Metodyka Badań Materiałów i Technik Malarskich

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metodyka Badań Materiałów i Technik Malarskich"

Transkrypt

1 Metodyka Badań Materiałów i Technik Malarskich Wykład IV Echografia ultradźwiękowa Mikroskopia optyczna Mikroskopia elektronowa Badania mikroskrystaloskopowe Przekroje poprzeczne

2 Widmo fal akustycznych Ultradźwięki 0 10 Hz 0,1 khz 1 khz 10 khz 100 khz 1 MHz 10 MHz infradźwięki dźwięki słyszalne ultradźwięki Właściwości ultradźwięków wykorzystywane są w celach diagnostycznych i operacyjnych. Do celów diagnostycznych uŝywane są w sposób analogiczny jak fale radarowe. W celach operacyjnych ultradźwięki wykorzystywane są do oczyszczania obiektów zabytkowych jak i do rozwarstwiania warstw malarskich obrazów.

3 Ultradźwięki Fale podłuŝne W diagnostyce wykorzystuje się fale ultradźwiękowe podłuŝne. Drgania ośrodka odbywają się w kierunku rozchodzenia fali. Istnieją takŝe fale akustyczne poprzeczne i powierzchniowe. Nie są one wykorzystywane w celach diagnostycznych

4 Echografia ultradźwiękowa W echografii ultradźwiękowej wykorzystuje się zjawisko odbicia fali ultradźwiękowej od anomalii strukturalnych ośrodka. Prędkość propagacji ultradźwięków w ośrodku zaleŝy od częstotliwości fali oraz właściwości ośrodka (gęstości, współczynnika spręŝystości). Ośrodek prędkość dźwięku [m/s] powietrze 330 woda 1430 metale 5000 tynk 1040

5 Impedancja akustyczna Impedancja akustyczna jest to opór stawiany przez ośrodek propagacji fali (wskaźnik podatności ośrodka na ruch wymuszony). Znając wartość impedancji moŝna obliczyć natęŝenie fali ultradźwiękowej odbitej od granicy dwóch ośrodków oraz przenikającej do drugiego ośrodka. Z = ρ υ= ρ E, gdzie ρ jest gęstością ośrodka, υ prędkością propagacji fali ultradźwiękowej, E modułem spręŝystości ośrodka. Wartość impedancji zmienia się znacząco w zaleŝności od ośrodka. Dla powietrza wynosi ona 0,0004, dla wody 1,48, dla kwarcu 15, kg/(m 2 s).

6 Echografia ultradźwiękowa Gdy fala przechodzi przez granicę dwóch ośrodków o róŝnej wartości impedancji akustycznej, a rozmiary granicy są większe od długości fali, część energii fali ulega odbiciu, część przechodzi do drugiego ośrodka. Z 1 I r I granica ośrodoka Z 2 I t Współczynnik odbicia: R = Z Z 2 1 Z2 1 + Z 2

7 Echografia ultradźwiękowa NatęŜenie fali przechodzącej zaleŝy równieŝ od kąta padania wiązki padającej. Gdy wiązka pada prostopadle do granicy dwóch ośrodków, wówczas natęŝenie fali przechodzącej jest największe. Gdy wiązka pada pod kątem większym niŝ kąt graniczny, wówczas energia całej fali ulega odbiciu.

8 Rozdzielczość poprzeczna Zdolność rozróŝnienia obiektów leŝących na linii prostopadłej do kierunku rozchodzenia się ultradźwięków nazywana jest rozdzielczością poprzeczną. Dobrą rozdzielczość poprzeczną zapewnia stosowanie zwartej wiązki o duŝej częstotliwości mikrofal.

9 Rozdzielczość podłuŝna Rozdzielczość podłuŝna jest miarą zdolności rozróŝniania obiektów jeden za drugim na drodze propagacji ultradźwięków. ZaleŜy ona od długości fal ultradźwiękowych. Im mniejsza ich długość (większa częstotliwość), tym większa rozdzielczość podłuŝna.

10 Echografia ultradźwiękowa Absorpcja fal ultradźwiękowych wzrasta ze wzrostem częstotliwości. W praktyce nie stosuje się fal o częstotliwości większej niŝ 15 MHz. Echografia polega na pomiarze czasu powrotu echa impulsu ultradźwiękowego. Znając prędkość propagacji ultradźwięków w danym materiale moŝna w ten sposób lokalizować anomalia w badanej strukturze. W pewnych przypadkach echografię stosuje się do wyznaczania prędkości propagacji mikrofal, która zaleŝy między innymi od porowatości materiału. MoŜna w ten sposób badać jakość przeprowadzania zabiegów konsolidacji lub impregnacji materiałów porowatych.

11 Echografia ultradźwiękowa Echografię moŝna wykorzystywać do lokalizowania pęknięć lub do identyfikowania wewnętrznej struktury materiału, np.. ułoŝenia warstw w tynkach. Znając rodzaj materiału i prędkość propagacji mikrofal moŝna określić jego grubość (np..odlewy brązowe).

12 Zasada działania 1. Generator impulsów elektrycznych, 2. Przetwornik piezoelektryczny, 3. Oscyloskop, 4. Synchronizator. Przetwornik najczęściej umieszcza się w komorze próŝniowej. Powierzchnia drgań przytwierdzona jest do plastra o impedancji zbliŝonej do impedancji badanego ośrodka.

