Przybliżone algorytmy analizy ekspresji genów.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przybliżone algorytmy analizy ekspresji genów."

Transkrypt

1 Przybliżone algorytmy analizy ekspresji genów. Opracowanie i implementacja algorytmu analizy danych uzyskanych z eksperymentu biologicznego Seminarium - SKISR 1

2 Wstęp. Dane wejściowe dla programu stanowią rezultaty uzyskane w wyniku przeprowadzenia eksperymentu biologicznego z wykorzystaniem mikromacierzy firmy Affmatrix Zadaniem programu jest określenie ewentualnych związków pomiędzy poszczególnymi genami bądź ich grupami które uległy ekspresji podczas eksperymentu Seminarium - SKISR 2

3 Faza eksperymentu Kluczowym elementem tego etapu jest wykorzystanie mikromacierzy DNA (biochipu). Mikromacierz jest urządzeniem pozwalającym na określenie rodzaju genów ulegających ekspresji w danej chwili w badanej tkance, oraz stopnia ekspresji tych genów Seminarium - SKISR 3

4 Faza eksperymentu Ekspresja genu oznacza iż jest on w danej chwili tłumaczony na odpowiadającą mu sekwencje aminokwasów czyli białko. Ekspresja genu jest równoważna obecności w cytoplazmie komórek badanej tkanki, cząsteczek mrna których budowa odpowiada sekwencji zasad tworzących dany gen. Cząsteczki mrna stanowią jeden z podstawowych substratów procesu transkrypcji przepisywania sekwencji zasad CGAT na sekwencję aminokwasów (białko) Mikromacierz zbudowana jest z sond których podstawowym elementem są fragmenty crna (ang. Complementary RNA) Seminarium - SKISR 4

5 Faza eksperymentu Podczas eksperymentu cząsteczki mrna występujące w cytoplazmie łączą się z komplementarnymi nićmi crna sond mikromacierzy. Każda sonda odpowiadająca danemu genowi sygnalizuje stopień jego ekspresji (na diagramach określony kolorem) Seminarium - SKISR 5

6 Wynik eksperymentu w postaci diagramu ekspresji genów Seminarium - SKISR 6

7 Dane dla programu Wyniki uzyskane z mikromacierzy przekłada się na zbiór x punktów w y- wymiarowej przestrzeni. y = liczba przeprowadzonych pomiarów (liczba próbek jakimi dysponujemy) x = stopień ekspresji danego genu Seminarium - SKISR 7

8 Dane dla programu Otrzymujemy w ten sposób wielowymiarową przestrzeń z pewną liczbą rozmieszczonych w niej punktów. Zadaniem programu jest odszukanie w zdefiniowanej w ten sposób przestrzeni korelacji pomiędzy rozmieszczonymi w niej punktami Seminarium - SKISR 8

9 Założenia Geny o podobnych wzorcach ekspresji są funkcjonalnie podobne. Oznacza to iż znalezienie funkcjonalnie powiązanych ze sobą genów jest równoważne znalezieniu grupy genów (ang.cluster) skupionych w tym samym obszarze przestrzeni danych Seminarium - SKISR 9

10 Problemy Duża liczba wymiarów Konwencjonalne metody wyznaczania korelacji pomiędzy punktami okazują się nieskuteczne Wykorzystanie dobrze znanych algorytmów analizy wielowymiarowych danych, sprawdzonych w innych dziedzinach informatyki takich jak rozpoznawanie mowy, czy obrazów Seminarium - SKISR 10

11 Algorytmy Algorytm samoorganizujących się map (Self Organizing Maps - SOM) z góry określona liczba poszukiwanych grup powiązanych genów K-means clustering bardzo podobny do SOM, lecz bez założeń co do liczby poszukiwanych klastrów Seminarium - SKISR 11

12 SOM Z założenia poszukujemy grup genów (czyli genów o podobnej funkcjonalności), Geny reprezentowane jako punkty w wielowymiarowej przestrzeni Wybór topologii wierzchołków (ang. centroids) krata [1], Centroidy są tego samego wymiaru co geny, Centroidy w kolejnych iteracjach przesuwają się w kierunku poszczególnego genu na podstawie funkcji, której wartość zależy od numeru iteracji i odległości od punktu danych, Im dalej od punktu danych tym mniejsze przesunięcie centroidy, Im wyższa iteracja tym mniejsze przesunięcie, Warunki stopu: Rozpatrzone zostały wszystkie punkty danych, Centroidy (wierzchołki) nie wykonują ruchu powyżej określonego progu Seminarium - SKISR 12

