Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas
|
|
- Feliks Wiśniewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas 2013 MOKSLAS EKONOMIKA SANGLAUDA EUROPOS SĄJUNGA EUROPOS SOCIALINIS FONDAS Kuriame Lietuvos ateiti į NACIONALINIS EGZAMINŲ CENTRAS Nazva, Nazwisko Klasa STANDARTIZUOTAS TESTAS MATEMATYKA KLASA 8
2 1 Pokoloruj czwartą część poniższego prostokąta. 1 2 Oblicz: 1 = 2 15 a b c d Dzieci przepytały mamy, ile filiżanek kawy wypijają dziennie. Otrzymano takie dane: 1, 1, 2,, 3, 2, 2, 1, 2, Uzupełnij tabelkę: Liczba wypitych filiżanek kawy Liczba mam Ile filiżanek kawy dziennie najczęściej wypijają przepytane mamy? Ile średnio filiżanek kawy dziennie wypija jedna mama? (Odpowiedź podaj z dokładnością do jedności.) Zapisz rozwiązanie. Rozwiązanie: Klasa 8 3
3 Wiktoria, Irma i Ala wieczorem biegają. Wiktoria biega co drugi wieczór, Irma każdy wieczór, a Ala co trzeci wieczór. Jak często wszystkie koleżanki biegają w ten sam wieczór? 5 Wyłącz wspólny czynnik przed nawias. ab ac = 6 Oblicz wartość wyrażenia a : 3 + 3, gdy a = 9. 7 Czas T (min), potrzebny do pieczenia gęsi, oblicza się według wzoru T = 25x + 20; gdzie x masa (kg) gęsi. Oblicz czas pieczenia gęsi o masie kg. 8 Poniższa tabelka podaje kursy wymiany walut w pewnym banku 12 kwietnia 2012 roku. Waluta Kod waluty Przelicznik Bank Kupno Sprzedaż Euro EUR 1 3,2 3,69 Funt brytyjski GBP 1,1068,2531 Ile litów i centów Adam zapłaci bankowi, jeśli kupi 10 euro? Odpowiedź: Lt ct Klasa 8
4 9 Długość boku działki w kształcie kwadratu wynosi 25 m. 9.1 Jaką powierzchnię w arach ma ta działka? 9.2 Ile metrów siatki potrzeba na ogrodzenie tej działki? 10 Mamy trzy jednakowe kwadraty. Obwód każdego z nich jest równy 12 cm. Po przesunięciu tych kwadratów otrzymano prostokąt. Oblicz jego obwód. 11 Obwód równoległoboku wynosi 38 cm. Jeden jego bok ma długość 6 cm. Jaką długość ma drugi boku tego równoległoboku? a b c d 13 cm 16 cm 26 cm 32 cm Klasa 8 5
5 12 Oblicz pole figury przedstawionej na rysunku. cm cm 6 cm 13 Wykres przedstawia zależność przebytej przez rowerzystę drogi s (km) od czasu t (h). Z jaką prędkością jechał rowerzysta w ciągu pierwszych dwóch godzin? s (km) t (h) 1 Odległość domu od szkoły wynosi 6 km, a od sklepu 0,8 km. Ile razy odległość domu od szkoły jest większa od odległości domu od sklepu? 15 Odległość między dwoma miastami wynosi 320 km. Z tych miast wyruszyły jednocześnie naprzeciw siebie auto i autobus. Auto jechało z prędkością 85 km/h, a autobus 75 km/h. Po upływie jakiego czasu spotkają się te pojazdy? Atsakymas: 6 Klasa 8
6 16 Śmigłowiec, lecąc z wiatrem, w ciągu 15 minut pokonał 5 km, a lecąc pod wiatr, w ciągu 20 minut - 50 km. Oblicz prędkość śmigłowca z wiatrem (km/h). 17 Na fabryce sprawdzono 1000 gum do żucia i ustalono, że 20 z nich nie odpowiada standardowi. Jaką część sprawdzonych gum stanowiły gumy niestandardowe? 3 18 Szymon przeczytał książki. Ile procent książki zostało mu do przeczytania? 5 19 Latem sukienka kosztowała 120 Lt, a zimą jej cena spadła o jedną trzecią. Ile litów kosztowała sukienka zimą? Zapisz rozwiązanie. Rozwiązanie: Klasa 8 7
7 20 Eryka sprząta mieszkanie w ciągu godzin, a jej mama w ciągu 3 godzin Jaką część pracy (sprzątania) wykona Eryka w ciągu jednej godziny pracując sama? 20.2 W ciągu jakiego czasu Eryka i mama sprzątną mieszkanie pracując razem? 21 Ile jest różnych liczb trzycyfrowych utworzonych z cyfr 2,, 6, jeśli cyfry nie mogą się powtarzać? 22 Wyciągnij pierwiastek kwadratowy: 9 = Podnieś do potęgi. 7 a b c d Klasa 8
8 2 Rozwiąż równanie: x 6 = 8 25 Wypełnij tabelkę. Każda liczba środkowa jest równa połowie iloczynu liczb sąsiednich Za udział w olimpiadzie szkolnej uczeń uzyskuje pięć punktów, a za każde poprawnie rozwiązane zadanie jeszcze po trzy punkty. Ile zadań rozwiązała poprawnie Odeta, jeśli uzyskała 23 punkty? 27 Wiadomo, że trójkąty przedstawione na rysunku są przystające. Który kąt trójkąta FDE jest równy kątowi C trójkąta ABC? B E A C D 5 F 28 Na papierze w kratkę narysuj trójkąt równoramienny. Klasa 8 9
9 29 Długości przyprostokatnych w trójkącie prostokątnym są równe 8 ir 6. Oblicz długość przeciwprostkątnej tego trójkąta. 30 Robotnicy wykopali basen w kształcie prostopadłościanu o długości 10 m, szerokości 9 m i głębokości 2 m. Ile metrów sześciennych ziemi wykopano? 31 Oblicz pole powierzchni całkowitej prostopadłościanu przedstawionego na rysunku. 15 cm 20 cm 10 cm 32 Na wykresie przedstawiono zmiany temperatury powietrza w ciągu jednej doby: Temperatura ( C) Czas (godz.) Zapisz okresy (przedziały czasu), gdy: 32.1 temperatura powietrza była dodatnia; 32.2 temperatura wzrastała. 10 Klasa 8
10 33 Z 80 ml buteleczki octu należy przygotować roztwór octu. Aby przygotować ten roztwór, należy wziąć ocet i wodę w stosunku 1 : 2. Ile mililitrów octu należy wziąć, aby przygotować 90 ml roztworu octu? OCET Rozcieńczyć wodą 1 : 2 3 Liczba uczniów szkoły, zaokrąglona do setek, jest równa Ilu najmniej uczniów może być w szkole? 35 Stół jest o 85 litów droższy od krzesła. Stół z krzesłem kosztuje 215 Lt. Ile kosztuje stół i ile krzesło? Zapisz rozwiązanie. Rozwiązanie: 36 Długość promienia podstawy walca jest równa 5 cm. Walec przecięto na dwie równe części tak, jak przedstawiono na rysunku. Otrzymany przekrój jest kwadratem. Oblicz pole tego kwadratu. 37 Pole powierzchni całkowitej walca oblicza się ze wzoru: S = 2 r² + 2 rh. Oblicz S, gdy r= 2 i H = 5. Odpowiedź zapisz z. Klasa 8 11
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas 2015 MOKSLAS EKONOMIKA SANGLAUDA EUROPOS SĄJUNGA EUROPOS SOCIALINIS FONDAS Kuriame
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas 2013 MOKSLAS EKONOMIKA SANGLAUDA EUROPOS SĄJUNGA EUROPOS SOCIALINIS FONDAS Kuriame
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas 2015 MOKSLAS EKONOMIKA SANGLAUDA EUROPOS SĄJUNGA EUROPOS SOCIALINIS FONDAS Kuriame
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas. Standartizuotas testas
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas 2014 MOKSLAS EKONOMIKA SANGLAUDA EUROPOS SĄJUNGA EUROPOS SOCIALINIS FONDAS Kuriame
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas 2014 M_P
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas 2014 MOKSLAS EKONOMIKA SANGLAUDA EUROPOS SĄJUNGA EUROPOS SOCIALINIS FONDAS Kuriame
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe)
Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego stycznia 0 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający
POTĘGI I PIERWIASTKI
POTĘGI I PIERWIASTKI I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Połowa liczby 100 A. 50 B. 1 100 C. 10 D. 99 Zadanie Wskaż jedną poprawną odpowiedź. Po skróceniu liczba : A. B. C. D.
NACIONALINIS EGZAMINŲ CENTRAS
2017 NACIONALINIS EGZAMINŲ CENTRAS Imię, Nazwisko Klasa Kod ucznia 4 MATEMATYKA 4KLASA 4. 1 Zapisz słowami liczbę 1 6. 2 Otocz kółkiem wszystkie liczby, które są dzielnikami liczby 18. 1 3 5 7 9 2 4 6
ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP TRZECI
Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 Instrukcja dla ucznia ETAP TRZECI 1. Zestaw
NACIONALINIS EGZAMINŲ CENTRAS
2016 NACIONALINIS EGZAMINŲ CENTRAS Imię, Nazwisko Klasa Kod ucznia STANDARTIZUOTAS TESTAS MATEMATYKA 4 KLASA 1 Wpisz w prostokąt brakującą liczbę. 2899 < < 2901 2 W pudełku mieści się 6 jajek. Rodzina
PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO SPRAWDZIAN 2
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI IMIE I NAZWISKO PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO SPRAWDZIAN 2 SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Trzej robotnicy pracujacy dziennie
Data.. Klasa.. Wersja A. Tabelkę wypełnia nauczyciel Zadanie 4. Zadanie 5. Zadanie 9 pkt. pkt. pkt. pkt. pkt. pkt. pkt. pkt. pkt.
Imię i nazwisko Data.. Klasa.. Wersja A 2 3 Tabelkę wypełnia nauczyciel 4 5 6 7 8 9 pkt. pkt. pkt. pkt. pkt. pkt. pkt. pkt. pkt. MATEMATYKA Diagnoza wstępna absolwenta gimnazjum Na rozwiązanie poniżej
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test sprawdzający Twoją wiedzę i umiejętności, które nabyłeś na wcześniejszych
HISTORIA KLASA 8. Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas 2014 MOKSLAS EKONOMIKA SANGLAUDA EUROPOS SĄJUNGA EUROPOS SOCIALINIS FONDAS Kuriame
Zadanie 1. (0 1) Cena okularów bez promocji wynosi 240 zł. Ile zapłaci za te okulary klient, który ma 35 lat? Wybierz odpowiedź spośród podanych.
Informacja do zadań 1. i 2. Promocja w zakładzie optycznym jest związana z wiekiem klienta i polega na tym, że klient otrzymuje tyle procent zniżki, ile ma lat. Zadanie 1. (0 1) Cena okularów bez promocji
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015
Etap wojewódzki 21 lutego 2015 r. Kod ucznia Godzina 11.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera
Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8
Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
Badanie wyników nauczania z matematyki klasa II
Badanie wyników nauczania z matematyki klasa II Potęgi i pierwiastki - zadania zamknięte Zadanie. (0-) Po podniesieniu liczby -2 2 do kwadratu otrzymamy liczbę: 25 A) B) C) 6 D) Zadanie 2. (0-) Wynikiem
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile
ZESTAW EGZAMINACYJNY NR 1.
ZESTAW EGZAMINACYJNY NR 1. 1. (0-1p.) Ze zbiornika I, w którym znajdowało się 100 litrów wody, przelewano wodę do zbiornika II. Na wykresie przedstawiono, jak zmieniała się objętość wody w zbiorniku II
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 19.12.2018 R. 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte.
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj
KONKURS MATEMATYCZNY dla uczniów gimnazjów województwa mazowieckiego w roku szkolnym 2017/2018. Model odpowiedzi i schematy punktowania
UWAGA KONKURS MATEMATYCZNY dla uczniów gimnazjów województwa mazowieckiego w roku szkolnym 07/08 Model odpowiedzi i schematy punktowania Za każde poprawne rozwiązanie, inne niż przewidziane w schemacie
MARATON GRUDNIOWY KLASA I Zadanie 1. Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł?
Oblicz wartość wyrażenia MARATON GRUDNIOWY KLASA I Zadanie 1 Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł? Zadanie 3 Trzy boki trapezu równoramiennego
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI P-1 POZIOM PODSTAWOWY Czas pracy: 170 minut Za rozwiązanie wszystkich zadań można uzyskać łącznie 50 punktów BRUDNOPIS Zadanie 1. (1 pkt) ZADANIA ZAMKNIĘTE
Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki. Zadania zamknię te. A. całkowitą B. ujemną C. niewymierną D.
Elżbieta Friedrich mailto:elaf@interia.pl nauczyciel matematyki i informatyki Gimnazjum nr 5 w Tychach Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki Zadania zamknię te Zadanie. a) b)
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
LUBELSKA PRÓBA PRZED MATURĄ klasa 2b
MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane
x Kryteria oceniania
Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 11 KWIETNIA 2015 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Koszt ubezpieczenia samochodu w pewnej firmie
Określ zbiór wartości i przedziały monotoniczności funkcji.
Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 200 / 20 ETAP SZKOLNY - 7 października 200 roku. Przed Tobą zestaw 20 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 206/207 MATEMATYKA Informacje dla ucznia. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod ustalony
Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.
Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m
KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:
KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona
KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 31 stycznia 2008 r.
KOD Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Razem Maksym. liczba punktów Liczba zdobytych punktów 3 3 3 3 3 3 3 3 3 3 4 5 4 5 48 Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap
TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia:
TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia: W zadaniach od 1 do 10 tylko jedna odpowiedź jest prawidłowa. Za poprawną odpowiedź otrzymasz 1 punkt; za brak odpowiedzi lub złą odpowiedź 0 punktów;
PRÓBNY EGZAMIN ÓSMOKLASISTY
PRÓBNY EGZAMIN ÓSMOKLASISTY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 100 MINUT 1 ZADANIE 1 (1 PKT) Firma transportowa Paka korzysta z samochodów dostawczych,
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.
1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.
lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5.
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 8 KWIETNIA 2017 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Ola odwiedziła koleżankę, a następnie wracała
KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 19 stycznia 2010 r.
KOD Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 Razem Maksym. liczba punktów Liczba zdobytych punktów 3 3 3 3 3 3 3 3 4 4 4 4 40 Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
SPRAWDZIAN NR 1 GRUPA IMIĘ I NAZWISKO: KLASA: Wszelkie prawa zastrzeżone 1 ANNA KLAUZA
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzupełnij zdania. Wpisz w każdą lukę odpowiednią liczbę. a) Dziedziną funkcji jest zbiór x takich, że x. b) Zbiorem wartości funkcji są wszystkie
PESEL. Czas pracy: do 135 minut 4. Rozwiązania zadań od 21. do 23. formułujesz samodzielnie.
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 13 stycznia 2015 r. 90 minut Informacje
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 018/019.10.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.
GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) A/ B/ C/ D
A B C D 4 4 9 9 4 5 6 2 4 5 4 Zad. 1. (4 pkt.) Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) Ma oś symetrii Obwód wynosi 12 Ma środek symetrii
XII WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW
XII WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWO WIELKOPOLSKIE Finał rok szkolny 2011/2012 wylosowany numer uczestnika konkursu Dane dotyczące ucznia: (wypełnia Komisja Konkursowa
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 28 MARCA 2015 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Na diagramie przedstawiono wysokość miesięcznych zarobków
SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM
WYPEŁNIA UCZEŃ Data urodzenia ucznia dzień miesiąc rok Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 10 stron. Ewentualny
Badanie wyników nauczania z matematyki klasa II
Badanie wyników nauczania z matematyki klasa II Potęgi i pierwiastki - zadania zamknięte Zadanie 1. (0-1) Po podniesieniu liczby -2 2 1 do kwadratu otrzymamy liczbę: 1 25 1 A) B) C) 6 D) 1 Zadanie 2. (0-1)
MATEMATYKA KWIECIEŃ 2014. miejsce na naklejkę z kodem. dysleksja EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem dysleksja EGZAMIN W KLASIE
Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach.
Lista NR 6 Przedstaw obliczenia we wszystkich zadaniach. Zad 1. (0-1) Długość przekątnej prostokąta przedstawionego na rysunku jest równa A. 12 B. 16 C. 20 D. 24 Zad 2. (0-2) Przedstawiony na rysunku trójkąt
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7
Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 28 marca 2015 Czas pracy: 90 minut
/Gimnazjum Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 28 marca 2015 Czas pracy: 90 minut Zadanie 1 (1 pkt) Na diagramie przedstawiono wysokość miesięcznych
KONKURS PRZEDMIOTOWY MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW ETAP WOJEWÓDZKI
... pieczątka WKK... kod pracy ucznia KONKURS PRZEDMIOTOWY MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW ETAP WOJEWÓDZKI Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję i postaraj
Suma ( ) 0,3 jest równa:
Liczby i działania Zadania zamknięte: Zadanie. (0-p.) Dane są liczby: 9 ; - 8,5 ; - 4, ; 6,5. Która z nich ma wartość bezwzględną mniejszą od 5? A) -9. B) 6,5 C) -8,5 D) 4, Zadanie. (0-p.) Ile liczb całkowitych
SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM
WYPEŁNIA UCZEŃ Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Symbol n! oznacza iloczyn liczb naturalnych od 1 do n tzn. n! = 1 3...
14:00 15:00 16:00. Godzina Turysta A. Godzina. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli jest fałszywe.
Zadanie 1. (0 1) Turysta A szedł ze schroniska w kierunku szczytu, natomiast turysta B schodził ze szczytu w kierunku schroniska. Obaj szli tym samym szlakiem i tego samego dnia. Wykresy przedstawiają,
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA
ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 6 lutego 208 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie. ( punkt) Odległość między miastami A i B na mapie wynosi
II POWIATOWY KONKURS MATEMATYCZNY 1z10 o tytuł MISTRZA LOGICZNEGO MYŚLENIA
II POWIATOWY KONKURS MATEMATYCZNY 1z10 o tytuł MISTRZA LOGICZNEGO MYŚLENIA Załącznik nr 8 Część pisemna GIMNAZJUM Kod ucznia Czas w min. Drogi uczniu, przed Tobą zestaw 20 problemów, masz na ich rozwiązanie
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015 25 LUTEGO 2015 1. Test konkursowy zawiera 2 zadania. Są to zadania zamknięte i otwarte.
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 24
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut. Rozwiązania zadań
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut Rozwiązania zadań ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 2015 r. zawody II stopnia (rejonowe)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 205 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 3 zadań.
MISTRZ MATEMATYKI. Test sprawdzający wiadomości uczniów pierwszej klasy gimnazjum w ramach realizacji programu Matematyka 2001.
MISTRZ MATEMATYKI Test sprawdzający wiadomości uczniów pierwszej klasy gimnazjum w ramach realizacji programu Matematyka 00. Zakres materiału: DZIAŁANIA NA ZBIORACH LICZB RZECZYWISTYCH Wykonała: mgr Krystyna
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z
ZADANIA PRZED EGZAMINEM KLASA I LICEUM
ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,
EGZAMIN Z MATEMATYKI
Zespół Społecznych Szkół Ogólnokształcących Bednarska im. Maharadży Jam Saheba Digvijay Sinhji Społeczne Gimnazjum nr 20 NUMER Dysleksja A GRUPA EGZAMIN Z MATEMATYKI Witaj na egzaminie do naszego gimnazjum.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
Skrypt 24. Geometria analityczna: Opracowanie L5
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 24 Geometria analityczna:
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 3 (równania i nierówności; twierdzenie Pitagorasa) 1. Zapisz w postaci równania: a) Różnica liczby x i i liczby 8 jest równa połowie liczby
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
Która z wymienionych liczb jest średnią arytmetyczną dwóch kolejnych liczb pierwszych? A. 34 B. 27 C. 20 D. 14
Razem Kod ucznia Nr zadania 2 3 4 5 6 7 8 9 0 2 3 4 5 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 5 4 4 4 4 5 35 XIV Powiatowy Konkurs z Matematyki dla uczniów gimnazjum w roku szkolnym
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem dysleksja EGZAMIN W KLASIE
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2017/2018 ETAP TRZECI
Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły Liczba uzyskanych punktów Instrukcja dla ucznia ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2010/2011
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2010/2011 KOD UCZNIA Etap: Data: Czas pracy: szkolny 18 listopada 2010 r. 90 minut Informacje dla
ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI
A- ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 14 stron. W zadaniach 1. do 5. są podane 4 odpowiedzi: A, B, C, D, z