13 Powstawanie echa ultradźwiękowego

14

15

16 Echografia ultradźwiękowa Do celów diagnostycznych w konserwacji dzieł sztuki ultradźwięki zostały zaadoptowane od niedawna. Metoda ta stosowana uwaŝana jest za nieniszczącą, poniewaŝ ultradźwięki nie wywołują efektów jonizacji materii, które mają wpływ na powstawanie procesów degradacyjnych. NiepoŜądane efekty fizyczne polegają na wytwarzaniu ciepła, napręŝeń mechanicznych. ZaleŜą one zasadniczo od natęŝenia i częstotliwości fali oraz od rodzaju badanego materiału.

17 ULTRADŹWIĘKI Typ wykonywanego badania Czułość Podmiot badania Badanie akustyczne, które pozwala kontrolować wewnętrzną strukturę materiałów lub obiektów, w który zaszły procesy starzeniowe. Szczególnie przydatne w badaniach materiałów metalowych, kamiennych, tynków i drewna. Zmienna, zaleŝna od rodzaju materiału i jego grubości (większość obiektów metalowych). Cały obiekt lub jego obszar. Podstawowa zasada Odbicie (echo) fal akustycznych o wysokiej częstotliwości od powierzchni granicznych materiałów o róŝnej impedancji akustycznej.

18 Mikroskopia optyczna - zastosowania biologia, medycyna, geologia, metalografia, mikroelektronika konserwacja zabytków.

19 Mikroskopia w konserwacji identyfikacja pigmentów, identyfikacja spoiw, badanie składu warstw malarskich, badanie przebiegu reakcji mikrochemicznych

20 Bieg promieni w mikroskopie B A l A f 2 F 1 F 1 F 2 A F 2 f 1 B B F 1, F 2 ogniska obiektywu i okularu, f 1, f 2 ogniskowe obiektywu i okularu, l długość tubusa mikroskopu, AB przedmiot, A B, A B obrazy.

21 Mikroskop transmisyjny i odbiciowy apertura kondensora apertura obiektywu źródło światła soczewka kondensora przedmiot soczewka obiektywu obraz I soczewka okularu obraz II źródło światła soczewka kondensora soczewka obiektywu przedmiot apertura kondensora obraz I soczewka okularu obraz II apertura obiektywu zwierciadło półprzepuszczalne

22 Mikroskop transmisyjny i odbiciowy mikroskop transmisyjny mikroskop odbiciowy

23 Powiększenie mikroskopu Powiększenie mikroskopu jest w przybliŝeniu równe iloczynowi powiększeń obiektywu i okularu: M= Dl f 1 f 2, gdzie D jest odległością dobrego widzenia dla oka ludzkiego (przyjmuje się 250 mm), l jest długością tubusa, f 1 i f 2 długościami ogniskowej obiektywu i okularu.

24 Zdolność rozdzielcza Zdolność rozdzielcza mikroskopów optycznych jest ograniczona przez zjawisko dyfrakcji światła. Zdolność rozdzielcza, tzn. odległość między dwoma punktami przedmiotu, które jeszcze rozróŝniamy, wynosi: d λ = 0,61, A gdzie λ jest długością fali oświetlającej, A jest aperturą numeryczną obiektywu. A=nsin β, 2 gdzie n jest współczynnikiem załamania obiektywu, β - katem rozwarcia przedniej soczewki obiektywu.

25 Kondensory Kondensory są to specjalne układy soczewek, których zadaniem jest wprowadzenie do obiektywu mikroskopu intensywnych wiązek światła. WyróŜnia się kondensory z jasnym i ciemnym polem widzenia.

26 Obserwacje w jasnym polu widzenia okular źródło światła obiektyw preparat Preparat oświetlamy uformowaną przez kondensor wiązką promieni świetlnych w kształcie stoŝka. Wszystkie promienie tego stoŝka objęte aperturą padają na preparat. Kontrast otrzymujemy w wyniku róŝnic absorpcji i odbicia od powierzchni preparatu.

27 Obserwacje w ciemnym polu widzenia preparat Preparat oświetlany światłem bocznym. Specjalna konstrukcja kondensora formuje wiązkę prawie równoległą do powierzchni preparatu. Od brzegów preparatu odbija się szczątkowe oświetlenie wiązki wychodzącej z kondensora. Do obserwatora dociera obraz jasnych elementów na ciemnym tle.

28 Obserwacje w ciemnym polu widzenia preparat ciemne pole widzenia oświetlenie boczne jasne pole widzenia

29 Obszary powiększeń Małe powiększenia (od 20 do 60x). Uzyskuje się obrazy o duŝej głębi ostrości. Stosowane w badaniach mikrochemicznych oraz w obserwacjach wybarwianych próbek. DuŜe powiększenia (od 100 do 500x). Stosuje się w badaniach przekrojów stratygraficznych odpowiednio przygotowanych preparatów.

30 Obserwacje w świetle odbitym Światło przez lustro dichromatyczne kierowane jest na preparat. Obraz preparatu tworzy światło odbite od powierzchni preparatu. Obserwacje w świetle odbitym stosowane są do próbek przekrojów poprzecznych warstw malarskich. Jarosław RogóŜ, Zastosowanie technik nieniszczących w badaniach konserwatorskich malowideł ściennych, Toruń, Wydawnictwo UMK, Toruń 2009

31 Mikroskopia stereoskopowa W mikroskopii stereoskopowej wykorzystuje się zjawisko percepcji dwuwymiarowości i głębi obrazu będącej cechą widzenia dwuocznego. Mikroskopy stereoskopowe wykorzystywane są do obserwacji powierzchni próbki i określenia stanu jej zachowania oraz pomiaru grubości poszczególnych warstw malarskich. Jarosław RogóŜ, Zastosowanie technik nieniszczących w badaniach konserwatorskich malowideł ściennych, Toruń, Wydawnictwo UMK, Toruń 2009

32 Mikroskopia stereoskopowa

33 Mikroskopia polaryzacyjna światło niespolaryzowane polaryzator źródło światła światło spolaryzowane

34 Mikroskopia polaryzacyjna polaryzator analizator

35 Mikroskopia polaryzacyjna pierwszy polaryzator preparat analizator (drugi polaryzator) światło niespolaryzowane światło spolaryzowane liniowo preparat skręca płaszczyznę polaryzacji obraz

36 Mikroskopia polaryzacyjna JeŜeli dwa polaryzatory są zorientowane względem siebie prostopadle, to światło nie przechodzi przez układ. JeŜeli pomiędzy nimi ustawimy preparat o własnościach anizotropowych (skręcających płaszczyznę polaryzacji światła), światło moŝe być częściowo przepuszczane. Zjawisko to zaleŝy od długości światła. Uzyskuje się w ten sposób obrazy barwne.

37 Mikroskopia polaryzacyjna Mikroskop polaryzacyjny wyposaŝony jest w filtry polaryzacyjne i obrotowy stolik przedmiotowy. Uzyskany obraz mikroskopowy powstaje wskutek efektów interferencyjnych związanych z dwójłomnością materiałów preparatu. Mikroskopia polaryzacyjna wykorzystywana jest w badaniach próbek tynków i zapraw, cegieł, kamieni sztucznych i naturalnych, rzadziej w badaniu pigmentów mineralnych Jarosław RogóŜ, Zastosowanie technik nieniszczących w badaniach konserwatorskich malowideł ściennych, Toruń, Wydawnictwo UMK, Toruń 2009

38 Mikroskopia polaryzacyjna Mikroskopia polaryzacyjna wykorzystywana jest w identyfikacji pigmentów i włókien. Badane próbki warstw mają rozmiary od 1 do 20 µm.

39 Mikroskopia fluorescencyjna Próbka w mikroskopie fluorescencyjnym wzbudzana jest promieniowaniem UV. Filtr wzbudzający stosowany jest w celu odcięcia promieniowania widzialnego emitowanego przez źródło. Z kolei filtr zaporowy ma za zadanie odcięcie promieniowania UV odbitego od preparatu. Technika ta jest stosowana w badaniach przekrojów poprzecznych próbek warstw malarskich. Jarosław RogóŜ, Zastosowanie technik nieniszczących w badaniach konserwatorskich malowideł ściennych, Toruń, Wydawnictwo UMK, Toruń 2009

40 Mikroskopia konfokalna ognisko ekran z otworkiem Soczewki w mikroskopie konfokalnym skupiają światło z ogniska jednej soczewki w ognisku soczewki drugiej (niebieskie promienie). Zielne promienie pochodzą od innego punktu próbki (poza obszarem ogniska), które jednakŝe są odwzorowywane przez soczewki mikroskopu. Obraz zielonego punktu znajduje się w innym miejscu niŝ obraz punktu niebieskiego.

41 Mikroskopia konfokalna ognisko ekran z otworkiem JeŜeli umieścimy ekran z otworkiem w miejscu obrazu niebieskiego punktu po drugiej stronie układu soczewek, wówczas całe światło pochodzące z niebieskiego punktu przejdzie przez otworek. Natomiast większość promieni świetlnych pochodzących od punktu zielonego będzie znajdować się poza ogniskiem i zostanie zablokowana. Promienie zielone i niebieskie mają tę samą długość fali, róŝne kolory zastosowano dla jasności wywodu.

42 Mikroskopia konfokalna Zjawisko to wykorzystuje się w mikroskopii fluorescencyjnej. W zwykłym mikroskopie cały preparat jest jednocześnie oświetlany promieniowaniem wzbudzającym. Największe natęŝenie promieniowania wzbudzającego przypada na ognisko soczewek. JednakŜe inne fragmenty preparatu równieŝ są oświetlane, wywołując ich fluorescencję. To wywołuje dodatkowe tło fluorescencyjne, które zaciemnia obraz fluorescencyjny. Dołączenie ekranu z otworkiem rozwiązuje ten problem. PoniewaŜ ognisko soczewki obiektywowej tworzy obraz w miejscu, w którym znajduje się otworek na ekranie, oba te punkty nazywane są sprzęŝonymi. Podobnie płaszczyzna preparatu oraz płaszczyzna ekranu z otworkiem są sprzęŝone. Od tego sprzęŝenia pochodzi nazwa mikroskopii konfokalnej (conjugate to thefocal plane).

43 Mikroskopia konfokalna zwierciadła skanujące laser fotopowielacz zwierciadło półprzepuszczalne ekran z otworkiem mikroskop próbka

44 Mikroskopia konfokalna W mikroskopie konfokalnym obserwacja preparatu odbywa się punkt po punkcie. Sygnał detektora zamieniany jest komputerowo na obraz piksel po pikselu. Ze względu na ograniczenia związane z układem mechanicznym zwierciadeł skanujących mikroskopy konfokalne są urządzeniami stosunkowo powolnymi. Mikroskop jest w stanie utworzyć trzy obrazy na sekundę o rozdzielczości 512 x 512 pikseli.

45 Mikroskopia konfokalna Światło z lasera wzbudzającego przez zwierciadło półprzepuszczalne kierowane jest na zwierciadła skanujące. Zwierciadła skanujące poruszane są przez silniki, których sterowanie zapewnia skanowanie wybranego obszaru preparatu. Emitowane z określonego miejsca promieniowanie przez zwierciadła skanujące kierowane jest na ekran z otworkiem. Światło, które przechodzi przez otworek, mierzone jest przez czuły detektor (najczęściej fotopowielacz).

46 Mikroskop konfokalny W mikroskopach konfokalnych obserwacje moŝna wykonywać z wybranej głębokości preparatu poprzez zmianę jego połoŝenia wzdłuŝ osi pionowej Z. Joanna Sosińska, Joanna Sabik, Mikroskop konfokalny

47 Leica TCS SP Mikroskop konfokalny

48 Leica TCS SP Mikroskop konfokalny

49 Zalety mikroskopów konfokalnych Mikroskopy bardzo skutecznie usuwają tło fluorescencyjne pochodzące spoza obszaru ogniska. Uzyskiwany obraz pochodzi z wąskiego obszaru próbki (mała głębokość pola). Skanując wąskie przekroje próbki moŝna tworzyć klarowne trójwymiarowe obrazy fluorescencji próbki. Pozioma zdolność rozdzielcza mikroskopu wynosi 0,2 µm, pionowa 0,5 µm.

50 Wady mikroskopów konfokalnych Obraz o słabym natęŝeniu. Powolność ma szczególne znaczenie w przypadku próbek ulegających wyświecaniu (blaknięciu). Wpływ czynników otoczenia na uzyskiwane obrazy (temperatura, oświetlenie). Niska zdolność rozdzielcza w porównaniu z mikroskopami elektronowymi. Wysoka cena (kilkaset tysięcy zł).

51 Porównanie obrazów konwencjonalny mikroskop mikroskop konfokalny głębia detekcji światła głębia ostrości głębia detekcji światła głębia ostrości obraz w polu widzenia obraz w polu widzenia

52 Porównanie obrazów

53 Obrazy 3D

54 Historia mikroskopii elektronowej mikroskop optyczny (~1700) TEM (1932) SEM (1942) STM (1982) AFM (1986) TEM transmission electron microscope; SEM scanning electron microscope; STM scanning tunneling microscope; AFM atomic force microscope.

55 Ewolucja rozdzielczości mikroskopów CTEM conventional transmission electron microscopy; STEM scanning transmission electron microscopy; SEM scanning electron microscopy.

56 Głębia ostrości mikroskopu elektronowego A apertura d płąszczyzna optymalnej ostrości h α Głębia ostrości jest to odległość od płaszczyzny optymalnej ostrości w obrębie której rozmycie ostrości jest mniejsze od średnicy plamki elektronowej. Głębia pola określa zakres połoŝeń przedmiotu, w obrębie których nie jesteśmy w stanie stwierdzić zmian w ostrości obrazu.

57 Mikroskopia transmisyjna Maksymalna zdolność rozdzielcza optycznych mikroskopów transmisyjnych nie przekracza 275 nm. W mikroskopii elektronowej osiągamy zdolności rozdzielcze poniŝej 1 nm. Długość fali elektronowej h/mυ moŝe być kontrolowana poprzez zmiany napięcia przyspieszającego. W technice TEM moŝemy uzyskiwać obrazy próbek z atomową rozdzielczością oraz określać ich struktury (dyfrakcja elektronowa).

58 Transmisyjna mikroskopia elektronowa

59 Transmisyjna mikroskopia elektronowa Obraz TEM próbki warstwy malarskiej o grubości 12 µm. Uwidoczniona została złoŝona, porowata struktura warstwy.

60 Elektronowa mikroskopia skaningowa Powiększenie mikroskopu = szerokość ekranu TV/długość skanowania

61 Elektronowy mikroskop skaningowy

62 Droga wiązki elektronowej w kolumnie mikroskopu SEM

63 Odległość robocza DuŜa odległość robocza powoduje zmniejszenie kata rozbieŝności wiązki elektronowej przy jednoczesnym wzroście rozmiarów plamki elektronowej. Ze wzrostem odległości roboczej spada zdolność rozdzielcza mikroskopu, co jest związane przede wszystkim ze wzrostem rozmiarów plamki elektronowej. Z drugiej strony wzrasta równieŝ głębia pola, bowiem zmniejsza się kąt rozbieŝności wiązki.

64 Cewki skanujące Zadaniem cewek skanujących jest sterowanie wiązki elektronowej, tak by ta skanowała badaną powierzchnię. Dlatego stosuje się dwie pary cewek (skanowanie wzdłuŝ osi X oraz Y). Praca cewek jest zsynchronizowana z pracą monitora CRT. wiązka padająca cewki skanujące wzmacniacz detektor monitor zsynchronizowan skany powierzchnia preparatu

65 Oddziaływanie wiązki z preparatem Wiązka padająca Promieniowanie X (informacja o składzie) Elektrony rozpraszane wstecznie (liczba atomowa i informacja topologiczna) Katodoluminescencja (inforamacja elektryczna) Elektrony wtórne (informacja topograficzna) Elektrony Augera (inforamcja o składzie) Próbka Prąd preparatu (inforamcja elektryczna) W skutek bombardowania powierzchni preparatu następuje emisja fotonów i elektronów. Mikroskopy na ogół wyposaŝone są w układy detekcji elektronów wtórnych, elektronów rozproszonych wstecznie oraz promieniowania rentgenowskiego.

66 Emisja sygnału z objętości próbki

67 Podstawowe mody działania SEM Sygnał/mod Informacja Materiały Rozdzielczość Elektrony wtórne morfologia wszystkie 1 nm Elektrony rozpraszane wstecznie liczba atomowa wszystkie 0,1 0,5 µm* Promieniowanie rentgenowskie (EDS, WDS) skład pierwiastkowy wszystkie (płaskie) ~ 1 µm Katodoluminescencja przerwa wzbroniona, domieszki, czasy Ŝycia izolatory i półprzewodniki ~ 1 µm W większości mikroskopów moŝna badać próbki o rozmiarach cm. *rozdzielczość zaleŝy od napięcia przyspieszającego oraz liczy atomowej SE secondary electrons; BSE backscattering electrons.

68 Elektrony wtórne elektrony wtórne wiązka elektronów padających elektrony wtórne jądro Elektrony wtórne są wytwarzane wskutek oddziaływań pomiędzy wysokoenergetycznymi elektronami wiązki padającej oraz słabo związanymi elektronami z pasma przewodnictwa w metalach lub elektronami walencyjnymi w izolatorach i półprzewodnikach. Ze względu na duŝą róŝnicę energii niesionej przez elektrony wiązki padającej oraz energii elektronów w preparacie, tylko niewielka część energii kinetycznej jest przenoszona do elektronów wtórnych.

69 Rozpraszanie nieelastyczne Podczas rozpraszania nieelastycznego energia elektronów wiązki padającej jest przenoszona do elektronów atomów otoczenia. Wskutek tych procesów tylko niewielka część energii kinetycznej wysokoenergetycznych elektronów jest przekazywana elektronom wtórnym. Procesy rozpraszania obejmują wzbudzenia fononowe, wzbudzenia plazmonowe, wzbudzenia elektronów wtórnych, wytwarzanie promieniowania rentgenowskiego jak równieŝ jonizację wewnętrznych powłok atomowych. W kaŝdym procesie rozpraszania nieelastycznego następuje utrata części energii, współczynnik strat energii jest inny dla kaŝdego procesu.

70 Detekcja elektronów wtórnych Elektrony wtórne z preparatu uzyskują energię wskutek nieelastycznych zderzeń z elektronami wiązki. Energia elektronów emitowanych z próbki nie przekracza 50 ev. Powierzchnia przełomu metalu. Obraz powierzchni utworzony został za pomocą elektronów wtórnych.

71 Rozpraszanie elastyczne elektrony rozpraszane wstecznie kierunek wiązki elektronów elektron rozproszony wstecznie jądro Rozpraszanie elastyczne zachodzi pomiędzy ulemnymi elektronami i dodatnim jądrem (rozpraszanie Rutheforda). Jak sama nazwa wskazuje, w rozpraszaniu elastycznym nie następuje wymiana energii lecz pędu. Zatem w procesie tym zmianie ulega przede wszystkim kierunek prędkości padających elektronów. Elektrony są rozpraszane pod kątami od 0 do 180. Elektrony rozpraszane pod duŝymi kątami nazywane są elektronami rozpraszanymi wstecznie. Obraz stopu aluminium i miedzi wytworzony przez elektrony rozpraszane wstecznie. W jaśniejszych obszarach występuje aluminium, w ciemniejszych miedź.

72 Rozkład energii elektronów wtórnych oraz elektronów rozpraszanych wstecznie SE BSE N(E) straty na plazmonach ERE AE 0 50 ev 2 kev eu Energia elektronów

73 Detekcja elektronów wtórnych detektor Everhatta - Thornleya światłowód pole elektryczne siateczka V scyntylator pokryty warstwą Al (10 kv) fotokatoda dynody fotopowielacza Elektrony wtórne są przyspieszane do czoła detektora spolaryzowaną dodatnio napięciem V siateczkę. W kolejnej fazie są przyspieszane w kierunku scyntylatora wysokim napięciem ~ 10 kv. Scyntylator pokryty jest cienką warstwą Al (700 Å), która zapobiega ucieczce promieniowania fluorescencyjnego. Potencjał 10 kv jest wystarczający do tego, by elektrony wtórne przedostały się przez warstwę metalu i wywołały zjawisko scyntylacji. Fotony za pośrednictwem światłowodu są kierowane do fotopowielacza, który sygnał świetlny zamienia na impulsy elektryczne.

74 Detekcja elektronów rozpraszanych wstecznie elektrony rozpraszane wstecznie Si warstwa Au wytwarzanie par elektron-dziura złącze p-n PoniewaŜ elektrony rozpraszane wstecznie mają duŝo wyŝsze energie, nie mogą być zbierane tą samą metodą, co elektrony wtórne. Najczęściej uŝywanym detektorem BSE jest umieszczony nad próbką poniŝej soczewki obiektywowej detektor bariery powierzchniowej. Detektor bariery powierzchniowej jest skonstruowany na bazie półprzewodnika z zapełnionym pasmem walencyjnym i pustym pasmem przewodnictwa. Na skutek bombardowania przez BSE, elektrony w z pasma walencyjnego półprzewodnika są wzbudzane do pasma przewodnictwa. Po przyłoŝeniu napięcia moŝemy rejestrować prąd proporcjonalny do liczby elektronów wtórnych.

75 Detekcja elektronów detektor elektronów wtórnych detektor promieniowania X detektor elektronów rozpraszanych wstecznie Zastosowanie detektora SE pozwala na wytwarzanie obrazu topograficznego próbki o wysokiej rozdzielczości. Detektory BSE wykorzystuje się do określania składu próbki. KaŜdy pierwiastek wchodzący w skład próbki jest obrazowany przez odpowiedni poziom szarości. Detektory EDS (energy dispersive X-ray spectroscopy) pozwalają na wykonywanie map rozkładów pierwiastkowych powierzchni próbki.

76 PróŜnia Zarówno mikroskopy transmisyjne, jak równieŝ skaningowe pracują w próŝni. W przeciwnym razie wiązka elektronów nie byłaby stabilna. Gazy wchodziłyby w reakcję z działem elektronowym prowadząc do szybkiego jego zniszczenia. Nawet gdyby do tego nie doszło, wiązka elektronów powodowałaby jonizację gazów i przypadkowe wylądowania. Zakłócony byłby równieŝ bieg promieni przez soczewki elektronowe.

77 Napylanie preparatów By uzyskać obraz SEM z próbek dielektrycznych niezbędne jest napylenie jej powierzchni cienką warstwą metaliczną. W ten sposób unika się gromadzenia na powierzchni próbki ładunków powierzchniowych, które utrudniają bądź uniemoŝliwiają obserwacje. Napylanie (najczęściej warstwą złota, rzadziej węgla) wykonuje się w warunkach wysokiej próŝni (10-3 Pa).

78 Napylone próbki przygotowane do obserwacji mikroskopowych Napylanie preparatów

79 Technika ESEM environmental SEM wiązka pierwotna elektronów elektroda detektora - G + - G - G - G G G G G preparat - + G Technika ESEM umoŝliwia obserwacje mikroskopowe w warunkach niskiej próŝni. W technice tej elektrony wtórne są przyciągane przez dodatnio naładowaną elektrodę detektora. Kiedy elektrony przemieszczają się w środowisku gazowym, zderzenia pomiędzy elektronami i cząsteczkami gazu powodują jonizację molekuł gazu i uwalnianie kolejnych elektronów. Dodatnio naładowane jony gazu są przyciągane przez ujemnie spolaryzowany preparat. Wzrost liczby elektronów przyczynia się do wzmocnienia pierwotnego sygnału elektronów wtórnych.

80 Zaburzenia obrazów SEM aberracje chromatyczne; brak ostrości i kontrastu; niestabilność obrazu; zaszumienie obrazu; postrzępione krawędzie przedmiotów; obrazy przekontrastowane; obrazy zdeformowane.

81 Wpływ napięcia przyspieszającego wysoka rozdzielczość wysokie mało przejrzysta struktura powierzchni efekty krawędziowe efekty gromadzenia się ładunku powierzchniowego degradacja próbki Napięcie przyspieszające przejrzysta struktura powierzchni słaby efekt gromadzenia się ładunku powierzchniowego słaby efekt krawędziowy niskie mała rozdzielczość

82 Wpływ napięcia przyspieszającego mikrokryształki złota włókna papieru 5 kv 5 kv 25 kv 25 kv Lepszą ostrość i rozdzielczość obrazu uzyskuje się przy wyŝszych napięciach przyspieszających. Mikrostruktura preparatu jest lepiej uwidoczniona w przypadku płytkiej penetracji wiązki elektronowej (niŝsze napięcia).

83 Wpływ napięcia przyspieszającego toner, powiększenie x 30 kv 5 kv Przy zastosowaniu wysokiego napięcia przyspieszającego trudno jest uzyskać dobry kontrast na powierzchni preparatu. Ponadto mamy do czynienia ze zjawiskiem gromadzenia się ładunku powierzchniowego. Struktura powierzchniowa jest lepiej uwidoczniona przy zastosowaniu niŝszego napięcia przyspieszającego.

84 Prąd wiązki i średnica plamki próbkującej średnica wiązki prąd wiązki Im mniejsza średnica plamki próbkującej, tym większe powiększenia moŝemy osiągać oraz lepszą rozdzielczość obrazu. Z drugiej strony stosunek sygnału do szumu jest tym większy, im większy prąd wiązki próbkującej. Podczas obserwacji mikroskopowych naleŝy kaŝdorazowo dopbierać prąd wiązki do warunków obserwacji (napięcia przyspieszającego, nachylenia preparatu i innych okoliczności).

85 Prąd wiązki i średnica plamki próbkującej Ceramika, 10 kv, powiększenie razy Im mniejszy prąd próbkowania, tym bardziej ostry obraz. JednakŜe odbywa się to kosztem gładkości powierzchni.

86 Przykłady zastosowań SEM Sgraffito na fasadzie domu mieszkalnego na Zamku w śarach Obraz SEM węgla drzewnego w tynku sgraffitowym

87 Przykłady zastosowań SEM Obrazy SEM próbek papieru.

88 Przykłady zastosowań SEM 1 µm Obrazy SEM próbek zapraw gipsowych.

89 Przykłady zastosowań SEM 1 µm Obraz SEM warstwy malarskiej. Obraz zagruntowany przy uŝyciu bieli ołowiowej.

90 Przykłady zastosowań SEM 1 µm Obraz SEM warstwy polichromii ściennej. Jarosław RogóŜ, Zastosowanie technik nieniszczących w badaniach konserwatorskich malowideł ściennych, Toruń, Wydawnictwo UMK, Toruń 2009

91 Przykłady zastosowań SEM 1 µm Obraz SEM warstwy polichromii ściennej. Jarosław RogóŜ, Zastosowanie technik nieniszczących w badaniach konserwatorskich malowideł ściennych, Toruń, Wydawnictwo UMK, Toruń 2009

92 Przykłady zastosowań SEM 1 µm Obraz SEM warstwy polichromii ściennej. Jarosław RogóŜ, Zastosowanie technik nieniszczących w badaniach konserwatorskich malowideł ściennych, Toruń, Wydawnictwo UMK, Toruń 2009

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XI Badania powierzchni ciała stałego: elektronowy mikroskop skaningowy (SEM), skaningowy mikroskop tunelowy

Bardziej szczegółowo

Współczesne metody badań instrumentalnych

Współczesne metody badań instrumentalnych Współczesne metody badań instrumentalnych Wykład IX Mikroskopia optyczna i elektronowa Mikroskopia w konserwacji identyfikacja pigmentów, identyfikacja spoiw, badanie składu warstw malarskich, badanie

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 7 Elektronowy mikroskop skaningowy-analogowy w badaniach morfologii powierzchni ciała stałego. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

METODY BADAŃ BIOMATERIAŁÓW

METODY BADAŃ BIOMATERIAŁÓW METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

Interferencja. Dyfrakcja.

Interferencja. Dyfrakcja. Interferencja. Dyfrakcja. Wykład 8 Wrocław University of Technology 05-05-0 Światło jako fala Zasada Huygensa: Wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów

Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów 1 Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów Cel ćwiczenia Celem ćwiczenia są badania morfologiczne powierzchni materiałów oraz analiza chemiczna obszarów

Bardziej szczegółowo

20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.

20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę. Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego

Bardziej szczegółowo

Mikroskopia fluorescencyjna

Mikroskopia fluorescencyjna Mikroskopia fluorescencyjna Mikroskop fluorescencyjny to mikroskop świetlny, wykorzystujący zjawisko fluorescencji większość z nich to mikroskopy tzw. epi-fluorescencyjne zjawisko fotoluminescencji: fluorescencja

Bardziej szczegółowo

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Techniki mikroskopowe

Techniki mikroskopowe Techniki mikroskopowe Metody badań strukturalnych ciała stałego dr inż. Magdalena Król Mikrostruktura Struktura przestrzenne rozmieszczenie cząstek materii (atomów, jonów, cząsteczek) oraz zespół relacji

Bardziej szczegółowo

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz

Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz Skaningowy Mikroskop Elektronowy Rembisz Grażyna Drab Bartosz PLAN PREZENTACJI: 1. Zarys historyczny 2. Zasada działania SEM 3. Zjawiska fizyczne wykorzystywane w SEM 4. Budowa SEM 5. Przygotowanie próbek

Bardziej szczegółowo

Rozpraszanie nieelastyczne

Rozpraszanie nieelastyczne Rozpraszanie nieelastyczne Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony

Bardziej szczegółowo

Współczesne metody badań instrumentalnych

Współczesne metody badań instrumentalnych Współczesne metody badań instrumentalnych Wykład III Techniki fotograficzne Fotografia w świetle widzialnym Techniki fotograficzne Techniki fotograficzne techniki rejestracji obrazów powstałych wskutek

Bardziej szczegółowo

Spektroskopia fotoelektronów (PES)

Spektroskopia fotoelektronów (PES) Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność

ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność Holografia FALE ELEKTROMAGNETYCZNE Fale elektromagnetyczne

Bardziej szczegółowo

6. Badania mikroskopowe proszków i spieków

6. Badania mikroskopowe proszków i spieków 6. Badania mikroskopowe proszków i spieków Najprostszy układ optyczny stanowią dwie współosiowe soczewki umieszczone na końcach tubusu (rysunek 42). Odwzorowanie mikroskopowe jest dwustopniowe: obiektyw

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Muzeum i Instytut Zoologii Polska Akademia Nauk Akademia im. Jana DługoszaD ugosza Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Magdalena

Bardziej szczegółowo

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów

Bardziej szczegółowo

Temat ćwiczenia. Pomiary oświetlenia

Temat ćwiczenia. Pomiary oświetlenia POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary oświetlenia Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodami pomiaru natęŝenia oświetlenia oraz wyznaczania poŝądanej wartości

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. III Semestr I Drgania i fale Rozpoznaje ruch drgający Wie co to jest fala Wie, że w danym ośrodku fala porusza się ze stałą szybkością Zna pojęcia:

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Optyka geometryczna MICHAŁ MARZANTOWICZ

Optyka geometryczna MICHAŁ MARZANTOWICZ Optyka geometryczna Optyka geometryczna światło jako promień, opis uproszczony Optyka falowa światło jako fala, opis pełny Fizyka współczesna: światło jako cząstka (foton), opis pełny Optyka geometryczna

Bardziej szczegółowo

Mikroskopia konfokalna: techniki obrazowania i komputerowa analiza danych.

Mikroskopia konfokalna: techniki obrazowania i komputerowa analiza danych. Mikroskopia konfokalna: techniki obrazowania i komputerowa analiza danych. Pracownia Mikroskopii Konfokalnej Instytut Biologii Doświadczalnej PAN Jarosław Korczyński, Artur Wolny Spis treści: Co w konfokalu

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DO WYKŁADU Z BIO-

MATERIAŁY POMOCNICZE DO WYKŁADU Z BIO- 1 MATERIAŁY POMOCNICZE DO WYKŁADU Z BIO- i HYDROAKUSTYKI 11. Metody zobrazowań w diagnostyce medycznej S. Typy ultrasonograficznych prezentacji obrazu W zależności od sposobu rejestracji ech rozróżniamy

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Wstęp do fotografii. piątek, 15 października 2010. ggoralski.com

Wstęp do fotografii. piątek, 15 października 2010. ggoralski.com Wstęp do fotografii ggoralski.com element światłoczuły soczewki migawka przesłona oś optyczna f (ogniskowa) oś optyczna 1/2 f Ogniskowa - odległość od środka układu optycznego do ogniska (miejsca w którym

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu

Bardziej szczegółowo

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection)

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Całkowite wewnętrzne odbicie n 2 θ θ n 1 n > n 1 2 Kiedy promień pada na granicę ośrodków pod kątem większym od kąta

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Mikroskopy uniwersalne

Mikroskopy uniwersalne Mikroskopy uniwersalne Źródło światła Kolektor Kondensor Stolik mikroskopowy Obiektyw Okular Inne Przesłony Pryzmaty Płytki półprzepuszczalne Zwierciadła Nasadki okularowe Zasada działania mikroskopu z

Bardziej szczegółowo

FIZYKA KLASA III GIMNAZJUM

FIZYKA KLASA III GIMNAZJUM 2016-09-01 FIZYKA KLASA III GIMNAZJUM SZKOŁY BENEDYKTA Treści nauczania Tom III podręcznika Tom trzeci obejmuje następujące punkty podstawy programowej: 5. Magnetyzm 6. Ruch drgający i fale 7. Fale elektromagnetyczne

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

- 1 - OPTYKA - ĆWICZENIA

- 1 - OPTYKA - ĆWICZENIA - 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

L E D light emitting diode

L E D light emitting diode Elektrotechnika Studia niestacjonarne L E D light emitting diode Wg PN-90/E-01005. Technika świetlna. Terminologia. (845-04-40) Dioda elektroluminescencyjna; dioda świecąca; LED element półprzewodnikowy

Bardziej szczegółowo

Wykład XI. Optyka geometryczna

Wykład XI. Optyka geometryczna Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie

Bardziej szczegółowo

Czy atomy mogą być piękne?

Czy atomy mogą być piękne? Krzysztof Matus Doktorant w Instytucie Materiałów Inżynierskich i Biomedycznych Wydział Mechaniczny Technologiczny Politechnika Śląska Czy atomy mogą być piękne? W czasach, gdy ciągły rozwój nauki połączony

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,

Bardziej szczegółowo

Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK

Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK ODKRYWCA FAL RADIOWYCH Fale radiowe zostały doświadczalnie odkryte przez HEINRICHA HERTZA. Zalicza się do nich: fale radiowe krótkie, średnie i długie,

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Matura z fizyki i astronomii 2012

Matura z fizyki i astronomii 2012 Matura z fizyki i astronomii 2012 Arkusz A1 poziom podstawowy Odpowiedzi do zadań z serwisu filoma.org fizyka matura i zadania na filoma.org 1 2 3 4 5 6 7 8 9 10 D B C D C D A C C B Zadanie 11 a) 3 b)

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Skaningowy mikroskop elektronowy - Ilość: 1 kpl.

Skaningowy mikroskop elektronowy - Ilość: 1 kpl. Zamówienie publiczne w trybie przetargu nieograniczonego nr ZP/PN/15/2014 Przedmiot postępowania: Dostawa skaningowego mikroskopu elektronowego ARKUSZ INFORMACJI TECHNICZNEJ Wszystkie parametry podane

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

INFORMACJA DLA WYKONAWCÓW NR 2

INFORMACJA DLA WYKONAWCÓW NR 2 RAP.272.87.2014 Wrocław, 13.11.2014r. INFORMACJA DLA WYKONAWCÓW NR 2 Dotyczy: postępowania o udzielenie zamówienia publicznego, prowadzonego w trybie przetargu nieograniczonego, którego przedmiotem jest

Bardziej szczegółowo

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis)

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) Wykorzystuje miękkie promieniowanie rentgenowskie o E > 100eV, pozwalające na wybicie elektronów z orbitali rdzenia

Bardziej szczegółowo

12.Opowiedz o doświadczeniach, które sam(sama) wykonywałeś(aś) w domu. Takie pytanie jak powyższe powinno się znaleźć w każdym zestawie.

12.Opowiedz o doświadczeniach, które sam(sama) wykonywałeś(aś) w domu. Takie pytanie jak powyższe powinno się znaleźć w każdym zestawie. Fizyka Klasa III Gimnazjum Pytania egzaminacyjne 2017 1. Jak zmierzyć szybkość rozchodzenia się dźwięku? 2. Na czym polega zjawisko rezonansu? 3. Na czym polega zjawisko ugięcia, czyli dyfrakcji fal? 4.

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ MIKROSKOP 1. Cel dwiczenia Zapoznanie się z budową i podstawową obsługo mikroskopu biologicznego. 2. Zakres wymaganych zagadnieo: Budowa mikroskopu. Powstawanie obrazu

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Badania nieniszczące metodami elektromagnetycznymi Numer Temat: Badanie materiałów kompozytowych z ćwiczenia: wykorzystaniem fal elektromagnetycznych

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

PODSTAWY BARWY, PIGMENTY CERAMICZNE

PODSTAWY BARWY, PIGMENTY CERAMICZNE PODSTAWY BARWY, PIGMENTY CERAMICZNE Barwa Barwą nazywamy rodzaj określonego ilościowo i jakościowo (długość fali, energia) promieniowania świetlnego. Głównym i podstawowym źródłem doznań barwnych jest

Bardziej szczegółowo

SPRAWDZIAN NR Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek).

SPRAWDZIAN NR Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek). SPRAWDZIAN NR 1 JOANNA BOROWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek). Dokończ zdanie. Wybierz stwierdzenie A albo

Bardziej szczegółowo

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest

Bardziej szczegółowo

I Pracownia Fizyczna Dr Urszula Majewska dla Biologii

I Pracownia Fizyczna Dr Urszula Majewska dla Biologii Ćw. 6/7 Wyznaczanie gęstości cieczy za pomocą wagi Mohra. Wyznaczanie gęstości ciał stałych metodą hydrostatyczną. 1. Gęstość ciała. 2. Ciśnienie hydrostatyczne. Prawo Pascala. 3. Prawo Archimedesa. 4.

Bardziej szczegółowo

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią? Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie

Bardziej szczegółowo

Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap wojewódzki

Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap wojewódzki UWAGA: W zadaniach o numerach od 1 do 4 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Podczas zbliżania

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018

Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018 Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i

Bardziej szczegółowo