13 SOM c.d Seminarium - SKISR 13

14 K means clustering Sposób działania algorytmu jest bardzo podobny do SOM, Wybieramy grupę wierzchołków (ich liczba może być dowolna), Centroidy możemy rozmieścić w dowolny (losowy) sposób w przestrzeni. Postępujemy tak jak w algorytmie SOM Seminarium - SKISR 14

15 Porównanie metod Jednym z etapów tworzonej pracy magisterskiej będzie porównanie otrzymanych na podstawie analizy ekspresji genów wyników przy zastosowaniu różnych metod Seminarium - SKISR 15

16 Dlaczego to jest takie ważne? Wiadomo, iż nowotwory czy inne dolegliwości powstają poprzez mutacje różnych genów, Odkrycie oraz opisanie tego zjawiska może spowodować wynalezienie lekarstwa na dany rodzaj dolegliwości Seminarium - SKISR 16

17 Bibliografia 1. Microarrays for an integrative genomics Isaac S. Kohane, Alvin T. Kho, Atul J. Butte Seminarium - SKISR 17

Dane mikromacierzowe. Mateusz Markowicz Marta Stańska

Dane mikromacierzowe. Mateusz Markowicz Marta Stańska Dane mikromacierzowe Mateusz Markowicz Marta Stańska Mikromacierz Mikromacierz DNA (ang. DNA microarray) to szklana lub plastikowa płytka (o maksymalnych wymiarach 2,5 cm x 7,5 cm) z naniesionymi w regularnych

Bardziej szczegółowo

Bioinformatyka, edycja 2016/2017, laboratorium

Bioinformatyka, edycja 2016/2017, laboratorium Instytut Informatyki i Matematyki Komputerowej UJ, opracowanie: dr Jacek Śmietański Mikromacierze 1. Mikromacierze wprowadzenie Mikromacierze to technologia pozwalająca na pomiar aktywności genów w komórce.

Bardziej szczegółowo

MIKROMACIERZE. dr inż. Aleksandra Świercz dr Agnieszka Żmieńko

MIKROMACIERZE. dr inż. Aleksandra Świercz dr Agnieszka Żmieńko MIKROMACIERZE dr inż. Aleksandra Świercz dr Agnieszka Żmieńko Informacje ogólne Wykłady będą częściowo dostępne w formie elektronicznej http://cs.put.poznan.pl/aswiercz aswiercz@cs.put.poznan.pl Godziny

Bardziej szczegółowo

Co to jest transkryptom? A. Świercz ANALIZA DANYCH WYSOKOPRZEPUSTOWYCH 2

Co to jest transkryptom? A. Świercz ANALIZA DANYCH WYSOKOPRZEPUSTOWYCH 2 ALEKSANDRA ŚWIERCZ Co to jest transkryptom? A. Świercz ANALIZA DANYCH WYSOKOPRZEPUSTOWYCH 2 Ekspresja genów http://genome.wellcome.ac.uk/doc_wtd020757.html A. Świercz ANALIZA DANYCH WYSOKOPRZEPUSTOWYCH

Bardziej szczegółowo

Analiza zmienności czasowej danych mikromacierzowych

Analiza zmienności czasowej danych mikromacierzowych Systemy Inteligencji Obliczeniowej Analiza zmienności czasowej danych mikromacierzowych Kornel Chromiński Instytut Informatyki Uniwersytet Śląski Plan prezentacji Dane mikromacierzowe Cel badań Prezentacja

Bardziej szczegółowo

Sieci Kohonena Grupowanie

Sieci Kohonena Grupowanie Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie

Bardziej szczegółowo

Naszym zadaniem jest rozpatrzenie związków między wierszami macierzy reprezentującej poziomy ekspresji poszczególnych genów.

