TRANSFORMACJE MOMENTÓW HARMONIZOWALNYCH SYGNAŁÓW STOCHASTYCZNYCH W DETERMINISTYCZNYCH UKŁADACH NIELINIOWYCH
|
|
- Agata Filipiak
- 6 lat temu
- Przeglądów:
Transkrypt
1 LKTRK 0 Zeszy Rok LVIII Jausz WLCZK Sewery ZURKIWICZ Isyu lekroechk Iforayk Polechka Śląska w Glwcach TRSFORCJ OTÓW HROIZOWLCH SGŁÓW STOCHSTCZCH W DTRIISTCZCH UKŁDCH ILIIOWCH Sreszczee. W arykule oao eoę wyzaczaa oeów harozowalych rocesów sochasyczych wysęujących w bezercyjych elowych eersyczych ukłaach SISO. Przyjęo że rozarywae rocesy są osae sochasyczy szerea Fourera a ukła elowy jes osay weloae o wsółczykach eersyczych. Poao wzory określające warośc rzecęe waracje fukcje korelacj własej wzajeej rozarywaych rocesów. Uzyskae wyk zlusrowao rzykłae. Słowa kluczowe: oey rocesów sochasyczych rasforacje elowe rocesów sochasyczych TRSFORTIOS OF OTS OF HROIZL STOCHSTIC SIGLS I DTRIISTIC OLIR SSTS Suary. The aer reses he eho for eer oes of harozable sochasc rocesses occurr eoryless a eersc olear SISO syses. There s assue ha he cosere sochasc rocesses are escrbe by he Fourer seres a a olear syse s escrbe by he olyoal wh eersc coeffces. There are ve forulas eer he ea value varace auocorrelao fucos a correlao fuco of he cosere rocesses. The obae resuls are llusrae by a exale. Keywors: oes of sochasc rocesses olear rasforaos of sochasc rocesses
2 7 J. Walczak S. azurkewcz. WSTĘP Zae są róże sosoby osu rocesów syałów sochasyczych w zeze czasu 4 0. Os okłay rocesów wyaa oaa foruł aeayczych osujących rocesy w sosób jawy 9. Os okłay rocesów jes róweż ożlwy rzez oae sochasyczych rówań różczkowych lub całkowych bęących eeraora rocesów 4. sę: Do częścej sosowaych 9 eo rzyblżoych osu rocesów sochasyczych zalcza os rocesów bazujący a welowyarowych łączych fukcjach ęsośc rawooobeńswa lub welowyarowych ysrybuaach rocesów os wykorzysujący róże yskree rerezeacje rocesów 3 4. szere Karhuea-Loève a eworha wele ych os rocesów z wykorzysae oeów 3 4. Osaa z wyeoych eo osu jes zaea y że oey rocesów są eersyczy fukcja zeych rzeczywsych. alza ukłaów w kórych wysęują syały rocesy sochasycze. jako źróła syałów eoą oeów jes wzlęe rosa 3 yż wykorzysuje sę u zae echk eersyczej aalzy aeayczej. W ujęcu rassyjy ukła SISO rys. a kóreo wejśce jes oaway syał sochasyczy a a jeo wyjścu jes obserwoway syał sochasyczy oża rakować 9 jako rzework: syału a syał rys. a łączych ęsośc rawooobeńswa f x x x syału a łącze ęsośc rawooobeńswa f y y y syału rys. b oeów rocesu a oey rocesu rys. c. Reuły rasforacj oeów w lowych sacjoarych ukłaach SISO IO są zae 9 4. W elowych bezercyjych lub yaczych ukłaach wyzaczee ych oeów jes rue 5 6. Wyzaczeu oeów w sochasyczych ukłaach yaczych osywaych rówaa Iô lub Sraoovcha jes ośwęcoa oorafa 3.
