Algorytmy kombinatoryczne w bioinformatyce
|
|
- Kazimiera Zając
- 6 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy kombinatoryczne w bioinformatyce wykład 2: sekwencjonowanie cz. 1 prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Poznawanie sekwencji genomowej Poznawanie sekwencji genomów na trzech poziomach mapowanie asemblacja AATAGCCTAGATGTGCATTAT sekwencjonowanie 2
2 Sekwencjonowanie Sekwencjonowanie DNA jest procesem wyznaczania sekwencji nukleotydów pewnego fragmentu DNA. Fragmenty, w zależności od metody, osiągają długość od kilkudziesięciu do tysiąca nukleotydów Metody laboratoryjne sekwencjonowania na żelu nie wymagają metod obliczeniowych, są za to nieodporne na błędy eksperymentalne (SBH) korzysta z wyników eksperymentu hybrydyzacyjnego, czyli zbioru oligonukleotydów (spektrum) wchodzących (przeważnie) w skład badanego fragmentu DNA. Długość badanego fragmentu można zmierzyć w procesie elektroforezy. Zazwyczaj żadne dodatkowe informacje o elementach spektrum (np. typowanie błędów, częściowy porządek) nie są dostępne 3 SBH z biblioteką oligonukleotydów o stałej długości mikromacierz AAAA AACA AAAC AACC AAAG AACG AAAT AACT ACAA AGCCTAGTTGGACATTAT AACC 4
3 badana sekwencja: CCGACGT długość oligonukleotydów: 3 spektrum bez błędów: {ACG, CCG, CGA, CGT, GAC} Rozwiązanie: CCGACGT CCG CGA GAC ACG CGT 5 Błędy eksperymentu hybrydyzacyjnego: Błąd negatywny gdy oligonukleotyd obecny w sekwencji nie zostanie wykryty (a) oligonukleotyd występuje więcej niż raz w badanej sekwencji (b) oligonukleotyd komplementarny na skutek nieoptymalnych warunków eksperymentu nie połączy się z badaną sekwencją Błąd pozytywny gdy zostanie wskazany oligonukleotyd nieobecny w sekwencji (c) oligonukleotyd niezupełnie komplementarny połączy się z badaną sekwencją (d) zaszumiony obraz fluorescencyjny mikromacierzy Spektrum zazwyczaj zawiera oba rodzaje błędów 6
4 Przykłady błędów eksperymentu hybrydyzacyjnego sekwencja spektrum (a) TTACATTA {ACA,ATT,CAT,TAC,TTA} (b) TTACATTC {ACA,ATT,TAC,TTA,TTC} (c) TTACAT {ACA,CAT,TAC,TTA,TTT} (d) TTACAT {ACA,CAT,GAG,TAC,TTA} 7 badana sekwencja: CCGACGT długość oligonukleotydów: 3 spektrum bez błędów: {ACG, CCG, CGA, CGT, GAC} błąd negatywny: CGA błędy pozytywne: AAT,TTG spektrum z błędami: {AAT, ACG, CCG, CGT, GAC, TTG} Rozwiązanie: CCGACGT CCG GAC ACG CGT 8
5 Sformułowanie problemu klasycznego sekwencjonowania DNA przez hybrydyzację z błędami wersja optymalizacyjna Instancja: Zbiór oligonukleotydów o jednakowej długości l, długość sekwencji oryginalnej n. Odpowiedź: Sekwencja o długości n zawierająca maksymalną liczbę oligonukleotydów ze zbioru. Problem sekwencjonowania jest silnie NP-trudny, nawet po ograniczeniu błędów do tylko negatywnych lub tylko pozytywnych Nawet przy założeniu wiedzy o istnieniu unikalnego rozwiązania w instancji oba podproblemy pozostają trudne obliczeniowo 9 Prezentowane modele opisują warianty klasycznego problemu sekwencjonowania przez hybrydyzację, z założeniem braku błędów lub obecności błędów w instancji Wspólnym celem omawianych podejść jest znalezienie ścieżki w grafie skierowanym zbudowanym na podstawie instancji Etykiety przypisane wierzchołkom pozwalają jednoznacznie przekształcić ścieżkę w grafie na sekwencję nukleotydów 10
6 [W. Bains i G.C. Smith, J. Theor. Biol. 135 (1988)] Pierwszy algorytm rekonstruujący sekwencję oryginalną na podstawie spektrum Założenie o braku błędów w instancji Konstrukcja drzewa, w którym oligonukleotydy odpowiadają wierzchołkom (przeszukiwanie z nawrotami) ACTCTGG, S = {ACT, CTC, CTG, TCT, TGG} ACT CTG TGG CTC TCT CTG TGG 11 [Y.P. Lysov i in., Doklady Akademii Nauk SSSR 303 (1988)] Pierwszy algorytm odwołujący się do znanego problemu z teorii grafów Założenie o braku błędów w instancji Poszukiwanie ścieżki Hamiltona w grafie skierowanym, w którym oligonukleotydy odpowiadają wierzchołkom ACTCTGG, S = {ACT, CTC, CTG, TCT, TGG} ACT CTG TGG CTC TCT 12
7 [P.A. Pevzner, J. Biomol. Struct. Dyn. 7 (1989)] Pierwszy algorytm rozwiązujący problem sekwencjonowania bez błędów w instancji w czasie wielomianowym Poszukiwanie ścieżki Eulera w grafie skierowanym, w którym oligonukleotydy odpowiadają łukom ACTCTGG, S = {ACT, CTC, CTG, TCT, TGG} AC CT TC TG GG 13 [J. Błażewicz i in., Discrete Appl. Math. 98 (1999)] Pevzner w swoim artykule nie wyjaśnił, dlaczego możliwa była transformacja grafu, w którym poszukiwana jest ścieżka Hamiltona (problem w ogólności silnie NP-trudny) w graf, w którym poszukiwana jest ścieżka Eulera (problem obliczeniowo łatwy) Grafy z metody Lysova i in. (tzw. grafy DNA) należą do klasy grafów liniowych (krawędziowych) skierowanych, dla których problem poszukiwania ścieżki Hamiltona rozwiązywany jest w czasie wielomianowym. Ich grafami oryginalnymi są grafy z metody Pevznera Wierzchołki grafu liniowego G=(V,A) reprezentują łuki grafu oryginalnego H=(U,V), łuki w G łączą wierzchołek x z y jeśli w H koniec łuku x pokrywa się z początkiem łuku y 14
8 Zadanie Dla następującego spektrum bez błędów: S = {AGTA, AGTG, GTAC, GTAG, GTGT, TACC, TAGT, TGTA} należy skonstruować grafy metodami Lysova i in. oraz Pevznera, znaleźć w nich odpowiednie ścieżki reprezentujące rozwiązania i odczytać możliwe sekwencje wynikowe. Przeprowadzić transformację grafu liniowego z metody Lysova i in. do jego grafu oryginalnego. 15 [P.A. Pevzner, J. Biomol. Struct. Dyn. 7 (1989)] Założenie o obecności błędów negatywnych w instancji Algorytm heurystyczny wielomianowy Poszukiwanie brakujących oligonukleotydów jako przepływu o wartości m 1 i minimalnym koszcie w sieci opartej na grafie dwudzielnym K m,m ACTCTGG, S = {ACT, CTC, TCT, TGG} AC CT TC s CT AC t TG GG GG 2 TG 16
9 [P.A. Pevzner, J. Biomol. Struct. Dyn. 7 (1989)] cd. Niepowodzenie, gdy przepływ o minimalnym koszcie okaże się mieć koszt inny niż liczba brakujących oligonukleotydów Niepowodzenie, gdy uzupełniony graf okaże się niespójny Ewentualne niepowodzenie, gdy wierzchołek z brakującymi incydentnymi łukami nie zostanie wstawiony do grafu dwudzielnego Zadanie Dla następującego spektrum z błędami negatywnymi: S = {AGTA, AGTG, GTAG, GTGT, TACC, TGTA} należy skonstruować rozwiązanie metodą Pevznera. 17 [J. Błażewicz i in., J. Comput. Biol. 6 (1999)] Pierwszy algorytm rozwiązujący problem z dowolnymi błędami negatywnymi i pozytywnymi w instancji Sformułowanie wariantu problemu selektywnego komiwojażera w grafie skierowanym pełnym ACTCTGG, S = {ACT, CTC, GCC, TCT, TGG} GCC GCC maks. zysk koszt n l CTC TCT CTC TCT ACT TGG ACT TGG 18
prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Poznawanie sekwencji genomowej
Bioinformatyka wykład 2: sekwencjonowanie cz. 1 prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Poznawanie sekwencji genomowej Poznawanie sekwencji genomów na trzech poziomach
Grafy i sieci wybrane zagadnienia wykład 2: modele służące rekonstrukcji sekwencji
Grafy i sieci wybrane zagadnienia wykład 2: modele służące rekonstrukcji sekwencji prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Plan wykładu. Modele grafowe problemu sekwencjonowania
Plan wykładów. A. Świercz ANALIZA DANYCH WYSOKOPRZEPUSTOWYCH 2
ALEKSANDRA ŚWIERCZ Plan wykładów Wprowadzenie do różnych metod sekwencjonowania Resekwencjonowanie mapowanie do genomu referencyjnego Sekwencjonowanie de novo asemblacja Różnica w ekspresji genów, alternatywny
Wersja pliku: v.10, 13 kwietnia 2019 zmiany: dodany punkt na temat testów do sprawozdania. Biologia, bioinformatyka:
Wersja pliku: v.10, 13 kwietnia 2019 zmiany: - 13.04 dodany punkt na temat testów do sprawozdania Biologia, bioinformatyka: 1. DNA kwas deoksyrybonukleinowy. Zbudowany z 4 rodzajów nukleotydów: adeniny,
Marta Kasprzak 1,2, Aleksandra Świercz 1,2
Tom 58 2009 Numer 1 2 (282 283) Strony 17 28 Marta Kasprzak 1,2, Aleksandra Świercz 1,2 1 Instytut Informatyki, Politechnika Poznańska Piotrowo 2, 60-965 Poznań 2 Instytut Chemii Bioorganicznej PAN Noskowskiego
PROBLEM: SEKWENCJONOWANIE DNA METODA: ALGORYTMY GRAFOWE
F : PROBLEM: SEKWENCJONOWANIE DNA METODA: ALGORYTMY GRAFOWE I. Grafy i genetyka II. Sekwencjonowanie DNA III. Macierze DNA IV. Sekwencjonowanie przez hybrydyzacje DNA V. Sekwencjonowanie i identyfikacja
Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska
Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia
prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Dopasowanie sekwencji
Bioinformatyka wykład 5: dopasowanie sekwencji prof. dr hab. inż. Marta Kasprzak Instytut Informatyk Politechnika Poznańska Dopasowanie sekwencji Badanie podobieństwa sekwencji stanowi podstawę wielu gałęzi
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
Zastosowanie metod opartych na teorii grafów do rozwiązywania wybranych problemów analizy sekwencji nukleotydowych i aminokwasowych
POLITECHNIKA POZNAŃSKA Wydział Informatyki Instytut Informatyki Zastosowanie metod opartych na teorii grafów do rozwiązywania wybranych problemów analizy sekwencji nukleotydowych i aminokwasowych Tomasz
Grafy etykietowalne i sieci Petriego w analizie procesów biochemicznych i biologicznych
POLITECHNIKA POZNAŃSKA Wydział Informatyki Instytut Informatyki Grafy etykietowalne i sieci Petriego w analizie procesów biochemicznych i biologicznych Adam Kozak Rozprawa doktorska Promotor: dr hab. inż.
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Kombinatoryczne aspekty nieklasycznego sekwencjonowania DNA przez hybrydyzację
POLITECHNIKA POZNAŃSKA Wydział Informatyki Instytut Informatyki Kombinatoryczne aspekty nieklasycznego sekwencjonowania DNA przez hybrydyzację Marcin Radom Rozprawa doktorska Promotor: dr hab. inż. Piotr
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2012 ALGORYTM SEKWENCJONOWANIA DNA PRZY UŻYCIU CHIPU BINAR- NEGO DLA WSZYSTKICH TYPÓW BŁEDÓW HYBRYDYZACJI
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2012 Marcin RADOM, Piotr FORMANOWICZ Politechnika Poznańska ALGORYTM SEKWENCJONOWANIA DNA PRZY UŻYCIU CHIPU BINAR- NEGO DLA WSZYSTKICH TYPÓW BŁEDÓW HYBRYDYZACJI Streszczenie.
Modele grafowe i algorytmy dla klasycznego problemu sekwencjonowania DNA przez hybrydyzację oraz dla jego odmiany z informacją o powtórzeniach
Politechnika Poznańska Wydział Informatyki Instytut Informatyki Streszczenie rozprawy doktorskiej Modele grafowe i algorytmy dla klasycznego problemu sekwencjonowania DNA przez hybrydyzację oraz dla jego
Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?
DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Algorytmy kombinatoryczne w bioinformatyce
lgorytmy kombinatoryczne w bioinformatyce wykład 4: dopasowanie sekwencj poszukiwanie motywów prof. dr hab. inż. Marta Kasprzak Instytut Informatyk Politechnika Poznańska Dopasowanie sekwencji Badanie
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Matematyka dyskretna
Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),
Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów
Teoria grafów dla małolatów
Teoria grafów dla małolatów Andrzej P.Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka w szkole podstawowej kojarzy się przede wszystkim z arytmetyką, ale współcześni matematycy rzadko
Załącznik 2a: Autoreferat
Załącznik 2a: Autoreferat [1] Imię i nazwisko Aleksandra Świercz [2] Posiadane stopnie i tytuły naukowe 1. Tytuł inżyniera informatyki uzyskany w 2000 roku na Wydziale Elektrycznym Politechniki Poznańskiej
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Zaawansowane programowanie
Zaawansowane programowanie wykład 3: inne heurystyki prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Heurystyką nazywamy algorytm (metodę) zwracający rozwiązanie przybliżone.
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z zagadnień dotyczących analizy i syntezy algorytmów z uwzględnieniem efektywności
Suma dwóch grafów. Zespolenie dwóch grafów
Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie
Algorytmy kombinatoryczne w bioinformatyce
lgorytmy kombinatoryczne w bioinformatyce wykład 4: dopasowanie sekwencj poszukiwanie motywów prof. dr hab. inż. Marta Kasprzak Instytut Informatyk Politechnika Poznańska Dopasowanie sekwencji Badanie
KURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy
Kombinatoryczna analiza widm 2D-NOESY w spektroskopii Magnetycznego Rezonansu Jądrowego cząsteczek RNA. Marta Szachniuk
Kombinatoryczna analiza widm 2D-NOESY w spektroskopii Magnetycznego Rezonansu Jądrowego cząsteczek RNA Marta Szachniuk Plan prezentacji Wprowadzenie do tematyki badań Teoretyczny model problemu Złożoność
Zastosowanie metod opartych na teorii grafów do rozwiązywania wybranych problemów analizy sekwencji nukleotydowych i aminokwasowych
POLITECHNIKA POZNAŃSKA Wydział Informatyki Instytut Informatyki Zastosowanie metod opartych na teorii grafów do rozwiązywania wybranych problemów analizy sekwencji nukleotydowych i aminokwasowych Tomasz
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Reswkwencjonowanie vs asemblacja de novo
ALEKSANDRA ŚWIERCZ Reswkwencjonowanie vs asemblacja de novo Resekwencjonowanie to odtworzenie badanej sekwencji poprzez mapowanie odczytów do genomu/transkryptomu referencyjnego (tego samego gatunku lub
Wykład 10 Grafy, algorytmy grafowe
. Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s
Złożoność obliczeniowa klasycznych problemów grafowych
Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.
Algorytmika Problemów Trudnych
Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.
Matematyka dyskretna - 5.Grafy.
Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
G. Wybrane elementy teorii grafów
Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie
Opracowanie prof. J. Domsta 1
Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu
Grafy i sieci wybrane zagadnienia wykład 3: modele służące porównywaniu sieci
Grafy i sieci wybrane zagadnienia wykład 3: modele służące porównywaniu sieci prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Plan wykładu 1. Sieci jako modele interakcji
Algorytmy kombinatoryczne w bioinformatyce
lgorytmy kombinatoryczne w bioinformatyce wykład 7: drzewa filogenetyczne prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska rzewa filogenetyczne rzewa filogenetyczne odzwierciedlają
BIOINFORMATYKA I JEJ PERSPEKTYWY
prof. dr hab. inż. Jacek Błażewicz Instytut Informatyki, Politechnika Poznańska 1. Wstęp BIOINFORMATYKA I JEJ PERSPEKTYWY Bioinformatyka jest jedną z najmłodszych nauk, której burzliwy rozwój został wymuszony
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Wyznaczanie optymalnej trasy problem komiwojażera
Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji
a) 7 b) 19 c) 21 d) 34
Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
Przybliżone algorytmy analizy ekspresji genów.
Przybliżone algorytmy analizy ekspresji genów. Opracowanie i implementacja algorytmu analizy danych uzyskanych z eksperymentu biologicznego. 20.06.04 Seminarium - SKISR 1 Wstęp. Dane wejściowe dla programu
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2
Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: ALGORYTMY I STRUKTURY DANYCH 2 3. Karta przedmiotu ważna od roku akademickiego:
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100
Wstęp. Jak programować w DNA? Idea oraz przykład. Problem FSAT charakterystyka i rozwiązanie za pomocą DNA. Jak w ogólności rozwiązywać problemy
Ariel Zakrzewski Wstęp. Jak programować w DNA? Idea oraz przykład. Problem FSAT charakterystyka i rozwiązanie za pomocą DNA. Jak w ogólności rozwiązywać problemy matematyczne z użyciem DNA? Gdzie są problemy?
Grafy i sieci w informatyce - opis przedmiotu
Grafy i sieci w informatyce - opis przedmiotu Informacje ogólne Nazwa przedmiotu Grafy i sieci w informatyce Kod przedmiotu 11.9-WI-INFD-GiSwI Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych...
Przedmowa... XI Część pierwsza Wprowadzenie i biologiczne bazy danych 1 Wprowadzenie... 3 Czym jest bioinformatyka?... 5 Cele... 5 Zakres zainteresowań... 6 Zastosowania... 7 Ograniczenia... 8 Przyszłe
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas
Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona
Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie
Harmonogramowanie przedsięwzięć
Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: MATEMATYKA DYSKRETNA Discrete mathematics Forma studiów: Stacjonarne Poziom kwalifikacji: Kod przedmiotu: A_06 Rok: I obowiązkowy w ramach treści
Teoria obliczeń i złożoność obliczeniowa
Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
PODSTAWY BIOINFORMATYKI
PODSTAWY BIOINFORMATYKI Dr hab. Marcin Filipecki Katedra Genetyki, Hodowli i Biotechnologii Roślin - SGGW Bioinformatyka to wykorzystanie technologii komputerowych w celu zrozumienia i efektywnego wykorzystania
Wykład 4. Droga i cykl Eulera i Hamiltona
Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką
Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa
Elementy teorii grafów Elementy teorii grafów
Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę
Wykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej
LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 opracował:
Przykłady problemów optymalizacyjnych
Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów
Grafy etykietowalne i sieci Petriego w analizie procesów biochemicznych i biologicznych
POLITECHNIKA POZNAŃSKA Wydział Informatyki Instytut Informatyki Grafy etykietowalne i sieci Petriego w analizie procesów biochemicznych i biologicznych Adam Kozak Streszczenie rozprawy doktorskiej Promotor:
LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne
Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing
Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing Wykład 7 Etapy analizy NGS Dr Wioleta Drobik-Czwarno Etapy analizy NGS Kontrola jakości surowych danych (format fastq) Jakość odczytów,
Spis treści. Przedmowa. Wprowadzenie 0.1 Czym jest matematyka dyskretna?... XIII 0.2 Podstawowa literatura... XIV
Spis treści Przedmowa XI Wprowadzenie XIII 0.1 Czym jest matematyka dyskretna?............... XIII 0.2 Podstawowa literatura...................... XIV 1 Rekurencja 1 1.1 Wieże Hanoi...........................
Lista 6 Problemy NP-zupełne
1 Wprowadzenie Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 6 Problemy NP-zupełne Problem abstrakcyjny Q jest to relacja dwuargumentowa
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań
Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań dopuszczalnych. NP-optymalizacyjny problem Π składa się: zbioru instancji D Π rozpoznawalnego
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
6a. Grafy eulerowskie i hamiltonowskie
6a. Grafy eulerowskie i hamiltonowskie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny6a. w Krakowie) Grafy eulerowskie i hamiltonowskie
Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing
Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing Wykład 7 Etapy analizy NGS Dr Wioleta Drobik-Czwarno Etapy analizy NGS Kontrola jakości surowych danych (format fastq) Jakość odczytów,
Teoretyczne podstawy algorytmów grafowych
Teoretyczne podstawy algorytmów grafowych Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
Programowanie sieciowe. Tadeusz Trzaskalik
Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście
Podstawowe własności grafów. Wykład 3. Własności grafów
Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
E ' E G nazywamy krawędziowym zbiorem
Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie
Przykład planowania sieci publicznego transportu zbiorowego
TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie
Sprawozdanie do zadania numer 2
Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach
ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Ogólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,