AUTOR: MIROSŁAW MAJEWSKI PERŁY Z DAMASZKU

Wielkość: px
Rozpocząć pokaz od strony:

Download "AUTOR: MIROSŁAW MAJEWSKI PERŁY Z DAMASZKU"

Transkrypt

1 AUTOR: MIROSŁAW MAJEWSKI PERŁY Z DAMASZKU SZKIC 6, CZ. 3 W ostatniej części szkicu 6 zajmiemy się wzorami geometrycznymi z ambony w Meczecie Umajjadów. W każdym meczecie mamy kilka ważnych miejsc. Są nimi mihrab, czyli wnęka wskazująca kierunek modlitwy wiernych, ambona najczęściej określana jako minbar lub minber, wreszcie często możemy znaleźć tzw. pulpit, który jest pewnego rodzaju podwyższeniem, z którego czytany jest Koran. W Meczecie Umajjadów ambona ma bardzo interesujące wzory i jest wyjątkowo dekoracyjna. O czym się za chwilę przekonamy. N - 4 M AT E M AT Y K A W R Z E S I E Ń / PA Ź D Z I E R N I K

2 Ryc AMBONA W MECZECIE UMAJJADÓW WZÓR Z DRZWI Ryc Pokazany tu wzór na drzwiach może być traktowany jako jeden większy wzór, przecięty w połowie i rozdzielony na dwie symetryczne połówki. Jest to jeden z najpopularniejszych wzorów w sztuce Islamu. Znajdziemy go w kilku miejscach w Meczecie Umajjadów, a także w Damaszku w meczecie Darwish Pasha, w Kairze w meczecie al-rifa, w Turcji w meczecie Eski w Edyrne oraz w wielu innych budowlach w Egipcie, Turcji i Azji Środkowej. Dzięki bardzo klarownej strukturze jest on szczególnie często wykonany z kawałków szlachetnego drewna i masy perłowej, tak jak tu. Zauważmy przy okazji, że podobne, ale nie identyczne kształty poszczególnych elementów są również typowe dla wzorów z lokalnymi symetriami dziesięciokąta. 5

3 Ryc Ryc Ryc PODZIAŁ KONTURU C(4/6) Tym razem mamy ciągle ten sam kontur co w paru przypadkach poprzednio. Dzielimy dwa przeciwległe kąty na sześć równych części. Następnie przez środek prostokąta prowadzimy odcinek prostopadły do przekątnej prostokąta. Zauważmy, że przy takim podziale kątów powstają dwa latawce zaznaczone na rysunku żółtawym kolorem. Szersza część takiego latawca może posłużyć do tego, aby wydzielić z niej pięciokąt w miarę regularny. Nie będzie to pięciokąt regularny, gdyż jego kąty na to nie pozwalają. Będzie to jednak pięciokąt na tyle odpowiedni, że pozwoli nam wpisać w niego gwiazdę lub coś podobnego. Jak wydzielić taki pięciokąt, pokazuję na kolejnej rycinie. KONSTRUKCJA PIĘCIOKĄTA Zauważmy, że pięciokąt będzie zbliżony do regularnego, jeśli będzie można wpisać w niego okrąg styczny do każdej z krawędzi tego pięciokąta. W tym celu dzielimy na połowy kąt, którego wierzchołek jest zaznaczony jako czerwony punkt. Otrzymujemy półprostą wychodzącą z tego wierzchołka i przecinającą się z drugą (licząc od dołu) sieczną dolnego kąta. Otrzymujemy punkt zaznaczony na czarno. Teraz wystarczy z tego punktu poprowadzić prostą prostopadłą do jednej z krawędzi latawca i znaleźć punkt przecięcia tej prostopadłej z krawędzią, aby otrzymać kolejny punkt. Tym razem jest to punkt na szukanym okręgu. To wystarcza do tego, aby wpisać poszukiwany okrąg. Tego rodzaju konstrukcja jest bardzo użyteczna w projektowaniu wzorów geometrycznych. Na ogół stosuje się ją wtedy, gdy chcemy otrzymać figury zbliżone do prawidłowych. Tu taką figurą jest pięciokąt, widoczny już dobrze na kolejnej rycinie. TESELACJA Narysowanie pięciokąta wystarcza do tego, aby stworzyć pozostałe figury teselacji. Tu warto zauważyć, że nie jest to jedyna teselacja możliwa do utworzenia w oparciu o siatkę siecznych pokazanych na rycinie. Ta, którą tu mamy, jest stosunkowo prosta i ma figury wygodne do utworzenia wzoru. Mamy tu dwa kompletne trapezy, dwie połówki trapezów, pięciokąty oraz ćwiartki dwóch leżących naprzeciw siebie dwunastokątów foremnych. Każda z tych figur ma co najmniej jedną oś symetrii. Sieczne kątów są liniami symetrii figur teselacji. 6 M AT E M AT Y K A W R Z E S I E Ń / PA Ź D Z I E R N I K

4 Ryc Ryc KONSTRUKCJA POZOSTAŁYCH ELEMENTÓW WZORU Konstrukcja pozostałych elementów wzoru jest niemalże automatyczna. Wzór z trapezu wystarczy skopiować do pozostałych figur, oprócz dwunastokąta. W pięciokątach po skopiowaniu wzoru z trapezu krawędzie strzałki przedłużamy aż do krawędzi pięciokąta. Wzór w dwunastokącie jest przedłużeniem krawędzi wzoru z trapezu. Ta część konstrukcji występowała dotychczas wielokrotnie. Teraz należy skopiować na kalce technicznej lub na komputerze, tylko te części tego rysunku, które będą tworzyły szablon, a następnie wykonać odpowiednią liczbę kopii tego szablonu, aby otrzymać wzór z drzwi ambony. Pomalowanie lub inne udekorowanie wzoru pozostawiam do decyzji czytelnika. KONSTRUKCJA WZORU W TRAPEZIE Konstrukcja wzoru w trapezie jest jedyną rzeczą, która wymaga naszych decyzji. Pozostałe części wzoru tworzą się automatycznie. Na początek rysujemy dwa odcinki. To będą odpowiedniki pierwszej linii. Jeden z tych odcinków to niebieska pozioma kreska przechodząca przez środek dłuższej podstawy trapezu. Drugi odcinek, analogiczny do pierwszego, jest przekątną prostokąta (niebieski). Teraz łączymy odcinkiem punkty przecięcia się pierwszych linii z bokami trapezu. Wreszcie znajdujemy środek jednej z siecznych kąta prostego (czerwony punkt) i prowadzimy prostą przechodzącą przez ten punkt i środek krótszej podstawy trapezu. Tak zbudowana siatka wewnątrz trapezu wystarcza do narysowania kształtu określanego w Azji Środkowej jako liść platanu. WZÓR Z DRZWI AMBONY Ryc Tak może wyglądać większy kawałek wzoru, który konstruowaliśmy w tym projekcie. Proponuję, aby czytelnik porównał pokazany tu wzór z oryginalnym wzorem i zastanowił się, jak można go inaczej zinterpretować. 7

5 Ryc A Ryc WZÓR Z KOLUMNY Na jednej z kolumn w Meczecie Umajjadów znajduje się wzór pokazany na załączonym tu zdjęciu. Proponuję, aby czytelnik zrekonstruował ten wzór samodzielnie. Dla ułatwienia załączam rysunek pokazujący, jak konstruujemy teselację i sam wzór. Zauważmy, że jest to wzór bardzo podobny do tego z poprzedniego projektu. Tu również musimy konstruować pięciokąt zbliżony do prawidłowego. Tym razem jest to jednak znacznie łatwiejsze. - - Ryc AMBONA W MECZECIE UMAJJADÓW Boczna ściana ambony w Meczecie Umajjadów pokryta jest ciekawym ornamentem roślinnym oraz ornamentem geometrycznym. Ten ostatni pokazany jest w dwóch postaciach. Jedną z nich jest długi pas wzdłuż poręczy. Drugą natomiast jest kwadratowy lub bardziej prawdopodobnie prostokątny panel w górnej części bocznej ściany ambony. 8 M AT E M AT Y K A W R Z E S I E Ń / PA Ź D Z I E R N I K

6 Ryc SZABLON Na rycinie mamy zaznaczony fragment fotografii z wyznaczonym prostokątem, który może posłużyć jako szablon dla naszego wzoru. Poniżej mamy rysunek tego samego fragmentu podzielony na trzy zależne od siebie moduły. Każdy z nich jest równoległobokiem. - - Ryc KONSTRUKCJA RÓWNOLEGŁOBOKU Konstrukcja równoległoboku może być przeprowadzona na wiele sposobów. Tu zaczynamy od narysowania odcinka podstawy, a następnie konstruujemy lub rysujemy z kątomierzem dwie proste przechodzące przez końce odcinka. Jedna z nich jest nachylona do podstawy o kąt 72 stopnie, a druga o kąt 36 stopni. Oba kąty mogą być otrzymane przez podział kąta 90 stopni na 5 równych części. Powstaje trójkąt zaznaczony na rysunku kolorem niebieskim. Teraz z górnego i prawego wierzchołka trójkąta rysujemy dwie proste równoległe odpowiednio do podstawy i drugiego boku trójkąta. Ryc KONSTRUKCJA TESELACJI Zaczynamy od skonstruowanego przed chwilą równoległoboku i krótszej jego przekątnej. Dzieląc kąt przy wierzchołku trójkąta na połowy, otrzymujemy punkt przecięcia się dwusiecznej z podstawą trójkąta. To nam wystarczy do narysowania większego łuku. Drugi, mniejszy łuk powstał przez poprowadzenie okręgu przez punkt przecięcia się pierwszego łuku z przekątną równoległoboku. 9

7 Ryc Ryc KONSTRUKCJA TESELACJI (CD.) Prowadząc prostą równoległą do podstawy równoległoboku i przechodzącą przez prawy, zaznaczony na rysunku, punkt, otrzymujemy trzy identyczne trapezy. Tu ważna uwaga: we wzorach z symetriami D10 przekątna trapezu teselacji zazwyczaj dzieli jego ostry kąt na połowy. Tę własność warto zapamiętać. Będzie ona użyteczna w wielu przykładach. PIERWSZA LINIA W takiej teselacji pierwsza linia może być wyznaczona na wiele sposobów. Pamiętamy to ze szkicu 2. Tu przechodzi ona przez środki boków jednego z trapezów. Linie oznaczone czarnym kolorem są lustrzanym odbiciem pierwszej linii względem boków trapezu. Te trzy linie pokazują już, co będzie się działo zarówno w trapezie, jak i w dużym rombie. Ryc Ryc WZÓR W TRAPEZIE Do kolekcji trzech prostych otrzymanych przed chwilą dodajemy dwie nowe linie przechodzące przez środek krótszej podstawy trapezu i środki boków trójkąta. To wystarcza do narysowania wzoru w trapezie i zapoczątkowuje wzór w trójkątach. WZÓR W TRÓJKĄTACH W podobny jak przed chwilą sposób wypełniamy wzorem pozostałe trapezy. Jeśli rysujemy wzór na papierze, to wystarczy skopiować na kalkę techniczną wzór z trapezu i odbić go na inne trapezy. Tu szare punkty zaznaczone na rysunku wyznaczają dwa okręgi o wspólnym środku. Łącząc punkty przecięcia się tych okręgów z krawędziami trójkątów lub ich wysokościami, tworzymy wzór w trójkątach. 10 M AT E M AT Y K A W R Z E S I E Ń / PA Ź D Z I E R N I K

8 MATEMATYKA DAWNIEJ I DZIŚ Ryc Ryc WZÓR W ROMBACH W jednym z rombów rysujemy jego przekątną, a następnie, przedłużając krawędzie wzoru z trapezu, otrzymujemy wzór w obu rombach. SZABLON NIEBIESKIEGO MODUŁU Tak wygląda szablon niebieskiego modułu. Zwróćmy uwagę na pewną niezbyt elegancką cechę tego szablonu. Mamy tu duże puste przestrzenie połączone ze stosunkowo małymi obszarami. Aby zlikwidować te dysproporcje, będziemy musieli w te duże puste przestrzenie wstawić dodatkowe dekoracje, ale to dopiero na końcu tego projektu. Ryc KONSTRUKCJA TESELACJI Zaznaczone na rysunku cztery łuki przechodzące przez szare punkty wyznaczają większość figur teselacji. Ryc TESELACJA DLA BIAŁEGO MODUŁU Dwie dodatkowe linie proste przechodzące przez zaznaczone wierzchołki i równoległe do podstawy równoległoboku kończą konstrukcję teselacji dla modułu białego. Otrzymaliśmy dokładnie te same figury, które mieliśmy w module niebieskim. Ich układ jest, oczywiście, nieco inny. WZÓR W TRAPEZIE Ryc Konstrukcja wzoru w trapezie jest identyczna jak w przypadku modułu niebieskiego. WZÓR W TRÓJKĄTACH Ryc Skonstruowanie wzoru w trójkącie jest bardzo oczywiste. Linia przechodząca przez środki boków trapezu wystarcza do tego celu. 11

9 MATEMATYKA DAWNIEJ I DZIŚ Ryc Ryc WZÓR W ROMBIE Podobnie jak poprzednio konstruujemy wzór wypełniający romb. Zauważmy, że romb ma dwie osie symetrii, co oznacza, że wystarczy skonstruować tylko 1/4 wzoru. Romby w teselacjach wzorów z symetriami dziesięciokąta są newralgicznymi figurami. Duże romby, takie jak tu, mają duże puste przestrzenie. WZÓR W TRÓJKĄTACH Skonstruowanie wzoru w trójkącie jest bardzo oczywiste. Linia przechodząca przez środki boków trapezu wystarcza do tego celu. Ryc Na prostej wyznaczamy trzy równej długości odcinki i składamy poszczególne moduły w jeden wielki równoległobok. Naszym celem będzie narysowanie dodatkowej dekoracji wewnątrz dużego, zaznaczonego na rysunku sześciokąta oraz leżącego obok latawca. W punkcie zaznaczonym czerwonym kolorem rysujemy sieczne dzielące kąt 180 stopni na pięć równych części. Punkt żółty jest środkiem odcinka, na którym leży. Prosta przerywana przechodzi przez żółty punkt i jest równoległa do krótszej krawędzi sześciokąta. Pozostałe kroki tej konstrukcji są podobne do wielu konstrukcji z poprzednich projektów. 12 M AT E M AT Y K A W R Z E S I E Ń / PA Ź D Z I E R N I K

10 Ryc Szare linie pokazują dodatkowy motyw uzupełniający rysunek wzoru. Załączony na końcu rysunek jest artystyczną interpretacją wzoru z ambony w Meczecie Umajjadów. Ryc Ryc

11 Ryc Ryc Załóżmy, że wycinamy z naszego kompletnego szablonu fragment zaznaczony kolorem niebieskim. To, co otrzymaliśmy, składa się z trójkąta wyciętego z modułu niebieskiego, oraz cały moduł biały. Resztę szablonu z szarymi liniami wzoru pominiemy. Ryc Teraz, przedłużając odpowiednie krawędzie, dorysowujemy nowy trójkąt poniżej szablonu. Pokazane na rysunku punkty objaśniają, w jaki sposób powstał dodatkowy trójkąt. Trójkąt ten wypełniamy teselacją w sposób pokazany na rysunku. 14 M AT E M AT Y K A W R Z E S I E Ń / PA Ź D Z I E R N I K

12 Ryc Puste wielokąty dorysowanej teselacji wypełniamy motywami identycznymi jak poprzednio. To, co powstało z takiego uzupełnienia, wygląda tak jak na pokazanej tu rycinie. Zauważmy teselacja w nowym trójkącie uzupełnia teselację z białego modułu. Tworzą one spójną całość. Tworząc symetryczne odbicia tego trójkąta względem jego dłuższych krawędzi, otrzymamy duży medalion wpisany w dziesięciokąt foremny. Ryc Literatura: - Mirosław Majewski Matematyk, geometra z wykształcenia, autor poszukujący związków geometrii ze sztuką i architekturą. 15

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE Dane będę rysował na czarno. Różne etapy konstrukcji kolorami: (w kolejności) niebieskim, zielonym, czerwonym i ewentualnie pomarańczowym i jasnozielonym. 1. Prosta

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu

Bardziej szczegółowo

GEOMETRIA ELEMENTARNA

GEOMETRIA ELEMENTARNA Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

Matematyka podstawowa VII Planimetria Teoria

Matematyka podstawowa VII Planimetria Teoria Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

2 Figury geometryczne

2 Figury geometryczne Płaszczyzna, proste... 21 2 igury geometryczne 1 Płaszczyzna, proste i półproste P 1. Wypisz proste, do których: a) prosta k jest równoległa, o n k l b) prosta p jest prostopadła, m c) prosta k nie jest

Bardziej szczegółowo

MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I

MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część I Z trójkątem, jako figurą geometryczną, uczeń spotyka się już na etapie nauczania początkowego. W czasie dalszego procesu kształcenia

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje

Bardziej szczegółowo

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej

Bardziej szczegółowo

KURS MATURA PODSTAWOWA Część 2

KURS MATURA PODSTAWOWA Część 2 KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:

Bardziej szczegółowo

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie

Bardziej szczegółowo

Symetryczne eksperymenty

Symetryczne eksperymenty Maciej Frączek Dominik Trąbka uczniowie klasy 2b Gimnazjum nr 37 z Oddziałami Integracyjnymi Im. Maksymiliana Marii Kolbe w Krakowie Os. Złotego Wieku 36 Symetryczne eksperymenty Opiekun mgr Teresa Sklepek

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10 Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

KONSTRUKCJE ZA POMOCĄ CYRKLA. Ćwiczenia Czas: 90

KONSTRUKCJE ZA POMOCĄ CYRKLA. Ćwiczenia Czas: 90 KONSTRUKCJE ZA POMOCĄ CYRKLA Ćwiczenia Czas: 90 TWIERDZENIE MOHRA-MASCHERONIEGO jeżeli dana konstrukcja geometryczna jest wykonalna za pomocą cyrkla i linijki, to jest wykonalna za pomocą samego cyrkla,

Bardziej szczegółowo

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć Odkrywamy własności wielokątów metodą składania kartki papieru Uczniowie pracują z kartkami A4. Ćwiczenie 1 Wykonaj z kartki A4 kwadrat. D C A B Zegnij kartkę wzdłuż EF tak, aby wierzchołek A znalazł się

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Wielokąty i Okręgi- zagadnienia

Wielokąty i Okręgi- zagadnienia Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

WIELOKĄTY FOREMNE I ICH PRZEKĄTNE

WIELOKĄTY FOREMNE I ICH PRZEKĄTNE WIELOKĄTY FOREMNE I ICH PRZEKĄTNE Krzysztof Lisiecki Kl. V a SP nr 6 im. Unii Europejskiej w Kłodzku Praca pod kierunkiem: mgr Moniki Chosińskiej Spis treści Lp. Tytuł Str. 1. Wstęp. 2 2. Pojęcia używane

Bardziej szczegółowo

Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących

Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.

Bardziej szczegółowo

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

XI Olimpiada Matematyczna Gimnazjalistów

XI Olimpiada Matematyczna Gimnazjalistów XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

IX Olimpiada Matematyczna Gimnazjalistów

IX Olimpiada Matematyczna Gimnazjalistów IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Łożysko z pochyleniami

Łożysko z pochyleniami Łożysko z pochyleniami Wykonamy model części jak na rys. 1 Rys. 1 Część ta ma płaszczyznę symetrii (pokazaną na rys. 1). Płaszczyzna ta może być płaszczyzną podziału formy odlewniczej. Aby model można

Bardziej szczegółowo

GEOPLAN Z SIATKĄ TRÓJKĄTNĄ

GEOPLAN Z SIATKĄ TRÓJKĄTNĄ TEMAT NUMERU 9 GEOPLAN Z SIATKĄ TRÓJKĄTNĄ Marzenna Grochowalska W Matematyce w Szkole wiele miejsca poświęcono geoplanom z siatką kwadratową oraz ich zaletom 1. Równie ciekawą pomocą dydaktyczną jest geoplan

Bardziej szczegółowo

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012 Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować

Bardziej szczegółowo

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45 METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

XII Olimpiada Matematyczna Juniorów

XII Olimpiada Matematyczna Juniorów XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (29 września 2016 r.) Rozwiązania zadań testowych 1. odatnia liczba a powiększona o 50% jest równa dodatniej liczbie b pomniejszonej

Bardziej szczegółowo

Rysowanie precyzyjne. Polecenie:

Rysowanie precyzyjne. Polecenie: 7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na

Bardziej szczegółowo

Odbicie lustrzane, oś symetrii

Odbicie lustrzane, oś symetrii Odbicie lustrzane, oś symetrii 1. Określ, czy poniższe figury są swoimi lustrzanymi odbiciami. Jeśli nie, odpowiedź uzasadnij. 2. Dokończ rysunki, tak aby dorysowana część była odbiciem lustrzanym. 3.

Bardziej szczegółowo

kartkówka czas 1. Zaznacz na kątomierzu punkt B, tak aby kąt AOB miał rozwartość 90.

kartkówka czas 1. Zaznacz na kątomierzu punkt B, tak aby kąt AOB miał rozwartość 90. kartkówka czas WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz na kątomierzu punkt B, tak aby kąt AOB miał rozwartość 90. 2. Zaznacz trzy współliniowe punkty A, B i C. Narysuj półprostą,

Bardziej szczegółowo

w jednym kwadrat ziemia powietrze równoboczny pięciobok

w jednym kwadrat ziemia powietrze równoboczny pięciobok Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2016/2017 11.01.2017 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

1 Odległość od punktu, odległość od prostej

1 Odległość od punktu, odległość od prostej 24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria efinicja 1. Mówimy, że odcinki i są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli ramiona

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 203 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Artykuł pobrano ze strony eioba.pl Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Trójkąt jest wielokątem o trzech bokach Suma miar kątów wewnętrznych trójkąta jest równa 180. +

Bardziej szczegółowo

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria Definicja 1. Mówimy, że odcinki i CD są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli CD = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli

Bardziej szczegółowo

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie

Bardziej szczegółowo

Figury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej,

Figury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, Figury geometryczne str. 1/7...... imię i nazwisko lp. w dzienniku...... klasa data 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, przechodzącą

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów. GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a

Bardziej szczegółowo

Matematyczne słowa Autorki innowacji: Jolanta Wójcik Magda Kusyk

Matematyczne słowa Autorki innowacji: Jolanta Wójcik Magda Kusyk Szkoła Podstawowa im Kornela Makuszyńskiego w Łańcuchowie Krzyżówki matematyczne klasy V, które powstały jako efekt realizacji innowacji pedagogicznej Matematyczne słowa Autorki innowacji: Jolanta Wójcik

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Zbiór zadań z geometrii przestrzennej. Michał Kieza

Zbiór zadań z geometrii przestrzennej. Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 6 Regulamin konkursu... 7 Zadania Liczby i działania... 9 Procenty... 14 Figury geometryczne... 19 Kąty w kole... 24 Wyrażenia algebraiczne... 29 Równania i nierówności...

Bardziej szczegółowo

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45 METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 O KONSTRUKCJACH GEOMETRYCZNYCH 1. Starożytni matematycy posługiwali się konstrukcjami geometrycznymi. 2. Wykonanie konstrukcji polega na narysowaniu

Bardziej szczegółowo

KONSTRUKCJE GEOMETRYCZNE mgr Michał Kosacki

KONSTRUKCJE GEOMETRYCZNE mgr Michał Kosacki KONSTRUKCJE GEOMETRYCZNE mgr Michał Kosacki Konstrukcja pięciokąta foremnego, gdy dany jest jego bok AB: 2. Narysuj okrąg o środku B i promieniu AB. 3. Narysuj prostą l prostopadłą do k, przechodzącą przez

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 209 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 209 r.

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

Praca klasowa nr 2 - figury geometryczne (klasa 6)

Praca klasowa nr 2 - figury geometryczne (klasa 6) Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka

Bardziej szczegółowo

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12 Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria 1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona

Bardziej szczegółowo

Geometria. Planimetria. Podstawowe figury geometryczne

Geometria. Planimetria. Podstawowe figury geometryczne Geometria Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Aksjomaty

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie...

Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Spis treści Liczby naturalne i działania Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Geometria Tydzień IV

Bardziej szczegółowo

(a) (b) (c) o1" o2" o3" o1'=o2'=o3'

(a) (b) (c) o1 o2 o3 o1'=o2'=o3' Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że

Bardziej szczegółowo

Kąty, trójkąty i czworokąty.

Kąty, trójkąty i czworokąty. Kąty, trójkąty i czworokąty. str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Do kartonu wstawiono 3 garnki (zobacz rysunek), których dna mają promienie:13 cm, 15 cm i 11 cm. Podaj długość

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Najlepsze: AO, LS. Największe

Bardziej szczegółowo

I POLA FIGUR zadania łatwe i średnie

I POLA FIGUR zadania łatwe i średnie I POLA FIGUR zadania łatwe i średnie EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. W trójkącie boki mają długości a = 9 cm i b = 6 cm. Wysokość poprowadzona na bok a ma długość 4 cm. Jaką długość

Bardziej szczegółowo

Skrypt 15. Figury płaskie Symetrie

Skrypt 15. Figury płaskie Symetrie Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 15 Figury płaskie Symetrie 1. Symetria względem

Bardziej szczegółowo

I. Funkcja kwadratowa

I. Funkcja kwadratowa Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

RZUTOWANIE PROSTOKĄTNE

RZUTOWANIE PROSTOKĄTNE RZUTOWANIE PROSTOKĄTNE WPROWADZENIE Wykonywanie rysunku technicznego - zastosowanie Rysunek techniczny przedmiotu jest najczęściej podstawą jego wykonania, dlatego odwzorowywany przedmiot nie powinien

Bardziej szczegółowo

Płaszczyzny, żebra (pudełko)

Płaszczyzny, żebra (pudełko) Płaszczyzny, żebra (pudełko) Zagadnienia. Płaszczyzny, Żebra Wykonajmy model jak na rys. 1. Wykonanie Rysunek 1. Model pudełka Prostopadłościan z pochylonymi ścianami Wykonamy zamknięty szkic na Płaszczyźnie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Materiały pomocnicze z programu AutoCAD 2014.

Materiały pomocnicze z programu AutoCAD 2014. Materiały pomocnicze z programu AutoCAD 2014. Poniżej przedstawiony zostanie przykładowy rysunek wykonany w programie AutoCAD 2014. Po uruchomieniu programu należy otworzyć szablon KKM, w którym znajdują

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2018 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Zadania otwarte krótkiej odpowiedzi na dowodzenie

Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest

Bardziej szczegółowo

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA

Bardziej szczegółowo

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Rozwiązaniem nierówności A. B. C. 4 D. 2

Rozwiązaniem nierówności A. B. C. 4 D. 2 (Kod ucznia).... /50 pkt. (Liczba uzyskanych punktów) Matura próbna z matematyki KLASA III poziom podstawowy Czas trwania 170 minut Liczba punktów do uzyskania - 50 Zadanie 1. (0-1) Liczba jest równa A)

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

Jarosław Wróblewski Matematyka dla Myślących, 2008/09

Jarosław Wróblewski Matematyka dla Myślących, 2008/09 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (dokończenie).

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne MATEMATYKA Wymagania na poszczególne oceny szkolne Klasa 8 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności

Bardziej szczegółowo