3 Trasforacje oeów harozowalych 73 a b c Rys.. Ukła SISO jako rzework rocesu F.. SISO syse as a coverer of he rocess ejszy arykuł oyczy wyzaczaa oeów harozowalych rocesów sochasyczych rueo rzęu 3 7 rzewarzaych rzez eersyczy bezercyjy elowy ukła SISO rys.. Zakłaa sę że ukła e jes osay weloae owoleo rzęu.. FORLIZCJ PROLU Rozaryway ukła SISO rys. jes osay weloae: c c ze: - syały sochasycze a wejścu wyjścu ukłau. Syał wejścowy ukłau jes suą skłaowej eersyczej sochasyczeo szereu Fourera:
4 74 J. Walczak S. azurkewcz ze: - fukcja eersycza cos s - wzajee ezależe zee losowe o zaaych rozkłaach fukcj ęsośc rawooobeńswa - skończoy zbór częsośc wa skłaowej losowej syału. Syał wyjścowy ukłau określa wzór: c cos s. 3 eoę wyzaczea oeów rocesu wzory oraz 3 o rueo rzęu włącze osao ożej. 3. OT PROCSÓW Wykorzysując wzory 3 oraz zae właścwośc oeraora warośc rzecęej lowość oeraora 4 wyzaczoo 8 oey rocesów o rueo rzęu włącze. oey rocesu ze: Warość rzecęą rocesu określa wzór: cos s 4 - warośc rzecęe zeych losowych. Warację rocesu określa wzór: 5
5 Trasforacje oeów harozowalych 75 ze: s cos cos cos s cos. s s Fukcję auokorelacj R rocesu określa wzór: cos R cos s cos cos s cos s s cos. s s 6 oey rocesu Warość rzecęą rocesu określa wzór: 0 c s s cos cos 7
6 76 J. Walczak S. azurkewcz. x Warację rocesu określa wzór: 8 ze: 0 0 c c cos cos x s s. Fukcję auokorelacj R rocesu określa wzór: 0 0 c c R x x cos cos cos cos s s s s. 9 Fukcję korelacj wzajeej R rocesów określa wzór: 0 0 c R x x 0
7 Trasforacje oeów harozowalych 77 cos cos cos cos s s s s Ilusrację wyrowazoych zależośc saow oższy rzykła. Przykła Charakerysykę eekora kwaraoweo określa wzór 9: Deekor jes zaslay syałe: ze: 0 - fukcja eersycza. s cos - ezależe zee losowe Gaussa o araerach częsość skłaka losoweo. oey rocesów określają wzory: R s 3 3 3s s 4 6 R 4cos 3s 5 4 3s 6 3 8cos 4cos4 8 3s 3s s 8 3s 4cos 4cos R 7 5 cos cos 8 3 s cos 3 cos 5 3 cos 9
8 78 J. Walczak S. azurkewcz 7 s s 7s. a rys. okazao klka rzykłaowych realzacj rocesów. a rys. - 0 rzesawoo wykresy warośc rzecęych waracj fukcj korelacj własych wzajeych rocesów rozarywaych w rzykłaze. Rys.. Przykłaowe realzacje rocesu F.. xales of realzaos of he rocess
9 Trasforacje oeów harozowalych 79 Rys. 3. Przykłaowe realzacje rocesu F. 3. xales of realzaos of he rocess Rys. 4. Warość rzecęa rocesu F. 4. xece value of he rocess
10 80 J. Walczak S. azurkewcz Rys. 5. Warość rzecęa rocesu F. 5. xece value of he rocess Rys. 6. Waracja rocesu F. 6. Varace of he rocess
11 Trasforacje oeów harozowalych 8 Rys. 7. Waracja rocesu F. 7. Varace of he rocess Rys. 8. Fukcja korelacj własej rocesu F. 8. uocorrelao fuco of he rocess
12 8 J. Walczak S. azurkewcz Rys. 9. Fukcja korelacj własej rocesu F. 9. uocorrelao fuco of he rocess Rys. 0. Fukcja korelacj wzajeej rocesów F. 0. Correlao fuco of he rocesses a
13 Trasforacje oeów harozowalych 83 Wzory o wyzaczaa oeów oae w rozzale 3 zosały zaleeowae w osac rorau koueroweo asaeo w języku C# 8. Prora e uożlwa: wyzaczae oeów rocesów 3 la lczby owolej wyrazów sochasyczeo szereu Fourera owoleo soa weloau zaawae rozkłaów ęsośc rawooobeńswa zeych losowych rówoereo oraleo wykłaczeo Suea oraz ch kwara yu oblczea warośc lczbowych wsółczyków fukcj określających oey oraz wykreślae wykresów realzacj oeów rocesów. 4. PODSUOWI Osaa eoa wyzaczaa oeów rocesów w elowych eersyczych ukłaach SISO bez aęc oże być sosowaa y roces wejścowy wyuszee jes ay wzore aalyczy. eoa a oże być uoóloa a szersze klasy rocesów o zaych rerezeacjach yskreych. Karhuea-Loève a losowe bezercyje ukłay SISO. Prace ake są rowazoe w chwl obecej. ILIOGRFI. erosa. Rce S. O.: The Ouu Proeres of Volerra Syses Drve by Haroc a Gaussa Ius. Proc. I Vol. 59 Dec Deusch R.: olear Trasforaos of Rao Processes. Prece-Hall Ic. Loo Faraha K. L T.: Rao Trooerc Polyoals wh oecally Dsrbue Coeffces. Sascs & Probably Leers 996 Vol. 7 o Groru.: le o-gaussa Processes Prece Hall ew ork Groru.: Sochasc echacs. I. J. of Sols a Srucures 000 o Kuzesov P.I. Sraoovch R. L. Tkhoov V.I.: o-lear Trasforao of Sochasc Processes. Perao Press Loo 995.
14 84 J. Walczak S. azurkewcz 7. L T. Faraha K.: Dffere Classes of Rao Trooerc Polyoals. 4-h If. Cof. o eural Parallel a Scefc Couaos laa US uus azurkewcz S.: alzaor rocesów sochasyczych rueo rzęu Praca yloowa aserska. Wyzał lekryczy Polechka Śląska w Glwcach Glwce Paouls.: Prawooobeńswo zee losowe rocesy sochasycze. WT Warszawa Puaczew W.S.: Teora fukcj rzyakowych jej zasosowae o zaaeń serowaa auoayczeo. Wy. O Warszawa Skowroek K.: Obwoy elekrycze w ujęcu sochasyczy. oorafa. Wy. Pol. Poz. Pozań 0.. Sobczyk K.: Sochasycze rówaa różczkowe. WT Warszawa Socha L.: Rówaa oeów w sochasyczych ukłaach yaczych. PW Warszawa Sweszkow..: Posawowe eoy fukcj losowych. PW Warszawa 965. Włyęło o Reakcj a 0 aźzerka 0 r. Receze: Prof. r hab. ż. Kora Skowroek Prof. r hab. ż. Jausz WLCZK r ż. Sewery ZURKIWICZ Polechka Śląska Wyzał lekryczy Isyu lekroechk Iforayk ul. kaecka GLIWIC el ; e-al: jausz.walczak@olsl.l el ; e-al: sewery.azurkewcz@olsl.l
TRANSFORMACJE MOMENTÓW SYGNAŁÓW STOCHASTYCZNYCH W LOSOWYCH UKŁADACH NIELINIOWYCH
LKTRYK 0 Zeszy Rok LVIII Jausz WLCZK Sewery ZURKIWICZ Isyu lekroechk Iformayk Polechka Śląska w Glwcach TRSFORCJ OTÓW SYGŁÓW STOCHSTYCZYCH W LOSOWYCH UKŁDCH ILIIOWYCH Sreszczee rykuł saow koyuację racy
Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykła 0: Rówae Schrögera Dr ż. Zbgew Szklarsk Kaera lekrok paw. C- pok.3 szkla@agh.eu.pl hp://layer.uc.agh.eu.pl/z.szklarsk/ 0.06.07 Wyzał Iforayk lekrok Telekoukacj - Teleforayka Rówae Schrögera jeo z
Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe
Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń
Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym
Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł
R n. i stopa procentowa okresu bazowego, P wartość początkowa renty, F wartość końcowa renty. R(1 )
Maeayka fasowa ubezpeczeowa Ćwczea 4 IE, I rok SS Tea: achuek re oęce rey Warość począkowa końcowa rey ey o sałych raach ea o zeych raach ea uogóoa osawowe poęca rachuku re ea es o cąg płaośc okoywaych
Mechanika Bryły y Sztywnej - Ruch Obrotowy. Bryła a Sztywna. Model górnej kończyny Model kręgosłupa
WYKŁAD # Mechaka Bryły y Szywej - Ruch Obroowy Bryła a Szywa Model cała rzeczywsego, dla k puky (ależą podczas ruchu. a rzeczywsego, dla kórego dwa dowole wybrae żące do bryły) y) e zeają swojej odległośc
STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
Teoria i metody optymalizacji
Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f( : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:
n R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe
Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f() : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa
opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
Wpływ redukcji poziomu szumu losowego metodą najbliższych sąsiadów 161
Kaarzya Zeug-Żebro WPŁYW REDUKCJI POZIOMU SZUMU LOSOWEGO MEODĄ NAJBLIŻSZYCH SĄSIADÓW NA WAROŚĆ NAJWIĘKSZEGO WYKŁADNIKA LAPUNOWA Wprowazee W aalze szeregów czasowych zakłaa sę, że w aych moża wyorębć skłak
ma rozkład normalny z nieznaną wartością oczekiwaną m
Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee
Symulacja czasu ładowania zasobnika C.W.U
Por Prybyc Syulacja casu łaoaa asobka C.W. Syulacja casu łaoaa asobka C.W. Do cgo służy Progra: Progra służy o sybkgo okrśla casu łaoaa asobka C.W. ry ałożoych arukach brgoych aruk brgo fuj rogra użykok
SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM
SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM Arur MACIĄG Sreszczee: W pracy przedsawoo echk aalzy szeregów czasowych w zasosowau do plaowaa progozowaa produkcj w przewórswe spożywczym.
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )
ANALIZA ASYMPTOTYCZNA WYKŁADNICZEJ SIECI ZAWODNYCH SYSTEMÓW KOLEJKOWYCH
STUDIA INFORMATICA 1 Volume 33 Number 3A (17) Mchał MATAŁYCKI Polechka Częsochowska, Isyu Maemayk Swaosław STATKIEWICZ Grodzeńsk Uwersye Pańswowy ANALIZA ASYMPTOTYCZNA WYKŁADNICZEJ SIECI ZAWODNYCH SYSTEMÓW
wirnika (w skrócie CPW). Jako czujniki położenia wirnika najczęściej stosuje się czujniki hallotronowe.[1]
Zeszyy Probleowe aszyy Elekrycze Nr 7/5 149 Jausz Heańczyk, Krzyszof Krykowski Poliechika Śląska, Gliwice BADANIA SYULACYJNE I LABORAORYJNE SILNIKA P BLDC WYKORZYSUJĄCEGO CZUJNIK POŁOŻENIA WIRNIKA W OBWODZIE
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest
Regresja REGRESJA
Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu
PODSTAWY TELEDETEKCJI-ćwiczenia rachunkowe
PODSTAWY TELEDETEKCJI-ćwiczenia rachunkowe Tema.eoy omiaru oległości i rękości raialnej. Zaanie. Na jakiej oległości znajuje się obiek, gy czas oóźnienia sygnałów wynosi:μs, ms, min O.50m, 50km, 9 9 0
ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę
ń ę ś Ą Ń ó ę ą ń ą ś Ł ń ń ź ń ś ó ń ę ę ę Ń ą ą ń ą ź ą ź ń ć ę ó ó ę ś ą ść ńś ś ę ź ó ń ó ń ę ń ą ń ś ę ó ó Ę ó ń ę ń ó ń ń ń ą Ę ą ź ą ą ń ó ą ę ó ć ą ś ę ó ą ń ś ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą
Szeregi czasowe, modele DL i ADL, przyczynowość, integracja
Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej
Projekt 3 Analiza masowa
Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga
t t t t t t t
Telekomunikacja t1 30429.51 93253.75 t2 30428.21 93254.34 t3 30419.44 93251.00 t4 30418.16 93251.58 t5 30412.81 93266.06 t6 30406.46 93270.11 t7 30390.18 93301.37 t8 30395.37 93303.44 t9 30371.57 93334.41
PARAMETRY ELEKTRYCZNE CYFROWYCH ELEMENTÓW PÓŁPRZEWODNIKOWYCH
ARAMETRY ELEKTRYZNE YFROWYH ELEMENTÓW ÓŁRZEWODNIKOWYH SZYBKOŚĆ DZIAŁANIA wyrażona maksymalną częsolwoścą racy max MO OBIERANA WSÓŁZYNNIK DOBROI D OBIĄŻALNOŚĆ ELEMENTÓW N MAKSYMALNA LIZBA WEJŚĆ M ODORNOŚĆ
5. OPTYMALIZACJA NIELINIOWA
5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe
CZYNNIKOWY MODEL ZARZĄDZANIA PORTFELEM OBLIGACJI
Zeszyy Naukowe Wydzału Iorayczych echk Zarządzaa Wyższej Szkoły Iorayk Sosowaej Zarządzaa Współczese robley Zarządzaa Nr /0 CZYNNIKOWY MOE ZARZĄZANIA OREEM OBIGACJI Adrzej Jakubowsk Isyu Badań Syseowych
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer
Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław
Matematyka II. x 3 jest funkcja
Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F
ZAGADNIENIE W POSTACI OGÓLNEJ
ZAGADNINI W POSAI OGÓLNJ s e ˆ - sygał - sygał -sygał obserwoway -sygał skoreloway z e eskoreloway z s -moel sygału s e ˆ -błą Szukae: 0,,..., M ] - ooweź mulsowa fltru FIR, - trasozycja Kryterum: m ]
ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
Sygnały pojęcie i klasyfikacja, metody opisu.
Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić
7 4 / m S t a n d a r d w y m a g a ± û e g z a m i n m i s t r z o w s k i dla zawodu K U C H A R Z * * (dla absolwent¾w szk¾ ponadzasadniczych) K o d z k l a s y f i k a c j i z a w o d ¾ w i s p e c
Ę ą Ó Ó Ó Ż ę Ę Ę Ź ó ć Ń Ą ć Ę Ę ó ó ę Ź ą ą ą ź ó Ś ęć Ś Ć ęć ą ą ą Ę ć Ó ó Ż ó Ż ó Ź ęó ą Ś ęć ą ą Ć ć ć Ó Ś Ą ć ć ó ć Ą ó ó ć ć Ą ę Ę ą ęć Ż ó Ę Ę Ó Ę Ą Ń Ę Ą ę ą ęć ą ą ą ć ę ć ć ó Ó ó ó ę Ż Ę ęó
Ą Ę Ó ć ż ż ż ż ĘĆ Ą ź ć ż Ę ĘÓ Ł Ó Ś Ó ź ć ż ć ż ż ć ż ć ć ć ż ć ć ż ż ć Ę Ą Ó ć ż ć ż ć ż ć ć ć ż ć ć ć ż ć ć ż ć ż ć ć ć ż Ę ć ż ż ż ż ż ć ż ć ć ż ć ć ż ć ć ć ć ź ź ć Ł Ę Ó ź ć ż ż ć ć ż Ą ź ć ż ć ż
f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu
METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015
WM-E; kier. MBM, lisa za. nr. p. (z kary przemiou): Rozwiązywanie zaań z zakresu: ransformacji ukłaów współrzęnych, rachunku wekorowego i różniczkowo-całkowego o kursu Fizyka.6, r. ak. 05/6; po koniec
Materiały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
Articulated Body Motion Tracking by Combined Particle Swarm Optimization and Particle Filtering
Tomasz Krzeszowsk Bogda Kwolek Korad Wojcechowsk Arculaed Body Moo Trackg by Combed Parcle Swarm Opmzao ad Parcle Flerg 1 www.hm.pjwsk.edu.pl Warszawa 2010-12-28 Pla The problem Tesed Flers PSO algorhm
1 9 / c S t a n d a r d w y m a g a ń - e g z a m i n c z e l a d n i c z y dla zawodu M E C H A N I K P O J A Z D Ó W S A M O C H O D O W Y C H Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r
i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ
9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego
BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII RODUKCJI I TECHNOLOGII MATERIAŁÓW OLITECHNIKA CZĘSTOCHOWSKA RACOWNIA DETEKCJI ROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-6 BADANIE STATYSTYCZNEJ CZYSTOŚCI OMIARÓW
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 33 2 0 1 7 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o C e
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach
ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n
Zawód: monter instalacji i urządzeń sanitarnych I. Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z ak res w iadomoś ci i umieję tnoś ci
8 8 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu M O N T E R I N S T A L A C J I I U R Z Ą D Z E Ń S A N I T A R N Y C H Kod z klasyfikacji zawodów i sp e cjaln oś
W W Y D A N I E S P E C J A L N E S z a n o w n i P a ń s t w o! Spis t reści: y d arz e ni a c z e rw c ow e w 3 P oz nani u, r. Z
M 50-r o c z n i c a P o z n a ń s k i e g o C z e r w c a 56 r. KAZIMIERA IŁŁAKOWICZÓWNA Ro z s t r z e l a n o m o j e s e r c e C h c i a ł a m o k u l t u r z e n a p i s a ć n a p r a w d ę i n t
16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H
Zada Zakładając, ż zm losow,,, 6 są zalż mają rozkłady ormal ~ N( m, ),,, 6, zbudowao tst jdostaj ajmocjszy dla wryfkacj hpotzy H 0 : m 0 przy altratyw H : m 0 a pozom stotośc 0,05 W rzczywstośc okazało
Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5
L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
Szacowanie składki w ubezpieczeniu od ryzyka niesamodzielności
Skłaki w ubezpieczeiu o ryzyka iesamozielości EDYTA SIDOR-BANASZEK Szacowaie skłaki w ubezpieczeiu o ryzyka iesamozielości Kalkulacja skłaki w ubezpieczeiach jes barzo ważym zagaieiem związaym z maemayką
KRYTERIUM OCENY EFEKTYWNOŚCI INWESTYCYJNEJ OFE, SYSTEM MOTYWACYJNY PTE ORAZ MINIMALNY WYMÓG KAPITAŁOWY DLA PTE PROPOZYCJE ROZWIĄZAŃ
KRYTERIU OCENY EFEKTYWNOŚCI INWESTYCYJNEJ OFE, SYSTE OTYWACYJNY PTE ORAZ INIALNY WYÓG KAPITAŁOWY DLA PTE PROPOZYCJE ROZWIĄZAŃ Urząd Komsj Nadzoru Fasowego Warszawa 0 DEPARTAENT NADZORU INWESTYCJI EERYTALNYCH
3. OPTYMALIZACJA NIELINIOWA
Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz
F u l l H D, I P S D, I P F u l l H D, I P 5 M P,
Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y
2 0 0 M P a o r a z = 0, 4.
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L I Z A W Y T R Z Y M A O C I O W A S Y S T E M U U N I L O C K 2, 4 S T O S O W A N E G O W C H I R U R G I I S Z C Z
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x
Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )
ż Ź Ą Ż Ż Ż ć Ó Ą Ó ź ć Ż Ż ź ż ż Ź ż ć ż Ż ć Ż Ż ż Ę Ą Ę Ą Ż Ść ć ż ż Ą ć Ź Ś ć Ż ż ż ż ż Ż ż Ż ż ż Ś ż Ź ż Ą ĘĄ Ż ć ć ż ż ż Ż ż Ż ć ż Ż ż ć ż Ż Ś Ż ż ć ż Ź Ż Ź ż ć Ź Ś ż Ź ż ż ź ż Ż ż Ż ż ż ż ż ż Ę Ś
Ź Ó Ź Ź Ą ź ź Ń Ó ć Ź ć ć Ź Ó Ń ź Ó Ś Ó Ó Ó Ą ź ź Ó Ą Ą Ź ć Ź Ó Ó Ó Ą ć ć ć Ą ć Ó Ść ć Ś Ść Ś Ó ć ć Ś Ó Ó ć Ś ć ć ć Ó Ó ć ć Ó Ś Ą Ó ć Ź ĘĄ Ó Ó Ą Ś Ó Ź Ą Ł Ś ć Ź Ł Ł Ą Ó Ś Ł ć ć Ź Ó Ź Ł Ć ć Ó ć Ś Ź Ó ć
Ł ć ć Ł Ą Ń Ę Ą Ń Ń Ą Ą ć Ń Ń ć Ą ć ć ź ć ź Ł Ł Ą Ę ć ć ć ć ć ć Ź ć Ę ĘĄ ć Ę ĘĄ Ę Ł Ł ź Ę ć ć ć Ę Ł Ż Ę Ł ź ć Ł ć ź Ę ź Ą Ą ć ć ć Ą Ł Ł Ą ć Ę Ę Ę ć ć ć ć Ą Ę Ń Ę Ą Ń ć Ł Ą Ń Ę Ą Ń Ę ć Ń ć Ć ć Ń Ń ć ć ć
ć ć Ą Ę Ę Ę Ę Ą ć ć ć ć ć ź Ą Ą Ą Ą ć Ą Ą Ą Ą ź Ę Ż ć ć Ł Ł ź ź Ł ć Ę Ę Ń Ż Ń ć Ę ć Ś Ś ć Ą Ę ć ć ć Ę ź Ę Ę Ń Ę Ń Ę Ę ć Ę Ę Ę Ę ć ć ź ć ć Ę ć Ę ć ć ć ć Ę Ę ź Ł Ę Ą Ą Ą Ę ź ź ć ź ć Ł ć Ł Ę ć Ą Ł
ź Ę Ą ć ź Ą ć ć ć ź ć ć ź ć ć Ł Ę ź ć ź ć Ś Ę ź Ę Ą Ą Ś Ę ć ź ć ć ć ć ź Ę Ę ć ć ź ź ć ź ć ź ź ź ć ź ć ć ź ź ź ć Ę ć ć Ę ć Ń ć Ł Ą Ę ź Ę ć ź ć ź Ł Ę ź ź Ą Ę ć Ś Ś Ś ź Ś ź ź ź Ś Ś ć Ż Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n
Statystyka Inżynierska
Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe
Gmina Brzeg ul. Robotnicza Brzeg. Biuro Usług Projektowo - Budowlanych. Maciej Boberski ul. Rynek 10/6, Brzeg
Zą: G B 9- B W: W: B Uł P - B M B /, 9- B N S: DOGI POJEKT WYKONAWCZY Z : P Wś B Bż: S DOGOWA T : P ł Wś B - EWIZJA Ię N ń P K P / P: ż M B OPL//PWOM/ P: ż A Kę OPL//POOD/ N W// D N B Uł P - B M B SPIS
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5
Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja
XXXV Konferencja Statystyka Matematyczna
XXXV Konferencja Saysyka Maeayczna MODEL OTOWOŚCI SYSTEMU TECHNICZNEO Karol J. ANDRZEJCZAK karol.andrzejczak@pu.poznan.pl Polechnka Poznańska hp://www.pu.poznan.pl/ PRORAM REERATU 1. WPROWADZENIE 2. ORMALIZACJA
Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć
ń Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć Í ń Ó Ń Ń Ń Ó ľ ęż Ń Á ęż Ń Ą ę Ż ć ę ę Ż ć ę ć Ś ę ę Ś Ż Ż Ż Ż ę ę Ż ń Ż ń ę ę ć Ś ę Ż ć Ż ć Ż Ż ć ń Ż ľ ę ę ę ę Ś ę ę ľ ę Ę Ĺ Í ľ ď ý Ę ń ľ ę ń Ó Ń ć Í ô Ó ľ ü
Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
KALIBRACJA NIE ZAWSZE PROSTA
KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora