. Można zauważyć, że jeśli punkt dzieli odcinek na dwie równe części, to cień punktu dzieli cień odcinka w tym samym stosunku. Gdy rysujemy wielościany, musimy przestrzegać następujących reguł: Jeśli w wielościanie odcinki są równoległe, to odpowiadające im odcinki na rysunku także są równoległe. Jeśli w wielościanie odcinki są równoległe i równej długości, to odpowiadające im na rysunku odcinki też są równoległe i równej długości. Jeśli punkt dzieli odcinek w wielościanie w pewnym stosunku, to odpowiadający mu punkt na rysunku dzieli odcinek w tym samym stosunku. 84 STEREOMETRIA
11 ciekawostka Rysowanie brył nie jest łatwe, gdyż musimy przedstawić w dwóch wymiarach figury, które są trójwymiarowe. Gotowe rysunki można na ogół interpretować na różne sposoby. Stąd biorą się niektóre złudzenia optyczne. Na przykład złudzeniu możemy ulec, patrząc na pierwszy rysunek sześcianu. Rysunek ten jest wieloznaczny. Sześcian możemy zobaczyć na dwa sposoby, zależnie od tego, które krawędzie uznamy za niewidoczne. Inny przykład złudzenia optycznego to tzw. schody Zöllnera (czyt. celnera) przedstawione na rysunku poniżej (z lewej strony). Dwie osoby patrzące na ten rysunek mogą zobaczyć schody na różne sposoby, na przykład widziane z góry albo widziane od dołu. Kolejne rysunki pomagają dostrzec dwie różne interpretacje (kropka wskazuje ścianę, którą powinieneś zobaczyć na pierwszym planie). ciekawostka Najbardziej zaskakujące są rysunki tzw. figur niemożliwych. Poniżej podajemy przykłady takich figur. Pozornie wydaje się, że rysunki przedstawiają rzeczywiste bryły i można zbudować ich modele. Jednak dokładniejsza analiza pokazuje, że jest to niemożliwe, gdyż bryły takie nie istnieją! Artyści na kanwie takich rysunków potrafią stworzyć intrygujące obrazy. Przykładem wykorzystania pierwszego z nich jest grafika M.C. Eschera (czyt. eszera) Wodospad. WIELOŚCIANY 85
12 ZADANIA 1. Przerysuj i uzupełnij tabelki. Graniastosłupy Liczba ścian 7 Liczba krawędzi 9 Liczba wierzchołków 12 Ostrosłupy Liczba ścian 7 Liczba krawędzi 10 Liczba wierzchołków 9 2. a) Ile ścian bocznych ma ostrosłup o 100 krawędziach? b) Ile ścian bocznych ma graniastosłup o 100 wierzchołkach? c) Czy graniastosłup może mieć 20 krawędzi? d) Czy ostrosłup może mieć 15 krawędzi? e) Czy ostrosłup może mieć 22 krawędzie i 12 ścian bocznych? f) Czy graniastosłup może mieć 10 ścian bocznych i 20 wierzchołków? Liczba ścian (S), liczba wierzchołków (W ) i liczba krawędzi (K) dowolnego wielościanu wypukłego są ze sobą związane zależnością, którą odkrył w 1752 roku wielki matematyk szwajcarski Leonhard Euler (czyt. leonard ojler). wzór eulera: S + W = K a) Ile krawędzi ma wielościan wypukły o 10 ścianach i 12 wierzchołkach? b) Wykaż, że nie może istnieć wielościan wypukły o dwudziestu krawędziach i dziewiętnastu ścianach. c) Podaj liczbę ścian, wierzchołków i krawędzi graniastosłupa, którego podstawą jest n-kąt. Sprawdź, czy liczby te spełniają wzór Eulera. 4. Wykaż, korzystając ze wzoru Eulera, że liczby ścian, wierzchołków i krawędzi wielościanu wypukłego nie mogą być kolejnymi liczbami naturalnymi. 5. Niech jedna ze ścian pewnego wielościanu wypukłego będzie wielokątem przystającym do jednej ze ścian innego wielościanu wypukłego. Wykaż, że jeśli te wielościany skleimy przystającymi ścianami (tak, by odpowiednie krawędzie przylegały do siebie), to dla otrzymanego wielościanu można stosować wzór Eulera. 6. a) Czy istnieje graniastosłup, który nie ma przekątnych? b) Czy w graniastosłupie prawidłowym wszystkie przekątne mają taką samą długość? c) Ile przekątnych ma graniastosłup n-kątny? d) Czy w każdym graniastosłupie czworokątnym dowolne dwie przekątne się przecinają? Przekątna wielościanu to odcinek łączący dwa wierzchołki i nieleżący na żadnej ścianie. 86 STEREOMETRIA
Stereometria bryły. Wielościany. Wielościany foremne
Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni
Bardziej szczegółowoSTEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Bardziej szczegółowoXII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
Bardziej szczegółowoGEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
Bardziej szczegółowo1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
Bardziej szczegółowoGraniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
Bardziej szczegółowoGeometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
Bardziej szczegółowoCzy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
Bardziej szczegółowoSkrypt 33. Powtórzenie do matury:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:
Bardziej szczegółowoPytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Bardziej szczegółowoMatematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Bardziej szczegółowoPlan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
Bardziej szczegółowow jednym kwadrat ziemia powietrze równoboczny pięciobok
Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego
Bardziej szczegółowoKRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
Bardziej szczegółowoKLASA CZWARTA TECHNIKUM WYMAGANIA NA POSZCZEGÓLNE OCENY
KLASA CZWARTA TECHNIKUM WYMAGANIA NA POSZCZEGÓLNE OCENY Wymagania stawiane przed uczniem podzielone są na trzy grupy: Wymagania podstawowe ( zawierają wymagania koniczne ) Wymagania dopełniające ( zawierają
Bardziej szczegółowoTrójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
Bardziej szczegółowoGRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.
GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:
Bardziej szczegółowoPLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
Bardziej szczegółowoPlanimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
Bardziej szczegółowoMatematyka podstawowa IX. Stereometria
Zadania wprowadzające: Matematyka podstawowa IX Stereometria 1. Pole powierzchni całkowitej sześcianu jest równe 54. Oblicz objętość sześcianu. 2. Pole powierzchni sześcianu jest równe 96.Oblicz długość
Bardziej szczegółowoPLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Bardziej szczegółowoSkrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Bryły 11. Ostrosłupy - rozpoznawanie,
Bardziej szczegółowoPlanimetria 1 12 godz.
Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Bardziej szczegółowoDydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie
Bardziej szczegółowoPole powierzchni całkowitej prostopadłościanu o wymiarach 5 x 3 x 4 jest równe A. 94 B. 60 C. 47 D. 20
STEREOMETRIA - ZADANIA MATURALNE lata 2010-2017 Zadanie 1. (0-1) Maj 2010 [I. Wykorzystanie i tworzenie informacji] Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x x 4 jest równe A. 94 B.
Bardziej szczegółowoKONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Bardziej szczegółowoSkrypt 26. Stereometria: Opracowanie Jerzy Mil
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 26 Stereometria: 1. Przypomnienie
Bardziej szczegółowoPlan wynikowy klasa 3
Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji
Bardziej szczegółowo2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego
Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie
Bardziej szczegółowoKlasa 2. Ostrosłupy str. 1/4
Klasa 2. Ostrosłupy str. 1/4 1. Liczba wierzchołków ostrosłupa ośmiokątnego wynosi: A. 9 B. 16 C. 8 D. 7 2. Łączna długość prętów potrzebnych do wykonania szkieletu namiotu w kształcie ostrosłupa prawidłowego
Bardziej szczegółowoPRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie
Bardziej szczegółowoWymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI
Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Ocena dopuszczająca: - nazwy działań - algorytm mnożenia i dzielenia
Bardziej szczegółowoZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne
CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)
Bardziej szczegółowoWYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II
WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych
Bardziej szczegółowoOpracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety
Bardziej szczegółowoGEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Bardziej szczegółowo1 Odległość od punktu, odległość od prostej
24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK
Bardziej szczegółowoĆwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
Bardziej szczegółowoMATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,
Bardziej szczegółowoAgnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i
Bardziej szczegółowo7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
Bardziej szczegółowoPYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Bardziej szczegółowoRozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Bardziej szczegółowoRozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY
Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,
Bardziej szczegółowoIX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
Bardziej szczegółowoDZIAŁ II: PIERWIASTKI
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w II klasie gimnazjum w roku szkolnym 2016/2017 Wymagania edukacyjne dostosowane do obowiązującej
Bardziej szczegółowoWielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
Bardziej szczegółowoWymagania z matematyki na poszczególne oceny II klasy gimnazjum
Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod
Bardziej szczegółowoTemat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14
I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu
Bardziej szczegółowoOstrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =
Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego
Bardziej szczegółowoXI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o
Bardziej szczegółowoZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM
ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM Ocena dopuszczająca: Uczeń: Zna pojęcie potęgi o wykładniku naturalnym Rozumie pojęcie potęgi o wykładniku naturalnym Umie zapisać potęgi w postaci iloczynów
Bardziej szczegółowoPrawdy i nieprawdy. Liczba graczy od 2 do 6 osób. Rekwizyty talia 50 kart (plus 4 do wariantu 2) Zasady gry. klasa II GRANIASTOSŁUPY
Prawdy i nieprawdy klasa II GRANIASTOSŁUPY Liczba graczy od 2 do 6 osób Rekwizyty talia 50 kart (plus 4 do wariantu 2) Zasady gry Wariant 1. Gracze układają karty w stos zdaniami do góry. W trakcie rozgrywki
Bardziej szczegółowoPlan wynikowy klasa 3. Zakres podstawowy
Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017
WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE DRUGIEJ GIMNAZJUM rok szkolny 2016/2017 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający -
Bardziej szczegółowoKORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
Bardziej szczegółowoAgnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
Bardziej szczegółowoMATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.
MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................
Bardziej szczegółowoZbiór zadań z geometrii przestrzennej. Michał Kieza
Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania
Bardziej szczegółowoMatematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:
Bardziej szczegółowoSZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA
SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA DZIAŁ I: POTĘGI I PIERWIASTKI zna i rozumie pojęcie potęgi o wykładniku naturalnym (2) umie zapisać potęgę w postaci iloczynu (2)
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych
Bardziej szczegółowoPlanimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
Bardziej szczegółowoAgnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania
Bardziej szczegółowoMATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe
Bardziej szczegółowoStereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy
Bardziej szczegółowoA. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
Bardziej szczegółowoTemat: PRZEKROJE PROSTOPADŁOŚCIANÓW. Cel lekcji: kształcenie wyobraźni przestrzennej
Temat: PRZEKROJE PROSTOPADŁOŚCIANÓW Cel lekcji: kształcenie wyobraźni przestrzennej Przypomnienie podstawowych wiadomości potrzebnych do rozwiązywania zadań z przekrojami prostopadłościanów. 1. Prostopadłościan
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM
WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM OCENA DOPUSZCZAJĄCA -pojęcie potęgi o wykładniku naturalnym, -wzór na mnożenie i dzielenie potęg o tych samych podstawach, -wzór na potęgowanie iloczynu
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Bardziej szczegółowoOkręgi i proste na płaszczyźnie
Okręgi i proste na płaszczyźnie 1 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać kąt środkowy oparty na zadanym łuku, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia,
Bardziej szczegółowoMini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
Bardziej szczegółowoPrzedmiotowy system oceniania z matematyki kl.ii
DZIAŁ 1. POTĘGI Matematyka klasa II - wymagania programowe zna i rozumie pojęcie potęgi o wykładniku naturalnym (K) umie zapisać potęgę w postaci iloczynu (K) umie zapisać iloczyn jednakowych czynników
Bardziej szczegółowoSPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe...
SPIS TREŚCI POTĘGI 1. Potęga o wykładniku naturalnym................................. 7 2. Iloczyn i iloraz potęg o jednakowych podstawach................ 8 3. Potęgowanie potęgi................................................
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
MATEMATYKA Wymagania na poszczególne oceny szkolne Klasa 8 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności
Bardziej szczegółowoWYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016
WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/2/2010 POZIOMY WYMAGAŃ
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie VI szkoły podstawowej w roku szkolnym 2016/2017
Wymagania edukacyjne z matematyki w klasie VI szkoły podstawowej w roku szkolnym 2016/2017 I. LICZBY NATURALNE I UŁAMKI Zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000,.. Zna
Bardziej szczegółowoKRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
Bardziej szczegółowoWymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum
Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające
Bardziej szczegółowoWymagania edukacyjne zakres podstawowy klasa 3A
Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent
Bardziej szczegółowoWymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
Bardziej szczegółowoOkreślenie wymagań edukacyjnych z matematyki w klasie II
Określenie wymagań edukacyjnych z matematyki w klasie II Potęgi Na ocenę dopuszczającą uczeń : Zna i rozumie pojęcie potęgi o wykładniku naturalnym, zna wzory na mnożenie i dzielenie potęg o tych samych
Bardziej szczegółowoKlasa II POTĘGI. Na ocenę dobrą: umie porównać potęgi sprowadzając do tej samej podstawy
Klasa II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych czynników w postaci potęgi
Bardziej szczegółowoPLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości
Bardziej szczegółowoKLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA Wymagania edukacyjne dostosowane są do programu MATEMATYKA Z PLUSEM KLASA II DZIAŁ I POTĘGI I PIERWIASTKI Poziomy wymagań edukacyjnych: K - konieczny
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO
Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca
Bardziej szczegółowoXIII Olimpiada Matematyczna Juniorów
XIII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (8 września 017 r.) Rozwiązania zadań testowych 1. W każdym z trzech lat 018, 019 i 00 pensja pana Antoniego będzie o 5% większa
Bardziej szczegółowoMetoda objętości zadania
Metoda objętości zadania Płaszczyzny i dzielą graniastosłup trójkątny na cztery bryły Znaleźć stosunki objętości tych brył 2 any jest równoległościan o objętości V Wyznaczyć objętość części wspólnej czworościanów
Bardziej szczegółowo