6. Organizacja dostępu do danych przestrzennych
|
|
- Mieczysław Sikora
- 9 lat temu
- Przeglądów:
Transkrypt
1 6. Organizacja dostępu do danych przestrzennych Duża liczba danych przestrzennych oraz ich specyficzny charakter sprawiają, że do sprawnego funkcjonowania systemu, przetwarzania zgromadzonych w nim danych, nie wystarczą jedynie wyrafinowane algorytmy przetwarzania danych, ale potrzebna jest odpowiednia organizacja danych zapewniająca możliwie szybki do nich dostęp. Szczególnie istotne jest to w aspekcie wyszukiwania danych spełniających określone warunki przestrzenne. Efekty wyszukiwania jest na ogół pierwszym krokiem do wykonywania jakichkolwiek innych operacji na danych, jak wykonywanie zestawień w postaci tabelarycznej czy graficznej prezentacji na ekranie monitora, drukarce lub innym urządzeniu wyjścia. Ze względu na interaktywny charakter, szczególne znaczenie ma w tym miejscu prezentacja danych na ekranie, która musi być realizowana w określonych reżimach czasowych, aby nie dekoncentrować operatora. Podstawowe zadania związane z wyszukiwaniem danych na podstawie warunków przestrzennych możemy sformułować następująco: znalezienie wszystkich obiektów zawierających się w określonym wielokącie, wykorzystywane głównie przy udostępnieniu fragmentów baz danych, znalezienie wszystkich obiektów zawierających się w określonym prostokącie, wykorzystywane głównie przy graficznej prezentacji, znalezienie obiektów najbliższych wskazanemu punktowi, wykorzystywane przy wyborze obiektu w trybie interaktywnym (kursorem). Ilustrację graficzną przedstawionych powyżej zadań wyszukiwania danych przedstawiono na rysunku.. Rys. 6.. Ilustracja zadań wyszukiwania danych przestrzennych
2 Waldemar Izdebski - Wykłady z przedmiotu SIT Mając na uwadze wymienione wyżej względy wykonuje się wiele zabiegów zmierzających do poprawienia efektywności dostępu do danych. Kilka z nich przedstawimy w kolejnych podrozdziałach. 6.. Prostokąty ograniczające Jedną z najprostszych metod organizacji danych sprzyjającą szybszemu dostępowi jest wprowadzenie w stosowanych do reprezentacji obiektów strukturach danych pewnych dodatkowych informacji. Zadaniem ich jest uproszczone, w sensie przestrzennym, zobrazowanie obiektów, które możemy nazwać aproksymacją obiektów właściwych. Istotą takiej aproksymacji będzie zachowywanie przybliżonej informacji o obiekcie, zapisanej w maksymalnie uproszczony sposób wygodny do wykonywania analiz. Najpowszechniejszym ze spotykanych uproszczeń jest aproksymacja obiektu minimalnym prostokątem o bokach równoległych do osi układu współrzędnych, w którym można zmieścić cały rozpatrywany obiekt. Prostokąt taki będziemy nazywali minimalnym prostokątem ograniczającym. W literaturze polskiej można się spotkać z określaniem takiego prostokąta pudełkiem [Adamczewski, Nowak 977] oraz [Nowak, Śliwka 979]. maxx maxy minx miny Rys Ilustracja prostokąta ograniczającego Innymi uproszczeniami (aproksymacjami) jakie można stosować do obiektów przestrzennych może być punkt lub okrąg. Oczywiście rozpatrujemy tutaj zagadnienie na płaszczyźnie w przypadku większego wymiaru przestrzeni wspomniane twory będą również odpowiednio wyższego wymiaru. Wprowadzanie, przechowywanie i modyfikacja danych związanych z aproksymacją właściwego obiektu jest wewnętrzna sprawą oprogramowania i właściwie użytkownik rzadko wie o istnieniu takich dodatkowych danych. W celu zilustrowania korzyści płynących z zastosowania prostokątów ograniczających przeanalizujmy zadanie przedstawione na rysunku.. Znajdują się tam obiekty w formie wielokątów oraz prostokąt stanowiący obszar zainteresowania (okno zapytań) wyróżniony pogrubioną linią. Interesuje nas, które obiekty mają część wspólną z oknem zapytań. Zakładając, że w zastosowanej strukturze danych mamy jedynie wierzchołki poszczególnych wielokątów musimy w celu podania odpowiedzi, dla każdego z nich stosować algorytmy sprawdzające istnienie części wspólnej wielokąta z prostokątem. W wielu przypadkach wielokąty mogą zawierać nawet wiele tysięcy punktów, co ma ogromne znaczenie dla czasu działania tych algorytmów. Oczywiście można wtedy algorytm taki rozpoczynać od wyznaczenia prostokąta ograniczającego ale, jak wynika to z zastosowań praktycznych, wygodniej jednak przechowywać taki prostokąt ograniczający niż każdorazowo go wyznaczać. Jeśli jednak prostokąt ograniczający jest przechowywany musimy pamiętać aby dokonywać jego modyfikacji wraz z modyfikacjami obiektu właściwego. W przeciwnym wypadku wykorzystywanie prostokątów ograniczających może doprowadzić do mylnych wniosków.