Naszym zadaniem jest rozpatrzenie związków między wierszami macierzy reprezentującej poziomy ekspresji poszczególnych genów. ANALIZA SKUPIEŃ Metoda k-means I. Cel zadania Zadaniem jest analiza zbioru danych, gdzie zmiennymi są poziomy ekspresji genów. Podczas badań pobrano próbki DNA od 36 różnych pacjentów z chorobą nowotworową.

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Wykład 14 Biosynteza białek

Wykład 14 Biosynteza białek BIOCHEMIA Kierunek: Technologia Żywności i Żywienie Człowieka semestr III Wykład 14 Biosynteza białek WYDZIAŁ NAUK O ŻYWNOŚCI I RYBACTWA CENTRUM BIOIMMOBILIZACJI I INNOWACYJNYCH MATERIAŁÓW OPAKOWANIOWYCH

Bardziej szczegółowo

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II 10 października 2013: Elementarz biologii molekularnej www.bioalgorithms.info Wykład nr 2 BIOINFORMATYKA rok II Komórka: strukturalna i funkcjonalne jednostka organizmu żywego Jądro komórkowe: chroniona

Bardziej szczegółowo

BIOINFORMATYKA. edycja 2016 / wykład 11 RNA. dr Jacek Śmietański

BIOINFORMATYKA. edycja 2016 / wykład 11 RNA. dr Jacek Śmietański BIOINFORMATYKA edycja 2016 / 2017 wykład 11 RNA dr Jacek Śmietański jacek.smietanski@ii.uj.edu.pl http://jaceksmietanski.net Plan wykładu 1. Rola i rodzaje RNA 2. Oddziaływania wewnątrzcząsteczkowe i struktury

Bardziej szczegółowo

Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania

Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja

Bardziej szczegółowo

TATA box. Enhancery. CGCG ekson intron ekson intron ekson CZĘŚĆ KODUJĄCA GENU TERMINATOR. Elementy regulatorowe

TATA box. Enhancery. CGCG ekson intron ekson intron ekson CZĘŚĆ KODUJĄCA GENU TERMINATOR. Elementy regulatorowe Promotory genu Promotor bliski leży w odległości do 40 pz od miejsca startu transkrypcji, zawiera kasetę TATA. Kaseta TATA to silnie konserwowana sekwencja TATAAAA, występująca w większości promotorów

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,

Bardziej szczegółowo

Systemy uczące się Lab 4

Systemy uczące się Lab 4 Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego

Bardziej szczegółowo

2014-03-26. Analiza sekwencji promotorów

2014-03-26. Analiza sekwencji promotorów 2014-03-26 Analiza sekwencji promotorów 1 2014-03-26 TFy tworzą zawiły układ regulacyjny, na który składają się różne oddziaływania białko białko poprzez wytworzenie PĘTLI Specyficzne TFy Ogólne TFy Benfey,

Bardziej szczegółowo

Grafy i sieci wybrane zagadnienia wykład 3: modele służące porównywaniu sieci

Grafy i sieci wybrane zagadnienia wykład 3: modele służące porównywaniu sieci Grafy i sieci wybrane zagadnienia wykład 3: modele służące porównywaniu sieci prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Plan wykładu 1. Sieci jako modele interakcji

Bardziej szczegółowo

Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa

Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa Konrad Miziński 14 stycznia 2015 1 Temat projektu Grupowanie hierarchiczne na podstawie algorytmu k-średnich. 2 Dokumenty

Bardziej szczegółowo

Zasady oceniania rozwiązań zadań 48 Olimpiada Biologiczna Etap centralny

Zasady oceniania rozwiązań zadań 48 Olimpiada Biologiczna Etap centralny Zasady oceniania rozwiązań zadań 48 Olimpiada Biologiczna Etap centralny Zadanie 1 1 pkt. za prawidłowe podanie typów dla obydwu zwierząt oznaczonych literami A oraz B. A. ramienionogi, B. mięczaki A.

Bardziej szczegółowo

Translacja i proteom komórki

Translacja i proteom komórki Translacja i proteom komórki 1. Kod genetyczny 2. Budowa rybosomów 3. Inicjacja translacji 4. Elongacja translacji 5. Terminacja translacji 6. Potranslacyjne zmiany polipeptydów 7. Translacja a retikulum

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Algorytmy klastujące Problem 3 Mając daną chmurę punktów chcielibyśmy zrozumieć ich

Bardziej szczegółowo

Dr. habil. Anna Salek International Bio-Consulting 1 Germany

Dr. habil. Anna Salek International Bio-Consulting 1 Germany 1 2 3 Drożdże są najprostszymi Eukariontami 4 Eucaryota Procaryota 5 6 Informacja genetyczna dla każdej komórki drożdży jest identyczna A zatem każda komórka koduje w DNA wszystkie swoje substancje 7 Przy

Bardziej szczegółowo

Algorytmy przeszukiwania wzorca

Algorytmy przeszukiwania wzorca Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Algorytmy przeszukiwania wzorca 1 Wstęp Algorytmy

Bardziej szczegółowo

GENOMIKA FUNKCJONALNA. Jak działają geny i genomy? Poziom I: Analizy transkryptomu

GENOMIKA FUNKCJONALNA. Jak działają geny i genomy? Poziom I: Analizy transkryptomu GENOMIKA FUNKCJONALNA Jak działają geny i genomy? Poziom I: Analizy transkryptomu Adnotacja (ang. annotation) pierwszy etap po uzyskaniu kompletnej sekwencji nukleotydyowej genomu analiza bioinformatyczna

Bardziej szczegółowo

Analizy wielkoskalowe w badaniach chromatyny

Analizy wielkoskalowe w badaniach chromatyny Analizy wielkoskalowe w badaniach chromatyny Analizy wielkoskalowe wykorzystujące mikromacierze DNA Genotypowanie: zróżnicowane wewnątrz genów RNA Komórka eukariotyczna Ekspresja genów: Które geny? Poziom

Bardziej szczegółowo

TRANSKRYPCJA - I etap ekspresji genów

TRANSKRYPCJA - I etap ekspresji genów Eksparesja genów TRANSKRYPCJA - I etap ekspresji genów Przepisywanie informacji genetycznej z makrocząsteczki DNA na mniejsze i bardziej funkcjonalne cząsteczki pre-mrna Polimeraza RNA ETAP I Inicjacja

Bardziej szczegółowo

Analiza i programowanie obiektowe 2016/2017. Wykład 6: Projektowanie obiektowe: diagramy interakcji

Analiza i programowanie obiektowe 2016/2017. Wykład 6: Projektowanie obiektowe: diagramy interakcji Analiza i programowanie obiektowe 2016/2017 Wykład 6: Projektowanie obiektowe: diagramy interakcji Jacek Marciniak Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Plan wykładu 1. Przejście

Bardziej szczegółowo

CLUSTERING. Metody grupowania danych

CLUSTERING. Metody grupowania danych CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means

Bardziej szczegółowo

Nowoczesne systemy ekspresji genów

Nowoczesne systemy ekspresji genów Nowoczesne systemy ekspresji genów Ekspresja genów w organizmach żywych GEN - pojęcia podstawowe promotor sekwencja kodująca RNA terminator gen Gen - odcinek DNA zawierający zakodowaną informację wystarczającą

Bardziej szczegółowo

Kombinatoryczna analiza widm 2D-NOESY w spektroskopii Magnetycznego Rezonansu Jądrowego cząsteczek RNA. Marta Szachniuk

Kombinatoryczna analiza widm 2D-NOESY w spektroskopii Magnetycznego Rezonansu Jądrowego cząsteczek RNA. Marta Szachniuk Kombinatoryczna analiza widm 2D-NOESY w spektroskopii Magnetycznego Rezonansu Jądrowego cząsteczek RNA Marta Szachniuk Plan prezentacji Wprowadzenie do tematyki badań Teoretyczny model problemu Złożoność

Bardziej szczegółowo

Geny i działania na nich

Geny i działania na nich Metody bioinformatyki Geny i działania na nich prof. dr hab. Jan Mulawka Trzy królestwa w biologii Prokaryota organizmy, których komórki nie zawierają jądra, np. bakterie Eukaryota - organizmy, których

Bardziej szczegółowo

WPROWADZENIE DO GENETYKI MOLEKULARNEJ

WPROWADZENIE DO GENETYKI MOLEKULARNEJ WPROWADZENIE DO GENETYKI MOLEKULARNEJ Replikacja organizacja widełek replikacyjnych Transkrypcja i biosynteza białek Operon regulacja ekspresji genów Prowadzący wykład: prof. dr hab. Jarosław Burczyk REPLIKACJA

Bardziej szczegółowo

Klonowanie molekularne Kurs doskonalący. Zakład Geriatrii i Gerontologii CMKP

Klonowanie molekularne Kurs doskonalący. Zakład Geriatrii i Gerontologii CMKP Klonowanie molekularne Kurs doskonalący Zakład Geriatrii i Gerontologii CMKP Etapy klonowania molekularnego 1. Wybór wektora i organizmu gospodarza Po co klonuję (do namnożenia DNA [czy ma być metylowane

Bardziej szczegółowo

TRANSLACJA II etap ekspresji genów

TRANSLACJA II etap ekspresji genów TRANSLACJA II etap ekspresji genów Tłumaczenie informacji genetycznej zawartej w mrna (po transkrypcji z DNA) na aminokwasy budujące konkretne białko. trna Operon (wg. Jacob i Monod) Zgrupowane w jednym

Bardziej szczegółowo

Algorytmy kombinatoryczne w bioinformatyce

Algorytmy kombinatoryczne w bioinformatyce Algorytmy kombinatoryczne w bioinformatyce wykład 2: sekwencjonowanie cz. 1 prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Poznawanie sekwencji genomowej Poznawanie sekwencji

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE

PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE WSTĘP 1. Mikromacierze ekspresyjne tworzenie macierzy przykłady zastosowań 2. Mikromacierze SNP tworzenie macierzy przykłady zastosowań MIKROMACIERZE EKSPRESYJNE

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych...

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych... Przedmowa... XI Część pierwsza Wprowadzenie i biologiczne bazy danych 1 Wprowadzenie... 3 Czym jest bioinformatyka?... 5 Cele... 5 Zakres zainteresowań... 6 Zastosowania... 7 Ograniczenia... 8 Przyszłe

Bardziej szczegółowo

1. Na podanej sekwencji przeprowadź proces replikacji, oraz do obu nici proces transkrypcji i translacji, podaj zapis antykodonów.

1. Na podanej sekwencji przeprowadź proces replikacji, oraz do obu nici proces transkrypcji i translacji, podaj zapis antykodonów. mrna 1. Na podanej sekwencji przeprowadź proces replikacji, oraz do obu nici proces transkrypcji i translacji, podaj zapis antykodonów. GGA CGC GCT replikacja CCT GCG CGA transkrypcja aminokwasy trna antykodony

Bardziej szczegółowo

Mutacje jako źródło różnorodności wewnątrzgatunkowej

Mutacje jako źródło różnorodności wewnątrzgatunkowej Mutacje jako źródło różnorodności wewnątrzgatunkowej Zajęcia terenowe: Zajęcia w klasie: Poziom nauczania oraz odniesienie do podstawy programowej: Liceum IV etap edukacyjny zakres rozszerzony: Różnorodność

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

TECHNIKI ANALIZY RNA TECHNIKI ANALIZY RNA TECHNIKI ANALIZY RNA

TECHNIKI ANALIZY RNA TECHNIKI ANALIZY RNA TECHNIKI ANALIZY RNA DNA 28SRNA 18/16S RNA 5SRNA mrna Ilościowa analiza mrna aktywność genów w zależności od wybranych czynników: o rodzaju tkanki o rodzaju czynnika zewnętrznego o rodzaju upośledzenia szlaku metabolicznego

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ 1. Gen to odcinek DNA odpowiedzialny

Bardziej szczegółowo

Biologia Molekularna Podstawy

Biologia Molekularna Podstawy Biologia Molekularna Podstawy Budowa DNA Budowa DNA Zasady: Purynowe: adenina i guanina Pirymidynowe: cytozyna i tymina 2 -deoksyryboza Grupy fosforanowe Budowa RNA Budowa RNA Zasady: purynowe: adenina

Bardziej szczegółowo

WYKŁAD: Klasyczny przepływ informacji ( Dogmat) Klasyczny przepływ informacji. Ekspresja genów realizacja informacji zawartej w genach

WYKŁAD: Klasyczny przepływ informacji ( Dogmat) Klasyczny przepływ informacji. Ekspresja genów realizacja informacji zawartej w genach WYKŁAD: Ekspresja genów realizacja informacji zawartej w genach Prof. hab. n. med. Małgorzata Milkiewicz Zakład Biologii Medycznej Klasyczny przepływ informacji ( Dogmat) Białka Retrowirusy Białka Klasyczny

Bardziej szczegółowo

Algorytm grupowania danych typu kwantyzacji wektorów

Algorytm grupowania danych typu kwantyzacji wektorów Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych

Bardziej szczegółowo

Możliwości współczesnej inżynierii genetycznej w obszarze biotechnologii

Możliwości współczesnej inżynierii genetycznej w obszarze biotechnologii Możliwości współczesnej inżynierii genetycznej w obszarze biotechnologii 1. Technologia rekombinowanego DNA jest podstawą uzyskiwania genetycznie zmodyfikowanych organizmów 2. Medycyna i ochrona zdrowia

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Wyszukiwanie binarne

Wyszukiwanie binarne Wyszukiwanie binarne Wyszukiwanie binarne to technika pozwalająca na przeszukanie jakiegoś posortowanego zbioru danych w czasie logarytmicznie zależnym od jego wielkości (co to dokładnie znaczy dowiecie

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Co to znaczy eksploracja danych Klastrowanie (grupowanie) hierarchiczne Klastrowanie

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

WPROWADZENIE DO GENETYKI MOLEKULARNEJ

WPROWADZENIE DO GENETYKI MOLEKULARNEJ WPROWADZENIE DO GENETYKI MOLEKULARNEJ Replikacja organizacja widełek replikacyjnych Transkrypcja i biosynteza białek Operon regulacja ekspresji genów Prowadzący wykład: prof. dr hab. Jarosław Burczyk REPLIKACJA

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

Analiza składowych głównych

Analiza składowych głównych Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ ĆWICZENIA Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,

Bardziej szczegółowo

TEST Z CYTOLOGII GRUPA II

TEST Z CYTOLOGII GRUPA II TEST Z CYTOLOGII GRUPA II Zad. 1 (4p.) Rysunek przedstawia schemat budowy pewnej struktury komórkowej. a/ podaj jej nazwę i określ funkcję w komórce, b/ nazwij elementy oznaczone cyframi 2 i 5 oraz określ

Bardziej szczegółowo

GENOMIKA FUNKCJONALNA. Jak działają geny i genomy? Poziom I: Analizy transkryptomu

GENOMIKA FUNKCJONALNA. Jak działają geny i genomy? Poziom I: Analizy transkryptomu GENOMIKA FUNKCJONALNA Jak działają geny i genomy? Poziom I: Analizy transkryptomu Adnotacja (ang. annotation) pierwszy etap po uzyskaniu kompletnej sekwencji nukleotydyowej genomu analiza bioinformatyczna

Bardziej szczegółowo

Wybrane techniki badania białek -proteomika funkcjonalna

Wybrane techniki badania białek -proteomika funkcjonalna Wybrane techniki badania białek -proteomika funkcjonalna Proteomika: umożliwia badanie zestawu wszystkich (lub prawie wszystkich) białek komórkowych Zalety analizy proteomu np. w porównaniu z analizą trankryptomu:

Bardziej szczegółowo

SPOTKANIE 2: Wprowadzenie cz. I

SPOTKANIE 2: Wprowadzenie cz. I Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie

Bardziej szczegółowo

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0

Bardziej szczegółowo

Metody analizy genomu

Metody analizy genomu Metody analizy genomu 1. Mapowanie restrykcyjne. 2. Sondy do rozpoznawania DNA 3. FISH 4. Odczytanie sekwencji DNA 5. Interpretacja sekwencji DNA genomu 6. Transkryptom 7. Proteom 1. Mapy restrykcyjne

Bardziej szczegółowo

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU Transkrypcja RNA

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU Transkrypcja RNA SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU Transkrypcja RNA SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy. 1. Karta

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych ukryte modele Markowa, zastosowania Anna Gambin Instytut Informatyki Uniwersytet Warszawski plan na dziś Ukryte modele Markowa w praktyce modelowania rodzin białek multiuliniowienia

Bardziej szczegółowo

Metody badania ekspresji genów

Metody badania ekspresji genów Metody badania ekspresji genów dr Katarzyna Knapczyk-Stwora Warunki wstępne: Proszę zapoznać się z tematem Metody badania ekspresji genów zamieszczonym w skrypcie pod reakcją A. Lityńskiej i M. Lewandowskiego

Bardziej szczegółowo

Podstawy biologiczne - komórki. Podstawy biologiczne - cząsteczki. Model komórki eukariotycznej. Wprowadzenie do Informatyki Biomedycznej

Podstawy biologiczne - komórki. Podstawy biologiczne - cząsteczki. Model komórki eukariotycznej. Wprowadzenie do Informatyki Biomedycznej Wprowadzenie do Informatyki Biomedycznej Wykład 1: Podstawy bioinformatyki Wydział Informatyki PB Podstawy biologiczne - komórki Wszystkie organizmy zbudowane są z komórek komórka jest skomplikowanym systemem

Bardziej szczegółowo

Zaoczne Liceum Ogólnokształcące Pegaz

Zaoczne Liceum Ogólnokształcące Pegaz WYMAGANIA EGZAMINACYJNE ROK SZKOLNY 2015/2016 Semestr jesienny TYP SZKOŁY: liceum ogólnokształcące PRZEDMIOT: biologia SEMESTR: II LICZBA GODZIN W SEMESTRZE: 15 PROGRAM NAUCZANIA: Program nauczania biologii

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana II stopień studiów Wykład 13b 2 Eksploracja danych Co rozumiemy pod pojęciem eksploracja danych Algorytmy grupujące (klajstrujące) Graficzna

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Wprowadzenie. SOM jest skrótem od Self Organizing Maps, czyli Samoorganizujące się mapy.

Wprowadzenie. SOM jest skrótem od Self Organizing Maps, czyli Samoorganizujące się mapy. SOM i WebSOM Wprowadzenie SOM jest skrótem od Self Organizing Maps, czyli Samoorganizujące się mapy. Podstawy teoretyczne stworzył fiński profesor Teuvo Kohonen w 1982 r SOM - ogólnie Celem tych sieci

Bardziej szczegółowo

Wprowadzenie. DNA i białka. W uproszczeniu: program działania żywego organizmu zapisany jest w nici DNA i wykonuje się na maszynie białkowej.

Wprowadzenie. DNA i białka. W uproszczeniu: program działania żywego organizmu zapisany jest w nici DNA i wykonuje się na maszynie białkowej. Wprowadzenie DNA i białka W uproszczeniu: program działania żywego organizmu zapisany jest w nici DNA i wykonuje się na maszynie białkowej. Białka: łańcuchy złożone z aminokwasów (kilkadziesiąt kilkadziesiąt

Bardziej szczegółowo

Obliczenia inteligentne Zadanie 4

Obliczenia inteligentne Zadanie 4 Sieci SOM Poniedziałek, 10:15 2007/2008 Krzysztof Szcześniak Cel Celem zadania jest zaimplementowanie neuronowej samoorganizującej się mapy wraz z metodą jej nauczania algorytmem gazu neuronowego. Część

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1 Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie

Bardziej szczegółowo

GENOMIKA FUNKCJONALNA. Jak działają geny i genomy? Poziom I: Analizy transkryptomu

GENOMIKA FUNKCJONALNA. Jak działają geny i genomy? Poziom I: Analizy transkryptomu GENOMIKA FUNKCJONALNA Jak działają geny i genomy? Poziom I: Analizy transkryptomu Adnotacja (ang. annotation) pierwszy etap po uzyskaniu kompletnej sekwencji nukleotydyowej genomu analiza bioinformatyczna

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo

Bardziej szczegółowo

Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2014/2015

Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2014/2015 Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2014/2015 Sieci Kohonena Sieci Kohonena Sieci Kohonena zostały wprowadzone w 1982 przez fińskiego

Bardziej szczegółowo

System wspomagania harmonogramowania przedsięwzięć budowlanych

System wspomagania harmonogramowania przedsięwzięć budowlanych System wspomagania harmonogramowania przedsięwzięć budowlanych Wojciech Bożejko 1 Zdzisław Hejducki 2 Mariusz Uchroński 1 Mieczysław Wodecki 3 1 Instytut Informatyki, Automatyki i Robotyki Politechnika

Bardziej szczegółowo

KATEDRA INFORMATYKI STOSOWANEJ PŁ INŻYNIERIA OPROGRAMOWANIA

KATEDRA INFORMATYKI STOSOWANEJ PŁ INŻYNIERIA OPROGRAMOWANIA KATEDRA INFORMATYKI STOSOWANEJ PŁ INŻYNIERIA OPROGRAMOWANIA Przygotował: mgr inż. Radosław Adamus Wprowadzenie Podstawą każdego projektu, którego celem jest budowa oprogramowania są wymagania, czyli warunki,

Bardziej szczegółowo

Streszczenie dla laikόw

Streszczenie dla laikόw Streszczenie Streszczenie dla laikόw Tematem tej pracy naukowej jest regulacja ekspresji genów u bakterii Bacillus subtilis. Do badania tych procesów posłużono się w głównej mierze nowoczesną technologią

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2021 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Techniki biologii molekularnej Kod przedmiotu/ modułu* Wydział (nazwa jednostki prowadzącej

Bardziej szczegółowo

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ Ekspresja genów jest regulowana

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ Wykład 4 Jak działają geny?

Bardziej szczegółowo

ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. ADAM KOLIŃSKI ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż.

ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. ADAM KOLIŃSKI ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. 1 ZARZĄDZANIE PROCESAMI I PROJEKTAMI 2 ZAKRES PROJEKTU 1. Ogólna specyfika procesów zachodzących w przedsiębiorstwie 2. Opracowanie ogólnego schematu procesów zachodzących w przedsiębiorstwie za pomocą

Bardziej szczegółowo

Teoria grafów - Teoria rewersali - Teoria śladów

Teoria grafów - Teoria rewersali - Teoria śladów 17 maja 2012 1 Planarność Wzór Eulera Kryterium Kuratowskiego Algorytmy testujące planarność 2 Genom i jego przekształcenia Grafy złamań Sortowanie przez odwrócenia Inne rodzaje sortowania Algorytmy sortujące

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego

Bardziej szczegółowo

Scenariusz lekcji przyrody/biologii (2 jednostki lekcyjne)

Scenariusz lekcji przyrody/biologii (2 jednostki lekcyjne) Joanna Wieczorek Scenariusz lekcji przyrody/biologii (2 jednostki lekcyjne) Strona 1 Temat: Budowa i funkcje kwasów nukleinowych Cel ogólny lekcji: Poznanie budowy i funkcji: DNA i RNA Cele szczegółowe:

Bardziej szczegółowo

Feature Driven Development

Feature Driven Development Feature Driven Development lekka metodyka tworzenia oprogramowania Kasprzyk Andrzej IS II Wstęp Feature Driven Development (FDD) to metodyka tworzenia oprogramowania, która wspomaga zarządzanie fazami

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Algorytm grupowania danych typu kwantyzacji wektorów

Algorytm grupowania danych typu kwantyzacji wektorów Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, rozważane dotychczas problemy koncentrowały się na nauczeniu na podstawie zbioru treningowego i zbioru etykiet klasyfikacji

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS

Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów

Bardziej szczegółowo

Wybrane techniki badania białek -proteomika funkcjonalna

Wybrane techniki badania białek -proteomika funkcjonalna Wybrane techniki badania białek -proteomika funkcjonalna Proteomika: umożliwia badanie zestawu wszystkich (lub prawie wszystkich) białek komórkowych Zalety analizy proteomu w porównaniu z analizą trankryptomu:

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane

Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane Algorytmy i struktury danych Wykład 4 Tablice nieporządkowane i uporządkowane Tablice uporządkowane Szukanie binarne Szukanie interpolacyjne Tablice uporządkowane Szukanie binarne O(log N) Szukanie interpolacyjne

Bardziej szczegółowo