1.1 Wielomiany: Pakiet polynom zawiera funkcje do tworzenia i operowania na wielomianach.
|
|
- Karolina Wolska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Rachunek Prawdopodobieństwa i Statystyka lab 7. Kaja Chmielewska (Kaja.Chmielewska@cs.put.poznan.pl) R umożliwia używanie wielu wyspecjalizowanych, mniej lub bardziej popularnych funckji matematycznych i statystycznych. Przedstawione zostaną wybrane z nich. 1. Wybrane funkcje matematyczne 1.1 Wielomiany: Pakiet polynom zawiera funkcje do tworzenia i operowania na wielomianach. - Zdefiniowanie dwóch przykładowych wielomianów: > (p1 <- polynomial(c(2,0,1))) # 2 + x^2 > (p2 <- polynomial(c(2,2,1,1))) # 2 + 2*x + x^2 + x^3 - Wielomiany można dodawać/odejmować/mnożyć/dzielić używając standardowych operatorów: > p1 + p2 # 4 + 2*x + 2*x^2 + x^3 > p1 * p2 # 4 + 4*x + 4*x^2 + 4*x^3 + x^4 + x^5 - Wielomiany można całkować i różniczkować: > integral(p1,c(0,1)) # [1] > deriv(p2) # 2 + 2*x + 3*x^2 - Można wyznaczyć najmniejszą wspólną wielokrotność i największy wspólny dzielnik > LCM(p1,p2) # 2 + 2*x + x^2 + x^3 > GCD(p1,p2) # 2 + x^2 - Przekonwertuj wielomian na funkcję programu R, tak aby można było korzystać z obiektu jak ze zwykłej funkcji. Wyznacz jej wartości w kilku punktach. W pierwszym korku wykorzystaj pakiet orthopolynom, gdzie dostępne są bazy wielomianów. Wyznaczymy 5 pierwszych wielomianów Legendre a, za bazę wybieramy odcinek [0,1], a wielomiany chcemy mieć znormalizowane. > library("orthopolynom") > max <- 5 > (wielomiany <- slegendre.polynomials(max,normalized = TRUE)) Zdefiniuj wielomian jako funckję i wyznacz wartości. > wielomian4 <- as.function(wielomiany[[4]]) > wielomian4(c(0, 0.5, 1)) # [1] Taką funkcję można wykorzystać do stworzenia wykresu: > curve(wielomian4, 0, 1, lwd=3, lty=4, ylab="")
2 - Wybrane funkcje z pakietu polynom: polynomial(wsp) - ta funkcja pozwala zbudować wielomian przez podanie współczynników tego wielomianu. Współczynniki określa wektor wsp, pierwszy element tego wektora to wyraz wolny, kolejny wraz przy elemencie liniowym itp. integral(pol,lim) - ta funkcja wyznacza całkę z wielomianu pol w granicach lim. deriv(pol) - ta funkcja wyznacza pochodną wielomianu pol. poly.calc(x), poly.calc(x,y) - ta funkcja wyznacza wielomian o możliwie najmniejszym stopniu, o zerach w punktach x (jeżeli podany będzie tylko jeden argument) lub wielomian przechodzący przez punkty x,y (jeżeli podane będą dwa argumenty). GCD(pol1, pol2) - ta funkcja wyznacza największy wspólny dzielnik dwóch wielomianów. LCM(pol1, pol2) - ta funkcja wyznacza najmniejszą wspólną wielokrotność. solve(pol), polyroot(pol) -ta funkcja wyznacza zera danego wielomianu (działa również dla wielomianów zespolonych). 1.2 Operacje na zbiorach: Pakiet base zawiera funkcje do operowania na zbiorach. Zbiory reprezentowane są jako wektory. - Zdefiniowanie dwóch przykładowych zbiorów: > x <- 1:10 > y <- 5:15 - Na zbiorach można wykonać różnicę symetryczną (operacja XOR), czyli suma zbiorów minus część wspólna zbiorów: > setdiff(union(x,y), intersect(x,y)) # [1] Sprawdzenie czy zbiory są sobie równe: > setequal(x, setdiff(x, setdiff(y,x))) - Sprawdzenie czy dany element należy do zbioru: > is.element(3, x) - Wybrane funkcje z pakietu base: union(x, y) - wynikiem tej funkcji jest suma zbiorów x i y. intersect(x, y) - wynikiem tej funkcji jest część wspólna zbiorów x i y. setdiff(x, y) - wynikiem tej funkcji jest różnica zbiór x minus y. Różnica zbiorów jest funkcją niesymetryczną. setequal(x, y) - wynikiem tej funkcji jest wartość logiczna, równa TRUE, gdy zawartości obu zbiorów są sobie równe.
3 is.element(el, set) - wynikiem tej funkcji jest wartość logiczna, równa TRUE, gdy element el należy do zbioru set. 1.3 Maksimum, minimum i zero Często pewne problemy sprowadzają się szukania zer funkcji lub punktów minimalizujących lub maksymalizujących funkcję. Do tego celu można użyć funkcje optimize() /optimise() lub uniroot(). W obu przypadkach jeśli jest więcej niż jedno rozwiązanie, to wyznaczane jest dowolne. - optimize() wyznacza ekstrema, poniżej deklaracja funkcji: optimize(f, interval,..., lower = min(interval), upper = max(interval), maximum = FALSE, tol =.Machine$double.eps^0.25) - uniroot() wyznacza miejsca zerowe, poniżej deklaracja funkcji: uniroot(f,interval,...,lower=min(interval),upper=max(interval), f.lower = f(lower,...), f.upper = f(upper,...), tol =.Machine$double.eps^0.25, maxiter = 1000) Argumentami obu funkcji są: f czyli funkcja, dla której szukane mają być ekstrema/ miejsca zerowe, interval określający na jakim przedziale wyznaczane ma być ekstremum/miejsce zerowe. Dodatkowo, w funkcji optimize() można określić, czy poszukujemy maksimum czy minimum (argument maximum), a w funkcji uniroot() można wskazać maksymalną liczbę iteracji do wykonania (argument maxiter). Do badanej funkcji f można przekazać również dodatkowe argumenty. Przykład użycia, dla funkcji f(), szukamy minimum na przedziale [-1,10], określamy też dodatkowy argument dla funkcji czyli wyznacznik. f <- function(x, wyznacznik) {(x - 7)^wyznacznik - x} optimize(f, interval=c(-1,10), wyznacznik = 2) # $minimum [1] 7.5 # $objective [1] Inne funkcje służące do maksymalizacji funkcji: optim() i nlm(). Funkcja optim() może być wykorzystywana do optymalizacji po wielowymiarowym zbiorze. Natomiast funkcja optimize() dotyczy jednowymiarowego zbioru parametrów. 1.4 Rachunek różniczkowo-całkowy Operacje różniczkowania są związane z funkcjami D() i deriv() z pakietu stats. Obie funkcje zwracają ten sam wynik, ale mają inny sposób podawania argumentów. - funkcja D(), potrzebuje argumentu expression, - funkcja deriv(), jako argument przyjmuje formułę bez określonej lewej strony Operacje całkowania funkcja integrate(), która wyznacza całkę na zadanym, niekoniecznie skończonym przedziale.
4 > integrate(function(x) sin(x)^2, 0, 600) 2. Wybrane funkcje statystyczne 2.1 Liczbowe statystyki opisowe -Załącz dane z poprzednich zajęć (dane.csv), celem przetestowania wybranych funkcji: dane read.csv( sep = ; ) attach(dane) - Wybrane funkcje: > range(wiek) > median(wiek) > cor(dane [,c(1,6,7)]) > IQR(wiek) > kurtosis(wiek) > mean(wiek) > mad(wiek) > mean(wiek, trim=0.2) > quantile(wiek, c(0.1, 0.25, 0.5, 0.75, 0.9)) > geometric.mean(wiek) > sd(wiek) > harmonic.mean(wiek) > skewness(wiek) Opis powyżej zastosowanych funkcji: - max(base) - wartość maksymalna w próbie - min(base) wartość minimalna w próbie - mean(stats) - średnia arytmetyczna. Nieobowiązkowym argumentem tej funkcji jest trim. Jeżeli wartość tego argumentu jest różna od zera, to wyznaczona średnia jest ucięta (Windsordzka). Średnią uciętą wyznacza się jak arytmetyczną, po usunięciu 200% * trim skrajnych obserwacji. - weighted.mean(stats) - średnia ważona. Drugim argumentem funkcji jest wektor wag. - geometric.mean(psych) - średnia geometryczna - harmonic.mean(psych) - średnia harmoniczna - median(stats) - mediana (wartość środkowa) - quantile(stats) - kwantyl wybranego rzędu. Drugim argumentem funkcji quantile() jest wektor kwantyli do wyznaczenia. W tej funkcji zaimplementowano 9 różnych algorytmów do wyznaczenia kwantyli w różny sposób obsługujących sytuację, gdy wartość kwantyla wypada między obserwacjami. Metodę wyznaczania kwantyli określa się argumentem type. - range (base) - przedział zmienności próby. - IQR(stats) - rozstęp międzykwartylowy, czyli różnica między górnym, a dolnym kwartylem. - var(stats) - wariancja w próbie. Wyznaczony jest nieobciążony stymulator wariancji. Jeżeli podane zostaną dwa wektory o różnej długości, to funkcja var() wyznaczy kowariancję pomiędzy tymi wektorami. - ad(stats) - odchylenie standardowe. - cor(stats), cov(stats) - macierz korelacji kowariancji. Argumentami może być para wektorów lub macierz. Dla macierzy korelacje i kowariancje wyznaczone będą dla wszystkich par kolumn. - mad(stats) - medianowe odchylenie bezwzględne.
5 - ad(stats)/mean(stats) - współczynnik zmienności CV, czyli odchylenie standardowe podzielone przez średnią z próby. - length(base) - liczba elementów w próbie. - kurtosis(e1071) - kurtoza miara koncentracji (spłaszczenia). Rozkład normalny ma kurtozę równą 0. - skewness(e1071) - skośność, miara symetryczności. Rozkład symetryczny ma skośność = 0. - moda(drop) - moda lub dominanta, czyli wartość występująca najczęściej w próbie. Podsumowanie wartości wektora, macierzy lub ramki danych używając funkcji summary(). Funkcja ta wyświetla proste podsumowanie wektora obserwacji: - w przypadku zmiennej jakościowej, występującej na kilku poziomach, pokaże liczebność obserwacji w każdym z możliwych poziomów, - w przypadku zmiennej ilościowej, pokaże wektor z wartościami: min, max, mediany, kwartyli pierwszego i trzeciego: > summary(wyksztalcenie) > summary(wiek) - Tablice kontyngencji, czyli funkcja table(base) Ta funkcja wyznacza tablice kontyngencji jednej lub większej liczby zmiennych wyliczeniowych. Poza funkcją table, można wykorzystać xtabs() lub ftable() > table(wykształcenie, praca) 2.2 Graficzne statystyki opisowe - Histogram, funkcja (hist) pojawiła się na wcześniejszych zajęciach. Histogram przedstawia liczebności obiektów w poszczególnych przedziałach danej zmiennej. Innymi słowy, obiekt klasy histogram przechowuje informacje o wyznaczonych liczebnościach i częstościach. Poniżej, dwa przykładowe wywołania funkcji hist(): > hist(wiek, 5, main = "Histogram zmiennej wiek", ylab = "liczebnosci") > rug(wiek, side = 1, ticksize = 0.03, col = "red") > h = hist(wiek, 20, main = "Histogram zmiennej wiek", ylab = "liczebnosci") > rug(jitter(wiek, factor = 2), side = 1, ticksize = 0.03, col = "red") > str(h) - Wykres pudełkowy, boxplot(graphics). Jest to popularna metoda prezentacji zmienności pojedynczej zmiennej. Jednak można go wyznaczyć dla kilku zmiennych, co pozwala na porównywanie rozkładów zmiennych. Boxplot rysuje tzw. pudełko z wąsami za odstające uznaje się te obserwacje, które odstają od pudełka. Dodatkowo, jako argument można podać wektor wartości lub listę wektorów wartości. - Jeżeli argumentem będzie jeden wektor to narysowane będzie jedno pudełko. - Jeżeli argumentem będzie klika wektorów liczb to narysowanych będzie kilka pudełek.
6 - Jeżeli argumentem będzie formuła opisująca zależność między zmienną ilościową a zmienną jakościową, to narysowane będzie pudełko dla każdego poziomu zmiennej jakościowej. Boxplot 1 zmiennej i chmura punktów, przedstawiająca obserwacje: > boxplot(wiek) > tmpx = jitter(rep(1.3,length(wiek)), factor = 3) > points(tmpx, wiek, pch=16, col="black") > points(tmpx, wiek, pch=16, col = "lightgrey", cex=0.5) Boxplot 2 zmiennych (rozbicie na podpopulacje): > boxplot(wiek ~ wyksztalcenie, data = dane, col = "lightgrey") > table(wyksztalcenie, wiek) - Wykres rozrzutu, scatterplot() / sp(). Wykres rozproszenia, pozwala na przedstawienie zależności pomiędzy parą zmiennych. Do wykresu rozrzutu można dorysować prostą regresji liniowej, krzywą regresji nieparametrycznej. Wykres rozrzutu pozwala zaobserwować zależności pomiędzy badanymi zmiennymi, można zaobserwować czy ta zależność jest taka sama czy różna w podpopulacjach. >library(car) >sp(cisnienie.skurczowe, cisnienie.rozkurczowe, gropus=plec, smooth=f, lwd=3, pch=c(20,21), cex=1.5) >sp(cisnienie.skurczowe, cisnienie.rozkurczowe, smooth=f, reg.line=f) Proszę zajrzeć na stronę: - Rozkłady zmiennych losowych (jednowymiarowych). Nazewnictwo funkcji związanych ze zmiennymi losowymi jest zestandaryzowane. Nazwy funkcji składają z dwóch członów: [prefix] [nazwa.rodziny.rozkładów]() > runif(5) # losujemy 5 liczb z rozkładu jednostajnego > punif(0.5) # wyznaczamy wartość dystrybuanty w punkcie 0.5 > dunif(0.5) # wyznaczamy wartość gęstości rozkładu w punkcie 0.5 > qunif(0.1) # Wyznaczamy wartość kwantyla rzędu 0.1 Suffix - nazwa.rodziny.rozkładów określa jakiej rodziny rozkładów dana funkcja dotyczy. Prefix oznaczony przez jedną z liter: r, p, d, q. r random rozpoczyna nazwę funkcji generatora liczb losowych. Funkcja taka generuje próbę o liczebności n. p probability - rozpoczyna nazwę funkcji wyznaczającej wartości dystrybuanty danego rozkładu w punktach określony przez wektor x. d density - rozpoczyna nazwę funkcji wyznaczającej gęstości dla rozkładów ciągłych lub prawdopodobieństwa dla rozkładów dyskretnych danego rozkładu w punktach określony przez wektor x.
7 q quantile - rozpoczyna nazwę funkcji wyznaczającej wartości kwantyli danego rozkładu w punktach q. - Rozkład normalny / rozkład Gaussa: Wybieramy punkty, w których wyznaczamy gęstość i dystrybuantę: > x <- seq(-4,4, by=0.1) > plot(x, dnorm(x), type="l", lwd=3, cex.axis=1.5, cex.lab=1.5) Narysowanie dystrybuanty wymaga użycia innej osi OY, dlatego zmieniamy współrzędne w wyświetlanym oknie graficznym. Oś Y przyjmie wartości od do 1.04, po utworzeniu nowego układu, dorysowujemy dystrybuantę: > par(usr=c(-4,4,-0.04,1.04)) > lines(x, pnorm(x), lty=2, lwd=3, cex.axis=1.5, cex.lab=1.5) Dodajemy oś OY po prawej stronie > axis(side=4, cex.axis=1.5, cex.lab=1.5) > mtext(side=4, "pnorm()", line=2.5, cex.axis=1.5, cex=1.5) Funkcje z pakietu stats do generowania liczb i wyznaczania charakterystyk rozkładu normalnego to pnorm(), dnorm(), qnorm(), rnorm(). Proszę zapoznać się w wymienionymi funkcjami, zobaczyć w helpie ich deklaracje. > dnorm(-1:1,,mean=0, sd=1) wartości gęstości rozkładu normalnego w punktach -1, 0, 1. > qnorm(c(0.001, 0.025, 0.05, 0.5, 0.95, 0.975, 0.999)) - najpopularniejsze kwantyle rozkładu normalnego Powyższe funkcje można wykorzystać np. do wylosowania liczb (10) z rozkładu normalnego o zadanej średniej (2) i odchyleniu standardowym (1): > rnorm(10, mean=2, sd=1) co więcej, zarówna średnia jak i odchylenie mogą być wektorami > rnorm(10, mean=1:10, sd=1:10) Testowanie zgodności z rozkładem normalnym: Jest wiele testów, a wybór testu zależy od tego jakich odstępstw od normalności można się spodziewać lub tego przed jakimi odstępstwami chcemy się uchronić. Losujemy próbkę z rozkładu normalnego o parametrach 10 i 1.4, a następnie wykonujemy test Cramera-von Misesa (wymagany pakiet: nortest): > x <- rnorm(100, 10, 1.4) > cvm.test(x) > (pvalue <- cvm.test(x)$p.value) Do wizualnej oceny normalności można wykorzystać wykres kwantylowy dla rozkładu normalnego. Jeżeli obserwacje pochodzą z rozkładu normalnego to punkty układają się wzdłuż linii prostej (aby narysować linię trzeba wykorzystać funkcję qqline()) > y <- rnorm(100) > qqnorm(y) > qqline(y, col = "red") > qqplot(y) lub > qq.plot(y)
8 - Wstępne przetwarzanie danych: Często dane nie nadają się do bezpośredniego wykorzystania i zastosowania analiz statystycznych. Dane wymagają wstępnego przetwarzania. - Wybrane metody do radzenia sobie z brakującymi obserwacjami: Brakujące dane oznacza się NA, można wykorzystać funkcję is.na(). Chcąc usunąć brakujące dane z wektora, należy użyć funkcji na.omit() Natomiast chcąc usunąć brakujące dane z ramki, należy użyć funkcji complete.cases(). > w <- c(1,5,na,2,3,na,8,10,na,0,10,na) > is.na(w) # sprawdz czy są brakując dane > sum(is.na(w)) # suma brakujących danych > w <- na.omit(w) # usuń brakujące dane Usuwanie brakujących danych to najprostsze rozwiązanie, jednak nie jest najlepsze. Redukcja danych prowadzi do pogorszenia właściwości procedur statystycznych itp. Lepszym rozwiązaniem od usuwania jest wstawienie sztucznych pomiarów. Najczęściej wstawia się średnią, medianę. Jeszcze innym, lepszym rozwiązaniem, jest dopasowanie modelu regresji na zbiorze kompletnych danych. Wstawiając w miejsca brakujące wartości wyznaczone z modelu regresji. Zainstaluj pakiet Hmisc aby imputować wartości w miejsca brakujących obserwacji. > w2 <- c(1,5,na,2,3,na,8,10,na,0,10,na) > impute(w2, 3.5) # imputuj wartość 2.5 w miejsca NA > impute(w2, mean) # imputuj średnią > impute(w2, "random") # imputuj randomowe wartości - Wybrane metody do wstępnej transformacji zmiennych: Najprostszą transformacją jest skalowanie, które polega na odjęciu od każdej obserwacji wartości średniej z próby i podzielenie tej różnicy przez odchylenie standardowe z próby. Transformacja może poprawiać wyniki. Aby wykonać skalowanie należy użyć funkcji scale(). Aby zdecydować czy dane mają być centrowane, trzeb ustawić parametr center=true co oznacza, że będzie odejmowana wartość średnia. Jeśli dane mają być skalowane, to parametr scale=true, co oznacza, że dane będą dzielone przez odchylenie standardowe. Wyznaczanie macierzy kowariancji dla 3 wybranych kolumn z danych dane.csv (załadowane na początku): > cov(dane[,c(1,6,7)]) Kowariancja danych znormalizowanych: > cov(scale(dane[,c(1,6,7)])) Wyznaczenie odchylenia standardowego dla wybranych kolumn; dzielimy wartości w kolumnach przez odchylenie standardowe. Do normalizacji można także wykorzystać funkcje sweep() i apply(): > wektor.sd <- apply(dane[,c(1,6,7)], 2, sd) > sweep(dane[,c(1,6,7)], 2, FUN="/",wektor.sd)
9 Powyższe instrukcje można zastąpić jednym wywołaniem: > apply(dane[,c(1,6,7)], 2, function(x) x/sd(x)) 2.3 Wprowadzenie do analizy wariancji - Analiza jednoczynnikowa: - Analiza dwuczynnikowa: Zadanie: Zadania pod koniec zajęć prześlij na maila (Kaja.Chmielewska@cs.put.poznan.pl). Proszę nadać tytuł maila zgodnie z opisem: RPiS_Imię_Nazwisko_lab7 1. Znajdź miejsca zerowe wielomianu x3 3x2 x + 3. Znajdź najmniejszy wspólny dzielnik tego wielomianu i x3 12x2 x Wróć do punktu 1.1. Wielomiany i narysuj ponownie wykres dla wielomian4, Następnie w pętli dorysuj pozostałe wielomiany. 3. Wróć do punktu 1.3 Maksimum, minimum i zero i zamiast funkcji optimize() użyj funkcji uniroot(), jaka jest różnica? 4. Napisz funkcję, która dla zadanego wektora liczb wyliczy średnią, wariancję, skośność i kurtozę. 5. W zbiorze danych (), znajduje się zmienna liczbowa Wiek i czynnikowa Receptory.estrogenowe. Narysuj wykres pudełkowy dla zmiennej Wiek w rozbiciu na zmienną Receptory.estrogenowe. Wykorzystaj funkcję vioplot, dzięki której narysujesz wykres skrzypcowy dla zmiennej Wiek w rozbiciu na poziomy zmiennej Niepowodzenia.
1.1 Wielomiany: Pakiet polynom zawiera funkcje do tworzenia i operowania na wielomianach.
Rachunek Prawdopodobieństwa i Statystyka lab 6. Kaja Gutowska (Kaja.Gutowska@cs.put.poznan.pl) R umożliwia używanie wielu wyspecjalizowanych, mniej lub bardziej popularnych funkcji matematycznych i statystycznych.
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
> x <-seq(-2*pi, 2*pi, by=0.5) > plot(x, sin(x), type="b",main="wykres funkcji sin(x) i cos(x)", col="blue") > lines(x, cos(x), type="l",col="red")
Rachunek Prawdopodobieństwa i Statystyka lab 4. Kaja Gutowska (Kaja.Gutowska@cs.put.poznan.pl) 1. Wprowadzenie do grafiki: - Program R ma szerokie możliwości w zakresie graficznego prezentowania danych.
STATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno
STATYSTYKA POWTORZENIE Dr Wioleta Drobik-Czwarno Populacja Próba Parametry EX, µ Statystyki średnia D 2 X, δ 2 S 2 wnioskowanie DX, δ p ρ S w r...... JAK POWSTAJE MODEL MATEMATYCZNY Dane eksperymentalne
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe
Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Laboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
W1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.
Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze
Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska
Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Generowanie ciągów pseudolosowych o zadanych rozkładach wstęp do projektu
Generowanie ciągów pseudolosowych o zadanych rozkładach wstęp do projektu Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Statystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych
PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy
Statystyczne metody analizy danych
Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Statystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Eksploracja Danych. Testowanie Hipotez. (c) Marcin Sydow
Testowanie Hipotez Wprowadzenie Testy statystyczne: pocz. XVII wieku (prace J.Arbuthnotta, liczba urodzeń noworodków obu płci w Londynie) Testowanie hipotez: Karl Pearson (pocz. XX w., testowanie zgodności,
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Inteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia
Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Statystyka opisowa- cd.
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,
Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Statystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby:
Laboratorium nr 1 CZĘŚĆ I : STATYSTYKA OPISOWA : 1. Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: 6,9,1,2,5,2,6,2,1,0,1,4,5,6,3,7,3,2,2,3,8,5,3,4,8,0,8,0,5,1,6,4,8,0,3,2
1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest
Analiza Statystyczna
Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
Pozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Instrukcja do przeprowadzenia prostej analizy statystycznej w środowisku R
Instrukcja do przeprowadzenia prostej analizy statystycznej w środowisku R Spis treści Instrukcja do przeprowadzenia prostej analizy statystycznej w środowisku R... 1 Wstęp... 2 Część I... 2 Instalacja
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.
Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą
MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy
MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji
Parametry statystyczne
I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
Zmienne zależne i niezależne
Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw
Cwiczenie 3 - Rozkłady empiryczne i. teoretyczne
Cwiczenie 3 - Rozkłady empiryczne i teoretyczne Michał Marosz 31 października 2015 1 Spis treści Rozkład empiryczny i dystrybuanta empiryczna 6 Estymacja parametrów rozkładów teoretycznych 8 Zmienne dyskretne
Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22
Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach
OPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Metody opracowania obserwacji 2 Kod modułu 04-A-MOO-60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Instalacja Pakietu R
Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego: Download R for Windows opcja: install R for the first time opcja: Download R 3.3.3 for Windows uruchomienie R-3.3.3-win MAGDA
Statystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
Zmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
W4 Eksperyment niezawodnościowy
W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i
Wykład 7 Testowanie zgodności z rozkładem normalnym
Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Wykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Elementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Podstawy statystyki matematycznej w programie R
Podstawy statystyki matematycznej w programie R Piotr Ćwiakowski Wydział Fizyki Uniwersytetu Warszawskiego Zajęcia 1. Wprowadzenie 1 marca 2017 r. Program R Wprowadzenie do R i badań statystycznych podstawowe
Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu
Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:
Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:
Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,
Z poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X