3 Waldemar Izdebski - Wykłady z przedmiotu SIT Rys. 6.. Wybór obiektów zawierających się w prostokątnym oknie Zadanie powyższe przybiera znacznie uproszczoną postać jeśli dla każdego obiektu znany jest jego prostokątną aproksymację, jak przedstawiono to na rysunku Rys. 6.. Aproksymacja obiektów prostokątami ograniczającymi Korzystając jedynie z prostokątów ograniczających, badając relacje prostokąt ograniczający obiektu - okno zapytań możemy ze szczegółowego sprawdzania wyeliminować wiele obiektów co pozwala na duże oszczędności czasowe. Warunkiem koniecznym posiadania przez wielokąty części wspólnej jest jej posiadanie przez odpowiadające im prostokąty ograniczające. W tym miejscu należy zwrócić uwagę na fakt, że warunek ten jest warunkiem koniecznym ale nie wystarczającym i może się zdarzyć, że mimo posiadania części wspólnej okna zapytań z prostokątem ograniczającym, obiekt w rzeczywistości obiekt nie zawiera się w oknie zapytań. Zadanie wykonywane jest więc w dwóch etapach. W etapie pierwszym dla
4 Waldemar Izdebski - Wykłady z przedmiotu SIT 7 wszystkich obiektów analizujemy prostokąty ograniczające wybierając kandydatów do drugiego etapu sprawdzania szczegółowego. Ilustracja pierwszego etapu przedstawiono na rysunku Rys. 6.. Wybór obiektów na podstawie prostokątów ograniczających W trakcie sprawdzania prostokątów wystarczy zaistnienie tylko jednego z przedstawionych poniżej warunków aby można było pominąć dany obiekt, uznając, że nie posiada części wspólnej z oknem zapytań: Tabela 6. Warunki sprawdzania położenia prostokątów ograniczających Postać warunku Działania warunku Ilustracja graficzna X min > X o max odrzucanie wszystkich obiektów o prostokątach ograniczających leżących nad oknem prezentacji okno zapytań Y min > Y o max odrzucanie wszystkich obiektów o prostokątach ograniczających leżących po prawej stronie okna prezentacji okno zapytań X max < X o min odrzucanie wszystkich obiektów o prostokątach ograniczających leżących poniżej okna prezentacji okno zapytań Y max < Y o min odrzucanie wszystkich obiektów o prostokątach ograniczających leżących po lewej stronie okna prezentacji okno zapytań W wyniku sprawdzenia warunków dla prostokątów ograniczających do sprawdzenia w sposób szczegółowy pozostają nam jedynie obiekty przedstawione poniżej.
