Statystyka dla doktorantów: Estymacja przedziałowa. Przemysław Borys Wydział Chemiczny Politechniki Śląskiej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyka dla doktorantów: Estymacja przedziałowa. Przemysław Borys Wydział Chemiczny Politechniki Śląskiej"

Transkrypt

1 Statystyka dla doktorantów: Estymacja przedziałowa Przemysław Borys Wydział Chemiczny Politechniki Śląskiej

2 Ogólna idea W estymacji punktowej z próby statystycznej uzyskujemy pewne oszacowania parametrów, charakteryzujących ogólną zbiorowość (np. średnia, wariancja). Pytanie: jaka jest niepewność wyznaczenia takich parametrów? Jaki jest przedział ufności, w którym szacowany parametr powinien się znaleźć np. na 99%?

3 Przedziały ufności dla cechy podlegającej rozkładowi Gaussa

4 Poziom ufności Poziomem ufności 1-α nazywamy prawdopodobieństwo tego, że szacowany parametr rozkładu znajduje się w odpowiadającym mu przedziale ufności. P(θ 1 (x 1,x,,x n )<θ<θ (x 1,x,,x n ))=1-α Granice tego przedziału są funkcjami próby losowej i nie zależą od szacowanego parametru.

5 Uwaga o symetrii Przedział ufności nie zawsze musi być wybierany symetrycznie względem szacowanego parametru. W przypadku rozkładu normalnego takie podejście daje jednak najkrótszą długość takiego przedziału.

6 Przedział symetryczny i asymetryczny ten sam poziom ufności

7 Uwaga: W statystyce używa się również pojęcia poziomu istotności α - maksymalnego prawdopodobieństwa ryzyka popełniania błędu I rodzaju (odrzucenia prawdziwej hipotezy w weryfikacji hipotez statystycznych). Wrócimy do tego jeszcze.

8 Przedział ufności dla średniej #1 Średnia rozkładu cechy, podlegającej N(μ,σ), może być aproksymowana za pomocą rozkładu Gaussa. Jeżeli znamy odchylenie standardowe σ rozkładu cechy (a w rezultacie i odchylenie średniej), to możemy przeskalować odchylenie o zadanym poziomie ufności z rozkładu normalnego N(0,1) do żądanego przypadku i z wykorzystaniem tablic kwantyli dystrybuanty u 1-α/, uzyskać przedział: ( x u 1 α/ σ n, x+u 1 α/ σ ) n

9 Przykład Przeprowadzono 5 oznaczeń tłuszczu w produkcie spożywczym. Obliczona średnia wynosi 31.50%. Przyjmując, że zawartość tłuszczu ma rozkład normalny N(µ,0.) (np. na podstawie dotychczasowych doświadczeń), określić możliwy przedział średniej dla 1- α= ± =31.50±0.08

10 Korzystanie z tablicy rozkładu normalnego

11 Przedział ufności dla średniej #1 Jeżeli dysponujemy przedziałem ufności, to możemy wyznaczyć jego szerokość (dla ustalonego α w zależności od n) i określić minimalną liczebność próby do uzyskania żądanej precyzji wyniku: ( x u 1 α/ σ n, x+u 1 α/ σ ) n l= d= u 1 α/ σ d u 1 α/ σ n n n u 1 α/ d σ

12 Przykład Jak liczna powinna być próba n, aby na jej podstawie można było oszacować średnią długość noworodka, jeżeli rozkład długości jest normalny z odchyleniem 1.5cm? Dopuszczalny błąd szacunku przy poziomie ufności 0.99 wynosi 0.5cm. n> =59.9

13 Przedział ufności dla średniej # Jeżeli badana cecha ma rozkład N(μ,σ), ale nie dysponujemy odchyleniem standardowym σ, to mamy problem z przeskalowaniem wartości rozkładu N(0,1). Samo podstawienie estymatora S zamiast σ nie zadziała dobrze, bo S jest obarczone własną niepewnością (rozkład χ ) i przedział będzie niedoszacowany! Poprawkę na rozkład S daje statystyka Studenta i kwantyli tego rozkładu t używamy zamiast u z N(0,1). x μ S/ n ( t 1 α/,n 1,t 1 α/,n 1 ) μ ( X t 1 α/,n 1 S/ n, X +t 1 α/, n 1 S/ n)

14 Przykład Badaniu podlegał cz as dokonywania pomiaru przez laboranta. Wybrano n=17 laborantów i u każdego dokonano pomiaru czasu wykonywania pomiaru. Średni czas wyniósł 15 minut, a obliczone odchylenie standardowe minuty. Dla współczynnika ufności 1-α=0.95 określić zakres średniego czasu wykonywania pomiaru. t 0.975,16 =.10: τ=15± τ=15±1.03 min

15 Tablica wartości krytycznych Studenta

16 Przedział ufności dla średniej # Porównanie histogramów N(0,1) i Studenta. Pik nr 50 dla x=0.

17 Przedział ufności dla średniej # Minimalna liczebność próby dla przedziału określonego tą relacją wynosi: μ ( x t 1 α/,n 1 S/ n, x+t 1 α/, n 1 d t 1 α/, n 1 S n n t 1 α /, n 1 d S S n ) t 1 α/,n0 1 d S n 0 Przy czym ponieważ przed dokonaniem pomiaru nie znamy S, musimy je oszacować w krótkiej serii n 0. Jeżeli przy tym S, n=t 1-α/,n0-1S /d +1>n 0, to musimy dobrać n-n 0 elementy do oszacowania S. Jest to metoda dwuetapowa Steina.

18 Przykład Zmierzono czasy wyładowania 8 losowo wybranych baterii. Otrzymano odpowiednio 1, 15, 07, 14, 13, 08, 10, 1 minut. Jaka jest niezbędna liczebność próby dla określenia przedziału średniego czasu wyładowania baterii na poziomie ufności 95% przy dokładności ± minut? Wyliczamy: x=11.38, S =7.98, t 0.975,7 =.365 Podstawiamy k= /4+1=1.161 > 8 Potrzeba dobrać 5 reprezentantów do próby: 09, 11, 10, 13, 07 x=10.85, S =6.81, t 0.975,11 =.01 k=9.45 (OK, <1)

19 Przedział ufności dla średniej #3 Niech badana cecha ma dowolny rozkład. Jeżeli nie dysponujemy odchyleniem standardowym σ, ale liczba obserwacji n jest duża, to z twierdzenia granicznego średnia osiąga rozkład normalny (slajd (-); tablice rozkładu Studenta kończą się często na n=30), to rozkład Studenta przechodzi w rozkład normalny i można powrócić do wzoru z kwantylami rozkładu N(0,1), przyjmując σ=s. ( x u 1 α S n, x+u 1 α S n)

20 Przykład W procesie wylewania membran utworzono n=100 próbek. Po zmierzeniu ich grubości, okazało się, że średnia grubość wynosi 106μm, a odchylenie standardowe 3μm. Dla poziomu ufności 1-α=0.99 określić przedział ufności dla średniej grubości membrany. u =.58 d =106± d =106±6 μm

21 Przedział ufności dla średniej #3 Minimalną liczebność próby można ustalić podobnie jak w przypadku #1: ( x u 1 α/ S n, x+u 1 α/ S ) n d u 1 α/ S n n u 1 α/ d S

22 Przykład Wróćmy do przykładu z wylewaniem membran gdzie utworzono n=100 próbek o średniej grubości wynosi 106μm i odchylenie standardowym 3μm. O ile trzeba wydłużyć liczbę próbek, żeby średnią wyznaczyć z niepewnością μm? Przyjąć ten sam poziom ufności 1-α=0.99. u =.58 n.58 3 =880.3

23 Przedział ufności dla wariancji Wariancja jest zmienną losową, która nie przyjmuje wartości ujemnych. Z tego względu nie podlega rozkładowi Gaussa. Rozkładem, opisującym sumę kwadratów zmiennych losowych jest rozkład chi-kwadrat. Aby korzystać z tablic rozkładów, normalizujemy ten rozkład do sumy kwadratów o wariancji pojedynczego składnika σ=1. χ = i=1 n (X i X ) σ = ns σ

24 Przedział ufności dla wariancji Tak wyliczoną zmienną chi-kwadrat o n-1 stopniach swobody (n-1, a nie n bo statystyka wykorzystuje średnią, z której można wyliczyć jedną z n zmiennych losowych) porównujemy z kwantylami χ α/,n-1 oraz χ 1-α/,n-1: ns σ ( χ α, n 1 σ ( ns, χ 1 α,n 1,χ 1 α, n 1 ) ns ) χ α, n 1

25 Przykład Ocenić zróżnicowanie średnicy drzew w całym lesie jeśli w 5-elementowej próbie prostej, złożonej z drzew wybranych losowo z lasu otrzymano x=37.3cm, s =13.5cm. Założyć normalny rozkład średnic i poziom ufności χ 0.05,4 =36.415, χ 0.95, <σ < <σ <4.37 =13.848

26 Tablica rozkładu chi kwadrat

27 Dlaczego tylko n-1 stopni swobody przy n zmiennych? Aby tego dowieść, stosuje się transformację: y n 1 = y 1 = 1 1 (x 1 x ) y = 1 3 ( x 1+ x x 3 )... 1 (n 1)n ( x + x x (n 1)x ) 1 n 1 n y n = 1 n (x x )= x 1 n n

28 Dlaczego tylko n-1 stopni swobody przy n zmiennych? W tej transformacji mamy zachowaną sumę kwadratów zmiennych: n i=1 x = n i i=1 y i Nie jest łatwo tego dowieść, ale można z marszu zauważyć, że wszystkie y oprócz ostatniego mają EY i =0, a wariancje są takie same jak dla x-ów. [dla y n 1/n/ (n-1){(n-1)σ +(n-1) σ }] Wobec tego E[Y ]=D Y+EY =D X+E[x ]=D X+E[x ]= D X+EX =E[X ]. Nie jest to dokładnie to samo, ale musi wystarczyć. Następnie można przekształcić wzór na wariancję: (n 1)S = i=1 (n 1)S = i=1 n n (x i x) = i=1 x i n x = i=1 n n n x i x i=1 y i y n = i 1 x i +n x n 1 y i

29 Minimalna liczebność próby? Jeżeli przedział ufności wariancji wyznaczony jest wzorem: σ ( ns, χ 1 α,n 1 ns ) χ α, n 1 To nie wyznaczymy wzoru na minimalną liczność próby ponieważ n jest uwikłane w kwantylu chi-kwadrat i nie możemy go wyłączyć przed nawias. Mamy też nieznaną losową wartość S. Dysponując jakąś estymatą S możemy jednak wartość po wartości podstawiać kwantyle kolejnych n do wzoru na przedział i sprawdzić szacunkowo kiedy staje się dostatecznie wąski.

30 Przedział ufności dla wariancji. Duże n. Kiedy liczba stopni swobody rozkładu chi-kwadrat rośnie (rośnie ilość sumowanych wyrazów), to obcięty ogon ujemnej części rozkładu przestaje znacząco wpływać na jego kształt. Statystykę: χ = S σ n Przybliża rozkład N( n-3,1) (bo rozkład chi-kwadrat ma średnią proporcjonalną do n), zatem uwalniamy się od parametryzacji tablic stopniami swobody: S n σ ( n 3 u 1 α/, n 3+u 1 α/ ) σ ( S n S n, ) n 3+u 1 α/ n 3 u 1 α/

31 Przykład W grupie 450 samochodów osobowych przeprowadzono badanie zużycia benzyny na trasie o długości 100km. Obliczone z tej próby odchylenie standardowe wyniosło 0.8l/100km. Zakładając rozkład normalny cechy wyznaczyć przedział ufności dla 1-α=0.99. u 1 α/ = <σ< <σ<0.88

32 Uproszczenie wzoru Zaniedbując czynnik -3 pod pierwiastkiem w mianowniku wzoru na przedział ufności dla wariancji, możemy poskracać pierwiastki i uzyskać (Sobczyk): S S 1+ Su 1 α/ n <σ < 1 Su 1 α/ n A rozwijając zależność od S/ n w szereg: S S u 1 α/ n <σ<s+u S 1 α / n Ten przedział jest podobny do przedziału dla x i pokazuje związek między nimi

33 Minimalna liczebność próby? σ ( S n n 3+u 1 α/, S n ) n 3 u 1 α/ Z tego przedziału (posiadając estymatę S) można orientacyjnie szacować n, ale obecność pierwiastków komplikuje obliczenia. W celu wyznaczenia n trzeba rozwiązać poniższe równanie (będzie to trójmian kwadratowy) d= σ górna σ dolna = S nu 1 α/ = k n n 3 u 1 α/ n w n min = k +4 wd + (k +4 wd ) 8w d 4 8d

34 Minimalna liczebność próby? W przypadku dużych wartości n, n dominuje mianownik (tablicowe kwantyle rozkładu normalnego zwykle są mniejsze niż 4) d = σ górna σ dolna = S nu 1 α / S n u 1 α/ n 3 u 1 α/ n d = Su 1 α/ n n= S u 1 α/ d Ten sam wzór dostaniemy z przybliżenia Sobczyka

35 Przykład Mamy próbę 10 pomiarów masy ciała uczennic na III roku studiów z wynikiem [kg]: m=[50,6,54,57,5,48,55,65,49,51]. Estymata S=5.61. Jaka powinna być szacunkowa liczebność próby, żeby uzyskać wynik z przedziałem ufności dla odchylenia standardowego d=0.5kg na poziomie ufności 1-α=0.99? Metoda uproszczona: u 1 α/ =.58 n> =40.4 Metoda zawiła: k= =0.5, w=3+.58 = n> ( ) n> 49.87

36 Przedział ufności dla wskaźnika struktury Wskaźnik struktury określa ułamek sukcesów k w całej próbie losowej n, p=k/n. Najłatwiej powiązać go z realizacjami zero-jedynkowej zmiennej losowej o prawdopodobieństwie P(1)=p, P(0)=q=1-p. Dla takiego rozkładu EX=p, D X=pq=p(1-p). Ścisły opis rozkładu prawdopodobieństwa k sukcesów w próbie o długości n określa rozkład Bernoulliego. Dla większych n, wskaźnik struktury, jako średnia z sumy n zmiennych X i /n zmierza do rozkładu normalnego N(p, p(1-p)/n). (wariancja wynika z wariancji średniej).

37 Przedział ufności dla wskaźnika struktury- podejście zawiłe Dla większych n (Krysicki, n>100), wskaźnik struktury, jako średnia z sumy n zmiennych X i /n zmierza do rozkładu normalnego N(p, p(1-p)/n). Rozważamy znormalizowaną statystykę: ( k n p ) / p (1 p) = k np n np (1 p) k np np(1 p) (u α/,u 1 α / ) wyznaczamy graniczne p z nierówności k np np(1 p) <u 1 α/ p ( A (B C), A(B +C)) A=n/[n+u 1 α/ C= 1 n k (n k) n ], B=K /n+[u 1 α/ + u 1 α/ 4 u 1 α/ ]/ n

38 Przedział ufności dla wskaźnika struktury - łatwiejsze Dla jeszcze większych n (Sobczyk nawet podaje tak samo: n>100), w poprzedniej statystyce możemy próbować oszacować p w mianowniku za pomocą ilorazu k/n. Wzory się upraszczają i można łatwo wyliczyć minimalną liczebność próby. k np np(1 p) p ( k n u 1 α/ k kn k n ( 1 k n ) n p n ( 1 k n ) n N (0,1) k, k n +u 1 α/ n ( 1 k n) n )

39 Przykład: procent poparcia w sondażu politycznym Wśród 1000 ankietowanych partia polityczna uzyskała 35 głosów (p=0.35). Jaki przedział wskaźnika struktury odpowiada temu wynikowi na poziomie ufności 95%? p=0.35± (1 0.35) 1000 p=0.35±0.08 p=3.5 %±.8%

40 Przykład: procent poparcia w sondażu politycznym Wśród 1000 ankietowanych partia polityczna uzyskała 35 głosów (p=0.35). Jaki przedział wskaźnika struktury odpowiada temu wynikowi na poziomie ufności 95%? Rozwiązanie trudniejszą metodą: A=1000/[ ], B=35 /1000 +[1.96 ]/000 C = (675) A=0.998, B=0.36,C=0.09 p= AB± AC=3.5 %±.9 %

41 Minimalna liczebność próby W związku ze znacznym uwikłaniem n w wyrażeniu na szerokość przedziału, aby nie rozwiązywać równań trzeciego stopnia, Sobczyk proponuje następujące oszacowanie minimalnej liczebności próby, zakładając że iloraz k/n nie zależy już od n: p ( k n u 1 α/ k n ( 1 k n ) n d u 1 α / n k u 1 α/ k, k n +u 1 α/ k ( n 1 k ) n n n ( 1 k n) d n ( 1 k n) n )

42 Przykład Jak liczna musiałaby być próba, żeby oszacować poparcie dla partii na poziomie 30% z dokładnością do 0.1%? Poziom ufności 95%. n (1 0.3) =806736

43 Dwuwymiarowy obszar ufności Możliwe jest poszukiwanie przedziału ufności ze względu na dwie cechy (np. wartość oczekiwana i wariancja): takiego, ze P(x 1 I 1, x I ) = 1 - α Jeżeli zmienne są niezależne, możemy napisać: P(x 1 I 1 )P(x I ) = 1 - α I rozbić zagadnienie na dwa: P(x 1 I 1 ) = 1 α, P(x I ) = 1 - α Przy czym 1 α 1 - α/

44 Pytania Jakiemu rozkładowi podlega znormalizowana średnia gdy znamy σ? Jakiemu rozkładowi podlega znormalizowana średnia gdy mamy tylko estymatę s wariancji? Jakiemu rozkładowi podlega znormalizowana średnia dla dużej serii pomiarowej? Jakiemu rozkładowi podlega wariancja? Jakiemu rozkładowi podlega wskaźnik struktury? Co to jest przedział ufności?

Wnioskowanie statystyczne. Statystyka w 5

Wnioskowanie statystyczne. Statystyka w 5 Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających

Bardziej szczegółowo

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Estymacja punktowa i przedziałowa

Estymacja punktowa i przedziałowa Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora

Bardziej szczegółowo

1 Podstawy rachunku prawdopodobieństwa

1 Podstawy rachunku prawdopodobieństwa 1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej

Bardziej szczegółowo

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności: Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

LABORATORIUM 6 ESTYMACJA cz. 2

LABORATORIUM 6 ESTYMACJA cz. 2 LABORATORIUM 6 ESTYMACJA cz. 2 TEORIA ESTYMACJI I 1. ODRZUCANIE WYNIKÓW WĄTPLIWYCH PRÓBA P (m) (m-elementowa) Obliczenie: ; s bez wyników wątpliwych Odrzucenie wyników z poza przedziału: 3s PRÓBA LOSOWA

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Prawdopodobieństwo i rozkład normalny cd.

Prawdopodobieństwo i rozkład normalny cd. # # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl

Bardziej szczegółowo

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

1 Estymacja przedziałowa

1 Estymacja przedziałowa 1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny

Bardziej szczegółowo

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul Jana Pawła II 24 60-965 POZNAŃ budynek Centrum Mechatroniki, iomechaniki i Nanoinżynierii) wwwzmispmtputpoznanpl tel +48

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów Wstęp do probabilistyki i statystyki Wykład 4. Statystyki i estymacja parametrów dr hab.inż. Katarzyna Zakrzewska, prof.agh, Katedra Elektroniki, WIET AGH Wstęp do probabilistyki i statystyki. Wykład 4

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

Estymacja przedziałowa. Przedział ufności

Estymacja przedziałowa. Przedział ufności Estymacja przedziałowa Przedział ufności Estymacja przedziałowa jest to szacowanie wartości danego parametru populacji, ρ za pomocą tak zwanego przedziału ufności. Przedziałem ufności nazywamy taki przedział

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Rozkłady statystyk z próby. Statystyka

Rozkłady statystyk z próby. Statystyka Rozkłady statystyk z próby tatystyka Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających ten

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

1.1 Wstęp Literatura... 1

1.1 Wstęp Literatura... 1 Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

Statystyka matematyczna. Wykład V. Parametryczne testy istotności

Statystyka matematyczna. Wykład V. Parametryczne testy istotności Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich

Bardziej szczegółowo

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15 VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 8 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 7 maja 2018 1 / 19 Przypomnijmy najpierw omówione na poprzednim wykładzie postaci przedziałów

Bardziej szczegółowo

Przedziały ufności. Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego

Przedziały ufności. Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego Przedziały ufności Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego czyli P( μ [a,b] ) = 1 α P( μ < a ) = α/2 P( μ > b ) =

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez

Bardziej szczegółowo

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić). Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano

Bardziej szczegółowo

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Teoria Estymacji. Do Powyżej

Teoria Estymacji. Do Powyżej Teoria Estymacji Zad.1. W pewnym przedsiębiorstwie wylosowano niezależnie próbę 25 pracowników. Staż pracy (w latach) tych pracowników w 1996 roku był następujący: 37; 34; 0*; 5; 17; 17; 0*; 2; 24; 33;

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

Zadania ze statystyki, cz.6

Zadania ze statystyki, cz.6 Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z

Bardziej szczegółowo

Estymacja parametro w 1

Estymacja parametro w 1 Estymacja parametro w 1 1 Estymacja punktowa: średniej, odchylenia standardowego i frakcji µ - średnia populacji h średnia z próby jest estymatorem średniej populacji = - standardowy błąd estymacji średniej

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407 Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X

Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X Własności EX, D 2 X i DX przy przekształceniach liniowych Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X Przemnożenie wartości zmiennej losowej przez wartość stałą: Y=a*X

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi

Bardziej szczegółowo

Centralne twierdzenie graniczne

Centralne twierdzenie graniczne Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Metody analizy danych ćwiczenia Estymacja przedziałowa Program ćwiczeń obejmuje następująca zadania: 1. Dom handlowy prowadzący

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy

Bardziej szczegółowo

Zaliczenie. Ćwiczenia (zaliczenie = min. 15 punktów)

Zaliczenie. Ćwiczenia (zaliczenie = min. 15 punktów) Zaliczenie Ćwiczenia (zaliczenie = min. 15 punktów) Kolokwium (8/10 czerwca) = maks. 30 punktów Dwa zadania z listy pod linkiem = maks. 1 punkt http://www.fuw.edu.pl/~prozanski/ws/upload/20150415-zadania.php

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

WERYFIKACJA HIPOTEZ STATYSTYCZNYCH

WERYFIKACJA HIPOTEZ STATYSTYCZNYCH WERYFIKACJA HIPOTEZ STATYSTYCZNYCH I. TESTY PARAMETRYCZNE II. III. WERYFIKACJA HIPOTEZ O WARTOŚCIACH ŚREDNICH DWÓCH POPULACJI TESTY ZGODNOŚCI Rozwiązania zadań wykonywanych w Statistice przedstaw w pliku

Bardziej szczegółowo

SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec

SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x

Bardziej szczegółowo