Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty
|
|
- Angelika Makowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania Programu Operacyjnego Kapitał Ludzki
2 Program przedmiotu Zaliczenie Litaratura 1 Organizacja zajęć Program przedmiotu Zaliczenie Litaratura 2 Perceptrony prosty Uczenie perceptronu 3 rachunkowe programistyczne
3 O czym będzie Organizacja zajęć Program przedmiotu Zaliczenie Litaratura Sieci neuronowe matematyczne i informatyczne modele dla biologicznych komórek nerwowych i całych sieci nerwowych wraz z ich zastosowaniem w problemach obliczeniowych. Dużo programowania (implementowanie algorytmów), Trochę matematyki, Małe zadania do zaimplementowania na zajęciach (język dowolny, ściągawki będą w Matlabie / Octavie), Programy zaliczeniowe pisane głównie w domu, prezentowane i omawiane na zajęciach,
4 Program zajęć Organizacja zajęć Program przedmiotu Zaliczenie Litaratura Pojedynczy neuron (model perceptronu prostego, maszyny liniowej, Adaline), Sieci skierowane, algorytmy konstrukcyjne dla sieci skierowanych, Algorytm wstecznej propagacji błędu (BEP), Uczenie bez nauczyciela (samoorganizacja topologiczna, analiza składowych głównych (PCA)), Sieci rekurencyjne (sieć Hopfielda, maszyny Boltzmanna i symulowane wyżarzanie), (*) Wielowartościowe sieci neuronowe, sieci zespolone, (*) Algorytmy genetyczne.
5 Zaliczenie Organizacja zajęć Program przedmiotu Zaliczenie Litaratura Zaliczenie laboratoriów na podstawie implementowania omawianych algorytmów, Terminowość w oddawaniu zadań, Obecność wymagana!
6 Zaliczenie Organizacja zajęć Program przedmiotu Zaliczenie Litaratura Każde zadanie jest punktowane za 1 punkt. Dopuszczane są oceny wymierne (czyt. ułamkowe za brzydko napisane zadania) oraz powyżej jednego punktu za wybitnie programy, Podczas sprawdzania programów należy mieć kod źródłowy. Lub prezentacja programu w trakcie zajęć (+0.2p). ocena punkty dst 3p. db 4p. bdb 5p. bdb+ 6p. lub więcej + następny slajd
7 Wymagania na ocenę BDB+ Program przedmiotu Zaliczenie Litaratura Na ocenę bdb+ wymagane są: zadania z różnych działów, przynajmniej jeden program do końca października, przynajmniej dwa programy do końca listopada, przynajmniej trzy programy do końca stycznia, wszystkie programy przed egzaminem.
8 Literatura Organizacja zajęć Program przedmiotu Zaliczenie Litaratura R. Rojas Neural Networks, A Systematic Introduction, Springer 1996, P. Peretto, Introduction to Modeling Neural Networks, Cambridge University Press 1994, T. Schreiber, Notatki do wykładu WSN, E. Izhikevich, Dynamical Systems in Neuroscience, 2007 Massachusetts Institute of Technology C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press 1995.
9 Perceptrony prosty Uczenie perceptronu 1 Organizacja zajęć Program przedmiotu Zaliczenie Litaratura 2 Perceptrony prosty Uczenie perceptronu 3 rachunkowe programistyczne
10 Dynamika perceptronu Perceptrony prosty Uczenie perceptronu Perceptron układ składający się z n wejść x 1,.., x n, (argumenty do funkcji x i R), n wag w 1,.., w n stowarzyszonych z wejściami w i R, funkcji aktywacji f : R R (funkcja polarna z progiem θ) { +1 s θ f (s) = 1 s < θ
11 Dynamika perceptronu Perceptrony prosty Uczenie perceptronu Dostając na wejściu x = (x 1,.., x n ), perceptron zwróci wartość: O(x 1,..., x n ) = f ( n { +1 n w i x i ) = i=1 w ix i θ 1 n i=1 w ix i < θ i=1
12 Model perceptronu Organizacja zajęć Perceptrony prosty Uczenie perceptronu out
13 Zagadnienie uczenia perceptronu Perceptrony prosty Uczenie perceptronu Dane: Cel: perceptron progowy o n wejściach, n nieznanych wagach w 1,.., w n i progu θ, zbiór k przykładów uczących E (i) = (E (i) (i) 1,...,.E N ), i = 1..k, poprawne odpowiedzi {+1, 1} odpowiadające przykładom uczącym T (1),...,.T (k), znaleźć zestaw wag w 1,.., w n i próg θ, takie aby perceptron klasyfikował poprawnie wszystkie przykłady uczące (lub możliwie najwięcej, gdy nie da się wszystkich)
14 Perceptrony prosty Uczenie perceptronu Simple Perceptron Learning Algorithm Podstawowy algorytm uczenia: 1 Losujemy wagi w i małe, blisko 0. 2 Wybieramy kolejny (lub losowy zalecane) przykład E (j) i odpowiadającą mu poprawną odpowiedź T (j), 3 Obliczamy O wynik działania sieci na E (j) 4 Obliczamy ERR = T (j) O 5 Jeżeli ERR = 0 (klasyfikacja jest poprawna), to wróć do 2, 6 W przeciwnym wypadku uaktualniamy wszystkie wagi zgodnie ze wzorem η > 0 jest stałą uczenia. w i = w i + η ERR E (j) i θ = θ ERR 7 Jeżeli sieć klasyfikuje poprawnie wszystkie (większość) przykłady, to kończymy, wpw wracamy do 2.
15 Pocket Learning Algorithm Perceptrony prosty Uczenie perceptronu 1 Losujemy wagi i próg wokół 0, przypisujemy układowi wag zerowy czas życia i zapisujemy go w kieszonce jako rekordzistę, 2 Przebiegamy przykłady losując z listy, 3 Dla wybranego przykładu E (j) sprawdzamy, czy E (j) jest dobrze klasyfikowany (ERR = T (j) O = 0), Jeśli tak, zwiększamy mu czas życia o jeden. Jeżeli jest to wynik lepszy niż u rekordzisty, zapominamy starego rekordzistę i zapisujemy w kieszonce nowy układ wag. Wracamy do 2. Jeśli nie, to korygujemy wagi i próg: w i = w i + η ERR E (j) i θ = θ ERR Nowemu układowi wag przypisujemy zerowy czas życia. Wracamy do 2. 4 Algorytm kończymy po przebiegnięciu odpowiedniej liczby iteracji. Zwracamy najbardziej żywotny zestaw wag.
16 Perceptrony prosty Uczenie perceptronu Pocket Learning Algorithm with Ratchet 1 Losujemy wagi i próg wokół 0, przypisujemy układowi wag zerowy czas życia i zapisujemy go jako rekordzistę, 2 Przebiegamy przykłady losując z listy, oznaczmy go E (j), 3 Sprawdzamy czy E (j) jest dobrze klasyfikowany ERR = T j O, Jeśli tak, zwiększamy mu czas życia o jeden. Jeżeli jest to wynik lepszy niż u rekordzisty i klasyfikuje on więcej przykładów niż rekordzista, to zapominamy starego rekordzistę i zapisujemy nowy układ wag. Wracamy do 2. Jeśli nie, to korygujemy wagi i próg: w i := w i + η ERR E (j) i θ := θ ERR Nowemu układowi wag przypisujemy zerowy czas życia. Wracamy do 2. 4 Algorytm kończymy po przebiegnięciu odpowiedniej liczby iteracji. Zwracamy najbardziej żywotny zestaw wag.
17 rachunkowe programistyczne 1 Organizacja zajęć Program przedmiotu Zaliczenie Litaratura 2 Perceptrony prosty Uczenie perceptronu 3 rachunkowe programistyczne
18 Zadanie 1 Organizacja zajęć rachunkowe programistyczne Wagi perceptronu wynoszą w 1 = +1, w 2 = 0.5, w 3 = 1.4. Próg funkcji aktywującej wynosi θ = +1.5 Jaką odpowiedź zwróci perceptron dla wejścia x = (3, 4, 5)?
19 Zadanie 2 Organizacja zajęć rachunkowe programistyczne Pokaż, że definicje perceptronu progowego i z biasem są równoważne.
20 Zadanie 3 Organizacja zajęć rachunkowe programistyczne Pokaż, że oraz σ(s) = exp( s) 2σ(s) 1 = 1 exp( s) 1 + exp( s) σ (s) = σ(s)(1 σ(s))
21 Zadanie 1. Klasyfikacja punktów rachunkowe programistyczne Napisz program, który nauczy perceptron klasyfikacji na zadanej liście przykładów (wyklikanych lub z pliku). Plik może być listą punktów (na R 2, R 3, R 4 ) oraz poprawną klasyfikacją punktu. Klasyfikacja binarna: 0 lub 1 (+1, -1), Możliwość wczytania (lub wyklikania) parametrów innych punktów (tj. z poza listy uczącej) i wyświetlenia ich wraz z oznaczeniem klasy, Informacja o oczekiwanej (z listy) jak i faktycznej (tj. zwróconej przez perceptron) klasyfikacji, Podstawowe statystyki poprawności działania (np. procent poprawnie klasyfikowanych przykładów), Wykres prostej / płaszczyzny separującej.
22 rachunkowe programistyczne Zadanie 2. Rozpoznawanie cyfr / liter / obrazów Napisz program, który wykorzystuje kilka (-naście) perceptronów (lub maszynę liniową) do rozpoznawania cyfr lub liter. Wskazówki: Cyfry powinny być wyświetlane jako układy pikseli na matrycy o niewielkich wymiarach, Program dodatkowo powinien mieć możliwość wyklikania cyfry i automatycznej klasyfikacji.
23 rachunkowe programistyczne Zadanie 3. Neuron Hodgkina-Huxleya (dla ambitnych) Zapoznaj się z modelem komórki neuronowej opisanym w terminach układów dynamicznych. Informacje o modelu można znaleźć w rozdziale drugim książki E. Izhikevich Dynamical Systems in Neuroscience, 2007 MIT Press. Napisz program symulujący dynamikę neuronu Hodgkina-Huxleya.
Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.
Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-04 In memoriam prof. dr hab. Tomasz Schreiber
Bardziej szczegółowoWprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.
Wprowadzenie do Sieci Neuronowych Laboratorium Organizacja zajęć. Perceptron. Jarosław Piersa --3 Organizacja zajęć. Co będzie Dużo programowania (pisanie programów), Trochę matematyki, Małe zadania do
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.
Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału dydaktycznego
Bardziej szczegółowoWprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.. Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci
Bardziej szczegółowoWprowadzenie do Sieci Neuronowych lista zadań 1
Wprowadzenie do Sieci Neuronowych lista zadań 1 Maja Czoków, Jarosław Piersa 2010-10-04 1 Zasadyzaliczania 1.1 Oceny Zaliczenie laboratoriów na podstawie implementowania omawianych algorytmów. Każde zadanie
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.
Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2017-10-04 Projekt
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 2 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 213-1-15 Projekt pn. Wzmocnienie potencjału
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 13-1- Projekt pn. Wzmocnienie potencjału dydaktycznego
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Bardziej szczegółowoWprowadzenie do Sieci Neuronowych Laboratorium 04 Algorytmy konstrukcyjne dla sieci skierowanych
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja
Bardziej szczegółowoWprowadzenie do Sieci Neuronowych Laboratorium 02 Perceptron prosty cd
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Bardziej szczegółowoUczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09
Bardziej szczegółowoElektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych
Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja
Bardziej szczegółowo1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Bardziej szczegółowoKARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Bardziej szczegółowosynaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
Bardziej szczegółowoWstęp do Sieci Neuronowych
Wstęp do Sieci Neuronowych T. Schreiber, M. Czoków, J. Piersa 9 listopada 1 Streszczenie Dokument poniższy nie jest skryptem do wykładu w roku akademickim 1/11. Co najwyżej podsumowanim najważniejszych
Bardziej szczegółowoNowoczesne metody nauczania przedmiotów ścisłych
Nowoczesne metody nauczania przedmiotów ścisłych Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń 14 VI 2012 Bartosz Ziemkiewicz Nowoczesne metody nauczania... 1/14 Zdalne nauczanie na UMK
Bardziej szczegółowoWykład wprowadzający
Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Wykład wprowadzający dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl
Bardziej szczegółowo8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Bardziej szczegółowoSztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Bardziej szczegółowoWstęp do sztucznych sieci neuronowych
Wstęp do sztucznych sieci neuronowych Michał Garbowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 15 grudnia 2011 Plan wykładu I 1 Wprowadzenie Inspiracja biologiczna
Bardziej szczegółowoPodstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci
Bardziej szczegółowowiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Bardziej szczegółowoElementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Bardziej szczegółowoID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
Bardziej szczegółowoZagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Bardziej szczegółowoSieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Sieci neuronowe i algorytmy uczenia Czyli co i jak 2016 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Bardziej szczegółowoSieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Bardziej szczegółowoZastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Bardziej szczegółowoTemat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
Bardziej szczegółowoWprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu
Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr
Bardziej szczegółowoInteligentne systemy informacyjne
Inteligentne systemy informacyjne Moduł 10 Mieczysław Muraszkiewicz www.icie.com.pl/lect_pw.htm M. Muraszkiewicz strona 1 Sieci neuronowe szkic Moduł 10 M. Muraszkiewicz strona 2 Dwa nurty M. Muraszkiewicz
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Bardziej szczegółowoWstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Bardziej szczegółowoKARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Podstawy informatyki i architektury systemów komputerowych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki Zakład Informatyki
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
Bardziej szczegółowoMetody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
Bardziej szczegółowoRozdział 1 Sztuczne sieci neuronowe. Materiały do zajęć dydaktycznych - na podstawie dokumentacji programu Matlab opracował Dariusz Grzesiak
2 Rozdział 1 Sztuczne sieci neuronowe. 3 Sztuczna sieć neuronowa jest zbiorem prostych elementów pracujących równolegle, których zasada działania inspirowana jest biologicznym systemem nerwowym. Sztuczną
Bardziej szczegółowoZapisywanie algorytmów w języku programowania
Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-06 1 Przykład
Bardziej szczegółowoSieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka
Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga
Bardziej szczegółowoInżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
Bardziej szczegółowoUniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Bardziej szczegółowoZastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski
Bardziej szczegółowoZastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Bardziej szczegółowoSztuczne sieci neuronowe (SNN)
Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe
Bardziej szczegółowoIMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Bardziej szczegółowoZastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski
Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej Adam Żychowski Definicja problemu Każdy z obiektów może należeć do więcej niż jednej kategorii. Alternatywna definicja Zastosowania
Bardziej szczegółowoAlgorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Bardziej szczegółowoWprowadzenie do Sieci Neuronowych Laboratorium 06 Algorytm wstecznej propagacji błędu
Wprowadzenie do Sieci Neuronowych Laboratorium 6 Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa 3--6 Powtórzenie. Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) ()
Bardziej szczegółowoWstęp do Sieci Neuronowych
Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa, Tomasz Schreiber 5 listopada 3 975, Profesor Uniwersytetu Mikołaja Kopernika w Toruniu. Autor oryginalnej formy wykładu na WMiI. Spis treści Modele
Bardziej szczegółowoZastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW
Bardziej szczegółowoSystemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Bardziej szczegółowoSieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ
optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów
Bardziej szczegółowoMetody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów Autorzy: Maria Kosiorowska Marta Kornafel Grzegorz Kosiorowski Grzegorz Szulik Sebastian Baran Jakub Bielawski Materiały przygotowane w ramach projektu
Bardziej szczegółowoSIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe
SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU
Bardziej szczegółowoTechniki uczenia maszynowego nazwa przedmiotu SYLABUS
Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów
Bardziej szczegółowoSztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe
Bardziej szczegółowoMATLAB Neural Network Toolbox przegląd
MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE INSTYTUT TECHNOLOGII MECHANICZNEJ Metody Sztucznej Inteligencji Sztuczne Sieci Neuronowe Wstęp Sieci neuronowe są sztucznymi strukturami, których
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Bardziej szczegółowoDeep Learning na przykładzie Deep Belief Networks
Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning
Bardziej szczegółowoUczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Bardziej szczegółowoMetody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Bardziej szczegółowoWYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach
Bardziej szczegółowoSIECI NEURONOWE Wprowadzenie
SIECI NEURONOWE Wprowadzenie JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA WYKŁADOWCA JOANNA GRABSKA CHRZĄSTOWSKA KATEDRA
Bardziej szczegółowosieci jednowarstwowe w MATLABie LABORKA Piotr Ciskowski
sieci jednowarstwowe w ATLABie LABORKA Piotr Ciskowski trzy funkcje do obsługi sieci jednowarstwowej : init1.m - tworzy sieć, inicjuje wagi (losowo) dzialaj1.m symuluje działanie sieci (na pojedynczym
Bardziej szczegółowoPodstawy sztucznej inteligencji
wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,
Bardziej szczegółowoUczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Bardziej szczegółowoInformatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Zastosowanie sztucznych sieci neuronowych Nazwa modułu w informatyce Application of artificial
Bardziej szczegółowoUniwersytet Mikołaja Kopernika. Wydział Matematyki i Informatyki. Jarosław Piersa piersaj(at)mat.uni.torun.pl
Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Jarosław Piersa piersaj(at)mat.uni.torun.pl Abstrakt Poniższy referat dotyczy zagadnień uczenia w sieciach neuronowych i bayesowskich(sieciach
Bardziej szczegółowoLiteratura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Bardziej szczegółowoKARTA KURSU. Kod Punktacja ECTS* 1
KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci
Bardziej szczegółowo1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
Bardziej szczegółowoAlgorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Bardziej szczegółowoInteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Bardziej szczegółowoOptymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
Bardziej szczegółowoSieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.
Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie
Bardziej szczegółowoInteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne
Bardziej szczegółowoS O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 13-14,. Metody statystyczne. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2011.01.11 1 Przykład Przeuczenie
Bardziej szczegółowoWYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania
WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie
Bardziej szczegółowoPrzykładowa prezentacja
Przykładowa prezentacja Teodor Niżyński 1 1 Department of Automatics, Mechatronics and Control Systems Faculty of Electronics Wrocław University of Technology December 5, 2016 1 / 19 T. Niżyński Przykładowa
Bardziej szczegółowoDEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Stanisław PŁACZEK* DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI W artykule
Bardziej szczegółowo