5 Waldemar Izdebski - Wykłady z przedmiotu SIT Rys Wybór obiektów na podstawie prostokątów ograniczających W przypadku obiektu oznaczonego cyfrą 6 widzimy zaistnienie sytuacji opisywanej wcześniej. Prostokąt ograniczający tego obiektu posiada część wspólną z oknem zapytań, natomiast w rzeczywistości obiekt takiej części nie posiada. Stwierdzenie jednak tego faktu może nastąpić dopiero na drodze szczegółowej analizy wierzchołków wielokąta Indeksowanie przestrzenne Wprowadzenie aproksymacji obiektów przez prostokąty ograniczające jest niewątpliwą koniecznością z punktu widzenia efektywnego dostępu do obiektów przechowywanych w systemie. Należy sobie jednak zdawać sprawę, że prostokąty ograniczające rozwiązują jedynie częściowo problem dostępu do danych. Kolejnym bardzo ważnym czynnikiem w optymalizacji dostępu do danych SIP jest zastosowanie odpowiednich systemów indeksowania przestrzennego, aby przy wyborze nie przebiegać zawsze przez całą listę obiektów lecz operować na pewnych uporządkowanych przestrzennie grupach obiektów, które mogą posiadać również własne (grupowe) prostokąty ograniczające. Tak więc jeśli stwierdzimy, że prostokąt ograniczający danej grupy daje się odrzucić wtedy ją całą pomijamy. Poniżej przedstawiono charakterystykę dwóch najczęściej stosowanych metod indeksowania przestrzennego quadtree i R-tree. Stosowanie tych metod nie oznacza rezygnacji z prostokątów ograniczających, które stanowią także podstawę do zastosowania metod indeksowania Quadtree Quadtree jest strukturą znacznie przyspieszającą dostęp do danych przestrzennych. W celu przedstawienia idei niniejszej struktury, rozważmy obiekty przedstawione na rysunku Rys Lokalizacja obiektów
6 Waldemar Izdebski - Wykłady z przedmiotu SIT 9 Obszar w którym zlokalizowane są obiekty będziemy dzielili w sposób schematycznie przedstawiony na rysunku.8, do osiągnięcia założonego, maksymalnego stopnia podziału. Pierwszy podział całości obszaru na cztery daje podobszary oznaczone jako: 0,, 2, a następnie każdy z podobszarów w analogiczny sposób dzielony jest na kolejne podobszary otrzymujące w oznaczeniu dodatkową cyfrę. W przypadku podobszaru 2 oznaczenia te są następujące: 20, 2, 22, Rys Schemat podziału obszaru w strukturze quadtree W wyniku nałożenia siatki podziału na obiekty, co ilustruje rysunek.9, możemy każdemu obiektowi przypisać indeksy wynikające z oznaczenia obszaru w jakim obiekt jest całkowicie zawarty Rys Schemat tworzenia indeksów Dla przedstawionych na rysunku.7 obiektów otrzymujemy więc następujące indeksy: Nr obiektu INDEX quadtree Nr obiektu PUSTY INDEX quadtree
7 Waldemar Izdebski - Wykłady z przedmiotu SIT 60 których interpretacja pozwala wnioskować o przestrzennej lokalizacji poszczególnych obiektów. Dokładnie wynika to z interpretacji poszczególnych cyfr indeksu. Stosując omówioną zasadę możemy indeks przypisać każdemu obiektowi, utworzyć indeks liniowy lub na bazie indeksu tworzyć strukturę drzewa dla przechowywania danych jak zilustrowano to na rysunku.0.,..., Rys Schemat drzewa quadtree W celu znalezienia obiektów znajdujących się w pewnym obszarze należy określić indeks quadtree dla tego obszaru i na jego podstawie odnaleźć właściwą listę obiektów. Następnie przeszukać ją oraz wszystkie listy położone poniżej i powyżej R-tree Indeksowanie danych z wykorzystaniem struktury R-tree podobnie jak quadtree opiera się na podziale obszaru właściwego dla bazy danych na mniejsze prostokątne fragmenty. W podziale niniejszym w odróżnieniu do quadtree dozwolone jest pokrywanie się utworzonych w wyniku podziału fragmentów (rys..). Utworzone w fragmenty organizuje się w strukturę drzewa jak przedstawiono to na rys..2. Charakterystyczne w utworzonym drzewie jest występowanie dwóch rodzajów węzłów to jest tzw. węzłów pośrednich oraz liści. Węzły pośrednie zawierają informacje o zakresie grupowanych węzłów pośrednich niższego poziomu. Liście natomiast zawierają dostęp do konkretnych obiektów terenowych. Struktura R-tree charakteryzowana jest maksymalną liczbą możliwych potomków w węźle M oraz liczbą minimalną obliczaną jako M/2. Ilustrację organizacji struktury R-tree przedstawiono na rysunkach rys..2 i.2. A 2 8 Y 9 C X B D Rys. 6.. Podział płaszczyzny zgodnie ze strukturą R-tree
8 Waldemar Izdebski - Wykłady z przedmiotu SIT 6 X Y A B C D Rys Schemat drzewa korespondujący z podziałem przestawionym na rysunku.. Organizacja struktury R-tree może być statyczna lub dynamiczna. Organizacja statyczna charakteryzuje się tym, że już na starcie znane są wszystkie elementy do podziału natomiast w organizacji dynamicznej kolejne elementy dodawane są do już istniejącej struktury. W przypadku dodawania nowego elementu do węzła zawierającego już maksymalną ich liczbę wiąże się z dokonaniem podziału elementów na dwa nowe węzły.
9. Podstawowe narzędzia matematyczne analiz przestrzennych
Waldemar Izdebski - Wykłady z przedmiotu SIT 75 9. odstawowe narzędzia matematyczne analiz przestrzennych Niniejszy rozdział służy ogólnemu przedstawieniu metod matematycznych wykorzystywanych w zagadnieniu
8. Analiza danych przestrzennych
8. naliza danych przestrzennych Treścią niniejszego rozdziału będą analizy danych przestrzennych. naliza, ogólnie mówiąc, jest procesem poszukiwania (wydobywania) informacji ukrytej w zbiorze danych. Najprostszym
7. Analiza danych przestrzennych
7. naliza danych przestrzennych Treścią niniejszego rozdziału będą analizy danych przestrzennych. naliza, ogólnie mówiąc, jest procesem poszukiwania (wydobywania) informacji ukrytej w zbiorze danych. Najprostszym
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu.
Waldemar Izdebski - Wykłady z przedmiotu SIT 91 10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. 10.3.1. Wyznaczanie
Wymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
: idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
3. Standaryzacja modeli danych przestrzennych
3. Standaryzacja modeli danych przestrzennych Budowa baz danych systemów SIP w oparciu o różne modele danych nie ułatwia późniejszej wymiany danych między systemami. Problem stał się na tyle istotny, że
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
9.9 Algorytmy przeglądu
14 9. PODSTAWOWE PROBLEMY JEDNOMASZYNOWE 9.9 Algorytmy przeglądu Metody przeglądu dla problemu 1 r j,q j C max były analizowane między innymi w pracach 25, 51, 129, 238. Jak dotychczas najbardziej elegancka
7. Metody pozyskiwania danych
7. Metody pozyskiwania danych Jedną z podstawowych funkcji systemu informacji przestrzennej jest pozyskiwanie danych. Od jakości pozyskanych danych i ich kompletności będą zależały przyszłe możliwości
Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe
Algorytmy i złożoności Wykład 3. Listy jednokierunkowe Wstęp. Lista jednokierunkowa jest strukturą pozwalającą na pamiętanie danych w postaci uporzadkowanej, a także na bardzo szybkie wstawianie i usuwanie
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
- biegunowy(kołowy) - kursor wykonuje skok w kierunku tymczasowych linii konstrukcyjnych;
Ćwiczenie 2 I. Rysowanie precyzyjne Podczas tworzenia rysunków często jest potrzeba wskazania dokładnego punktu na rysunku. Program AutoCad proponuje nam wiele sposobów zwiększenia precyzji rysowania.
Przekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
AiSD zadanie trzecie
AiSD zadanie trzecie Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5 5 czerwca 2008 1 Wstęp Celem postawionym przez zadanie trzecie było tzw. sortowanie topologiczne. Jest to typ sortowania
Wprowadzenie do rysowania w 3D. Praca w środowisku 3D
Wprowadzenie do rysowania w 3D 13 Praca w środowisku 3D Pierwszym krokiem niezbędnym do rozpoczęcia pracy w środowisku 3D programu AutoCad 2010 jest wybór odpowiedniego obszaru roboczego. Można tego dokonać
AUTOCAD MIERZENIE I PODZIAŁ
AUTOCAD MIERZENIE I PODZIAŁ Czasami konieczne jest rozmieszczenie na obiekcie punktów lub bloków, w równych odstępach. Na przykład, moŝe zachodzić konieczność zlokalizowania na obiekcie punktów oddalonych
KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012
Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować
Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
INFORMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2016/2017 FORMUŁA OD 2015 ( NOWA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2017 Uwaga: Akceptowane są wszystkie odpowiedzi
2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew
0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury
Wielokryteriowa optymalizacja liniowa
Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Program V-SIM tworzenie plików video z przebiegu symulacji
Program V-SIM tworzenie plików video z przebiegu symulacji 1. Wprowadzenie Coraz częściej zdarza się, że zleceniodawca opinii prosi o dołączenie do opracowania pliku/ów Video z zarejestrowanym przebiegiem
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1
Struktury danych: stos, kolejka, lista, drzewo
Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku
WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu
Technologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
TECHNOLOGIE OBIEKTOWE WYKŁAD 2. Anna Mroczek
TECHNOLOGIE OBIEKTOWE WYKŁAD 2 Anna Mroczek 2 Diagram czynności Czym jest diagram czynności? 3 Diagram czynności (tak jak to definiuje język UML), stanowi graficzną reprezentację przepływu kontroli. 4
Definicja pliku kratowego
Pliki kratowe Definicja pliku kratowego Plik kratowy (ang grid file) jest strukturą wspierająca realizację zapytań wielowymiarowych Uporządkowanie rekordów, zawierających dane wielowymiarowe w pliku kratowym,
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,
Metoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
INSTRUKCJA DO ĆWICZENIA NR 4
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o dwóch stopniach
Definicja obrotu: Definicja elementów obrotu:
5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek
Metoda superpozycji - rozwiązanie obwodu elektrycznego.
Metoda superpozycji - rozwiązanie obwodu elektrycznego. W celu rozwiązania obwodu elektrycznego przedstawionego na rysunku poniżej musimy zapisać dla niego prądowe i napięciowe równania Kirchhoffa. Rozwiązanie
Metody getter https://www.python-course.eu/python3_object_oriented_programming.php 0_class http://interactivepython.org/runestone/static/pythonds/index.html https://www.cs.auckland.ac.nz/compsci105s1c/lectures/
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Wstęp Pierwsze kroki Pierwszy rysunek Podstawowe obiekty Współrzędne punktów Oglądanie rysunku...
Wstęp... 5 Pierwsze kroki... 7 Pierwszy rysunek... 15 Podstawowe obiekty... 23 Współrzędne punktów... 49 Oglądanie rysunku... 69 Punkty charakterystyczne... 83 System pomocy... 95 Modyfikacje obiektów...
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Algorytm - pojęcie algorytmu, sposób zapisu, poziom szczegółowości, czynności proste i strukturalne. Pojęcie procedury i funkcji.
Algorytm - pojęcie algorytmu, sposób zapisu, poziom szczegółowości, czynności proste i strukturalne. Pojęcie procedury i funkcji. Maria Górska 9 stycznia 2010 1 Spis treści 1 Pojęcie algorytmu 3 2 Sposób
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
Krystalochemia białek 2016/2017
Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe
Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A
Ostatnim elementem przykładu jest określenie związku pomiędzy czasem trwania robót na planowanym obiekcie a kosztem jego wykonania. Związek ten określa wzrost kosztów wykonania realizacji całego przedsięwzięcia
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Język UML w modelowaniu systemów informatycznych
Język UML w modelowaniu systemów informatycznych dr hab. Bożena Woźna-Szcześniak Akademia im. Jan Długosza bwozna@gmail.com Wykład 4 Diagramy aktywności I Diagram aktywności (czynności) (ang. activity
Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a
TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia
SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD
Dr inż. Jacek WARCHULSKI Dr inż. Marcin WARCHULSKI Mgr inż. Witold BUŻANTOWICZ Wojskowa Akademia Techniczna SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Streszczenie: W referacie przedstawiono możliwości
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Topologia działek w MK 2013
Topologia działek w MK 2013 Podział działki nr 371 w środowisku Microstation 1. Uruchomić program Microstation. 2. Wybrać przestrzeń roboczą MK2013-Rozp.MAiCprzez Użytkownik. 3. Założyć nowy plik roboczy.
Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych
Ćwiczenia nr 4 Arkusz kalkulacyjny i programy do obliczeń statystycznych Arkusz kalkulacyjny składa się z komórek powstałych z przecięcia wierszy, oznaczających zwykle przypadki, z kolumnami, oznaczającymi
Propozycja standaryzacji usługi lokalizacji adresu
dr inż. Waldemar Izdebski 1,2 mgr inż. Andrzej Bielasty 2 Propozycja standaryzacji usługi lokalizacji adresu Numery adresowe są jednym z najprostszych elementów danych przestrzennych. Niemniej jednak są
5. Bazy danych Base Okno bazy danych
5. Bazy danych Base 5.1. Okno bazy danych Podobnie jak inne aplikacje środowiska OpenOffice, program do tworzenia baz danych uruchamia się po wybraniu polecenia Start/Programy/OpenOffice.org 2.4/OpenOffice.org
Wielokryteriowa optymalizacja liniowa cz.2
Wielokryteriowa optymalizacja liniowa cz.2 Metody poszukiwania końcowych rozwiązań sprawnych: 1. Metoda satysfakcjonujących poziomów kryteriów dokonuje się wyboru jednego z kryteriów zadania wielokryterialnego
Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Metody Kompilacji Wykład 3
Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
Część I. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zadanie 1.1. (0 3)
Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Część I Zadanie 1.1. (0 3) 3 p. za prawidłową odpowiedź w trzech wierszach. 2 p. za prawidłową odpowiedź
11. Prowadzenia baz danych PZGiK
Waldemar Izdebski - Wykłady z przedmiotu SIT 98 11. Prowadzenia baz danych PZGiK Przejście od zasobu prowadzonego w postaci klasycznej do zasobu numerycznego, zapisanego w bazach danych, jest obecnie jednym
znalezienia elementu w zbiorze, gdy w nim jest; dołączenia nowego elementu w odpowiednie miejsce, aby zbiór pozostał nadal uporządkowany.
Przedstawiamy algorytmy porządkowania dowolnej liczby elementów, którymi mogą być liczby, jak również elementy o bardziej złożonej postaci (takie jak słowa i daty). Porządkowanie, nazywane również często
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań
Bazy danych. Andrzej Łachwa, UJ, /15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 15/15 PYTANIA NA EGZAMIN LICENCJACKI 84. B drzewa definicja, algorytm wyszukiwania w B drzewie. Zob. Elmasri:
Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza
Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
1 Wstęp teoretyczny. Temat: Obcinanie odcinków do prostokąta. Grafika komputerowa 2D. Instrukcja laboratoryjna Prostokąt obcinający
Instrukcja laboratoryjna 3 Grafika komputerowa 2D Temat: Obcinanie odcinków do prostokąta Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1
Analiza ilościowa w przetwarzaniu równoległym
Komputery i Systemy Równoległe Jędrzej Ułasiewicz 1 Analiza ilościowa w przetwarzaniu równoległym 10. Analiza ilościowa w przetwarzaniu równoległym...2 10.1 Kryteria efektywności przetwarzania równoległego...2
Sposoby przedstawiania algorytmów
Temat 1. Sposoby przedstawiania algorytmów Realizacja podstawy programowej 5. 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych problemów; 2) formułuje ścisły
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie
Kryteria ocen z matematyki w klasie IV
Kryteria ocen z matematyki w klasie IV odejmuje liczby w zakresie 100 z przekroczeniem progu dziesiętnego, zna kolejność wykonywania działań, gdy nie występuję nawiasy, odczytuje współrzędne punktu na
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Wymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
2. Modele danych przestrzennych
2. Modele danych przestrzennych Model danych przestrzennych określa sposób reprezentacji obiektów świata rzeczywistego w aspekcie ich położenia przestrzennego, kształtu oraz istniejących między nimi relacji
- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory;
Edukacja matematyczna kl. II Wymagania programowe Dział programu Poziom opanowania Znajdowanie części wspólnej, złączenia zbiorów oraz wyodrębnianie podzbiorów Liczby naturalne od 0 100 A bardzo dobrze
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
1. Praktyczny przykład kalibracji rastra
1. Praktyczny przykład kalibracji rastra Dane do wykonania opisywanego poniżej ćwiczenia znajdują się w katalogu...\geo-dat\trening\raster. Zadaniem ćwiczenia jest przygotowanie danych rastrowych do kalibracji
Bazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1)
Indeksy Wykład przygotował: Robert Wrembel BD wykład 7 (1) 1 Plan wykładu Problematyka indeksowania Podział indeksów i ich charakterystyka indeks podstawowy, zgrupowany, wtórny indeks rzadki, gęsty Indeks
6.4. Efekty specjalne
6.4. Efekty specjalne W programie MS PowerPoint 2010 znajdziemy coś takiego jak efekty specjalne. Służą one po to by prezentacja nie stała się monotonna i zachęcała widzów do uwagi poprzez zastosowane
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
Instrukcja wprowadzania graficznych harmonogramów pracy w SZOI Wg stanu na 21.06.2010 r.
Instrukcja wprowadzania graficznych harmonogramów pracy w SZOI Wg stanu na 21.06.2010 r. W systemie SZOI została wprowadzona nowa funkcjonalność umożliwiająca tworzenie graficznych harmonogramów pracy.
Przedmiotowe zasady oceniania i wymagania edukacyjne
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa 3 Przedmiotowe zasady oceniania i wymagania edukacyjne Przed przystąpieniem do omawiania zagadnień programowych i przed rozwiązywaniem
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie