O seminarium Algorytmika

Wielkość: px
Rozpocząć pokaz od strony:

Download "O seminarium Algorytmika"

Transkrypt

1 O seminarium Algorytmika Šukasz Kowalik Pa¹dziernik 2012 Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

2 Plan 1 Wst p. 2 Przegl d dziedzin algorytmiki: przypomnienie o co chodzi, przykªadowe prace magisterskie, fachowcy w Instytucie Informatyki. 3 Podsumowanie 4 O grantach algorytmicznych Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

3 Seminarium prowadz : prof. dr hab. Krzysztof Diks dr hab. Šukasz Kowalik prof. dr hab. Wojciech Rytter dr hab. Piotr Sankowski Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

4 + Silna grupa (pozostaªych promotorów) w Inst. Informatyki M. Cygan M. Kami«ski M. Kowaluk A. Malinowski M. Mucha J. Pawlewicz M. Peczarski M. Pilipczuk W. Plandowski J. Radoszewski T. Wale«A. Zych Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

5 Czym zajmuje si algorytmika? Algorytmika zajmuje si projektowaniem i badaniem wªasno±ci (teoretycznych, praktycznych) algorytmów. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

6 Czym zajmuje si algorytmika? Algorytmika zajmuje si projektowaniem i badaniem wªasno±ci (teoretycznych, praktycznych) algorytmów. Algorytmika to najstarsza dziedzina informatyki! Euklides al-chwarizmi Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

7 Ale konkretnie...?...wi c nic dziwnego»e zd»yªa si bardzo rozrosn : sortowanie i wyszukiwanie, struktury danych, algorytmy tekstowe, algorytmy grafowe, algorytmy teorio-liczbowe, geometria obliczeniowa, algorytmy aproksymacyjne, algorytmy parametryzowane, algorytmy w grach, algorytmy randomizowane, algorytmy równolegªe i rozproszone, matematyka dyskretna,... Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

8 Sortowanie? Ale o co chodzi...? Troch wymarªa dziedzina, cho nie do ko«ca. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

9 Sortowanie: Ciekawe prace magisterskie Marcin Peczarski, Optymalne sortowanie eksperymenty, Promotor: K. Diks. Sortowanie 13 elementów wymaga 34 porówna«twierdzenie udowodnione przez Marcina za pomoc czasochªonnych (10,5h) oblicze«komputerowych. [doktorat Marcina = 17554h ;)] Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

10 Struktury danych? Ale o co chodzi...? Jak zorganizowa dane,»eby szybko uzyskiwa potrzebn informacj? Przykªady: sªowniki, kolejki priorytetowe,... Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

11 Struktury danych: dziedzina stara, ale jara! Pytania, którymi pasjonuje si ±wiat: Czy drzewa splay s optymalne? Jaka jest zªo»ono± kopców paruj cych? Zrobi dynamiczne haszowanie dobre w teorii i praktyce. Dolne granice. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

12 Struktury danych: Ciekawe prace magisterskie Tomasz Malesi«ski, Optymalne sªowniki samoorganizuj ce si, Promotor: K. Diks. Praca przegl dowa opisuj ca aktualny stan bada«nad hipotez o optymalno±ci drzew typu splay. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

13 Algorytmy tekstowe? Ale o co chodzi...? wyszukiwanie wzorców w tek±cie, algorytmy kompresji, strukturalne wªasno±ci ciekawych rodzin sªów (sªowa Fibonacciego, sªowa Lyndona,...) wiele ciekawych problemów otwartych Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

14 Algorytmy tekstowe: ciekawe prace magisterskie 1 Bartªomiej Roma«ski, Strukturalne wªasno±ci transformaty Burrowsa-Wheelera dla pewnych klas sªów, Promotor: Wojciech Rytter. Badanie efektu dziaªania transformaty Burrowsa-Wheelera dla ciekawych klas sªów; eksperymentalne i teoretyczne potwierdzenie hipotezy zwi zej z transformat B-W dla szczególnych przypadków. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

15 Algorytmy tekstowe: ciekawe prace magisterskie 2 Jakub Radoszewski, Generowanie minimalnych leksykogracznie ci gów de Bruijna za pomoc sªów Lyndona, Promotor: Wojciech Rytter Nowy dowód twierdzenia Fredricksena i Maiorany o sªowach Lyndona, implementacja i analiza algorytmu opartego na tym twierdzeniu. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

16 Algorytmy tekstowe w Instytucie Informatyki Marcin Kubica Wojciech Plandowski Jakub Radoszewski Wojciech Rytter Tomasz Wale«Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

17 Algorytmy grafowe? Ale o co chodzi...? Grafy = sieci (komputerowe, drogowe, itp). Przykªady problemów: wyszukiwanie ±cie»ek i innych struktur w grafach, grafowe struktury danych, strukturalne wªasno±ci ciekawych klas grafów (np. planarne) optymalizacyjne problemy wielomianowe (np. skojarzenia)... i NP-trudne (np. najwi kszy zbiór niezale»ny) Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

18 Algorytmy grafowe: ciekawe prace magisterskie 1 Jakub Š cki Dynamiczne algorytmy utrzymywania silnie spójnych skªadowych i domkni cia przechodniego, Promotor: Krzysztof Diks. Nagroda Best Student Paper na konferencji SODA'2011. Najlepszy znany algorytm utrzymywania domkni cia przechodniego skierowanego grafu podczas usuwania kraw dzi. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

19 Algorytmy grafowe: ciekawe prace magisterskie 2 Marek Cygan i Marcin Pilipczuk Nowe algorytmy rozwi zuj ce problem szeroko±ci grafu, Promotor: Šukasz Kowalik. Nagroda Best Student Paper na konferencji WG'2008. Najlepsza informatyczna praca mgr w Polsce 2008 (konkurs PTI). Najszybszy znany algorytm obliczania szeroko±ci grafu (bandwidth). Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

20 Algorytmy grafowe: ciekawe prace magisterskie 3 Piotr Cerobski System automatycznego sterowania pojazdami w sieci komunikacyjnej, Promotor: Šukasz Kowalik. Prototyp scentralizowanego systemu sterowania ruchem wielu pojazdów (modelowanie + heurystyki inspirowane algorytmik ). Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

21 Algorytmy grafowe w Instytucie Informatyki Marek Cygan Krzysztof Diks Marcin Kami«ski Šukasz Kowalik Marcin Mucha Marcin Pilipczuk Piotr Sankowski Anna Zych Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

22 Algorytmy teorio-liczbowe? Ale o co chodzi...? Najbardziej znane przykªady: algorytm Euklidesa, test pierwszo±ci Millera-Rabina (1980), test pierwszo±ci AKS (2002). Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

23 Algorytmy teorio-liczbowe? Ale o co chodzi...? Co jest do zrobienia: rozkªad na czynniki pierwsze ;), generowanie du»ych liczb pierwszych, szybkie obliczanie szczególnych liczb (Π(n), ci g Fareya,...) Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

24 Algorytmy teorio-liczbowe w Instytucie Informatyki Jakub Pawlewicz Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

25 Geometria obliczeniowa? Ale o co chodzi...? Algorytmy, w których dane s obiekami geometrycznymi. Problemów badawczych dostarcza graka komputerowa, ale dziedzina»yje te» wªasnym»yciem. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

26 Geometria obliczeniowa: ciekawe prace magisterskie Wojciech Sikora Kobyli«ski, Analiza wzgl dnego poªo»enia obiektu w przestrzeni trójwymiarowej na podstawie jego planarnych obrazów Promotor: Mirosªaw Kowaluk Prototyp programu, który na podstawie wielu zdj boiska piªkarskiego wykonanych z ró»nych miejsc, oblicza pozycj piªki w 3 wymiarach. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

27 Geometria obliczeniowa w Instytucie Informatyki Mirosªaw Kowaluk Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

28 Algorytmy aproksymacyjne? Ale o co chodzi...? Algorytmy dla NP-trudnych problemów optymalizacyjnych. Zwracaj rozwi zania dowodliwie bliskie optymalnym. Np: 3/2-aproksymacyjny algorytm Christodesa dla metrycznego problemu komiwoja»era. 2-aproksymacyjny algorytm Goemansa-Williamsona dla lasu Steinera. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

29 Algorytmy aproksymacyjne: ciekawe prace magisterskie Šukasz Bieniasz-Krzywiec Nowy algorytm aproksymacyjny dla problemu najwi kszego podgrafu 2-kolorowolnego kraw dziowo, Promotor: Šukasz Kowalik. Rekord ±wiata (je±li chodzi o wspóªczynnik aproksymacji) dla problemu najwi kszego podgrafu 2-kolorowolnego kraw dziowo. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

30 Algorytmy aproksymacyjne w Instytucie Informatyki Marek Cygan Šukasz Kowalik Marcin Mucha Piotr Sankowski Anna Zych Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

31 Algorytmy parametryzowane? Ale o co chodzi...? Idea: znale¹ miar trudno±ci problemu Przykªad: pokrycie wierzchoªkowe rozmiaru k w grae rozmiaru n w czasie O(k 4 k + n 2 ). Inaczej: czas zale»y wykªadniczo tylko od parametru k, a nie od rozmiaru danych n. Bardzo mªoda dziedzina (15 lat), szybko si rozwija Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

32 Algorytmy parametryzowane w Instytucie Informatyki Marek Cygan Šukasz Kowalik Marcin Pilipczuk Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

33 Algorytmy w grach? Ale o co chodzi...? Algorytmy, które graj : gry z peªn / niepeªn informacj, podej±cia deterministyczne, zrandomizowane Zjawiska ekonomiczne jako gra: np. budowa sieci przez wielu graczy równowaga Nasha / cena anarchii aukcje kombinatoryczne Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

34 Algorytmy w grach: ciekawe prace magisterskie Piotr Butryn Zastosowanie algorytmu UCT w bryd»u jako grze z niepeªn informacj, Promotor: Jakub Pawlewicz. Przeniesienie do bryd»a (faza rozgrywki) algorytmu UCT opartego o metod Monte-Carlo (u»ywanego w innych grach). Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

35 Algorytmy w grach w Instytucie Informatyki Marcin Mucha Jakub Pawlewicz Piotr Sankowski Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

36 Algorytmy i losowo±? Ale o co chodzi...? Algorytmy randomizowane s cz sto prostsze lub/i szybsze ni» deterministyczne. Prosty algorytm, trudna analiza. Czasem dane s losowe. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

37 Algorytmy i losowo± : ciekawe prace magisterskie Marek Adamczyk Greedy algorithm for stochastic matching is a 2-approximation, Promotor: Marcin Mucha. I Nagroda w konkursie na najlepsz prac studenck z teorii prawdopodobie«stwa i zastosowa«matematyki Szukamy skojarzenia w grae, w którym kraw dzie pojawiaj si z zadanym z góry prawdopodobie«stwem. Mo»emy testowa kraw dzie, ale wierzchoªki maj swoj cierpliwo±. Lepsza analiza wspóªczynnika aproksymacji algorytmu zachªannego (4 2) Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

38 Algorytmy i losowo± w Instytucie Informatyki Marcin Mucha Piotr Sankowski Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

39 Algorytmy równolegªe i rozproszone? Ale o co chodzi...? algorytmy w modelach równolegªych (PRAM, etc.) algorytmy rozproszone. coraz wa»niejsze w praktyce: procesory wielordzeniowe, obliczenia na kartach gracznych (512 rdzeni), internet, sieci peer-to-peer,... Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

40 Algorytmy równolegªe i rozproszone w Instytucie Informatyki Krzysztof Diks Adam Malinowski Wojciech Rytter Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

41 Matematyka dyskretna? Ale o co chodzi...? Badanie wªasno±ci struktur kombinatorycznych, klas sªów, grafów, nawet bez natychmiastowych zastosowa«w algorytmach Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

42 Matematyka dyskretna w Instytucie Informatyki K. Diks Š. Kowalik A. Malinowski W. Rytter Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

43 Nasze projekty Projekty, w których mo»liwe jest wykonanie pracy magisterskiej: 1 Projekt Homing FNP Grafy w grafach Marcin Kami«ski, opis projektu: rutcor.rutgers.edu/~mkaminski/graphs_within_graphs/ 2 MULTIPLEX Piotr Sankowski, analiza wielopoziomowych sieci, 17 o±rodków w Europie, opis tematyki: 3 ERC PAAl Piotr Sankowski, praktyczne algorytmy aproksymacyjne, Warszawa i Rzym: paal.mimuw.edu.pl/ 4 Projekt NCN Algorytmy wykªadnicze/parametryzowane Šukasz Kowalik, 5 Zªo»ony wniosek o projekt Homing FNP (??) Approximation and parameterized local search algorithms Marek Cygan Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

44 Podsumowanie Du»a ró»norodno± dziedzin, Du»e do±wiadczenie w promowaniu (dobrych) prac mgr, Prace magisterskie o charakterze: badawczo-teoretycznym, badawczo-eksperymentalnym, komputerowe badanie hipotez twórcze implementacje, algorithm engineering twórcze prace przegl dowe. Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

45 Nasz blog Banach's Algorithmic Corner Šukasz Kowalik () O seminarium Algorytmika Pa¹dziernik / 43

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2014/15 semestr zimowy

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2014/15 semestr zimowy Studia licencjackie I ROK: Analiza Matematyczna 1 wykªad prof. dr hab. Piotr Tworzewski czwartki 8-10 0004 Analiza Matematyczna 1 w gr 1 dr Edward Szczypka poniedziaªki 1416 0086 Analiza Matematyczna 1

Bardziej szczegółowo

Harmonogram dla kierunku INFORMATYKA ANALITYCZNA Rok akademicki 2014/15 semestr letni

Harmonogram dla kierunku INFORMATYKA ANALITYCZNA Rok akademicki 2014/15 semestr letni Harmonogram dla kierunku INFORMATYKA ANALITYCZNA Studia licencjackie I ROK: Analiza Matematyczna 2 wykªad prof. dr hab. Piotr Tworzewski czwartki 810 0004 Analiza Matematyczna 2 w gr 1 dr Edward Szczypka

Bardziej szczegółowo

Wykłady dla doktorantów Środowiskowych Studiów Doktoranckich w zakresie informatyki w roku akademickim 2011/2012

Wykłady dla doktorantów Środowiskowych Studiów Doktoranckich w zakresie informatyki w roku akademickim 2011/2012 Wykłady dla doktorantów Środowiskowych Studiów Doktoranckich w zakresie informatyki w roku akademickim 2011/2012 - prof. dr hab. Wojciech Rytter: Algorytmika kombinatoryczno-grafowa (30 g. semestr zimowy

Bardziej szczegółowo

Przykªady problemów optymalizacji kombinatorycznej

Przykªady problemów optymalizacji kombinatorycznej Przykªady problemów optymalizacji kombinatorycznej Problem Komiwoja»era (PK) Dane: n liczba miast, n Z +, c ji, i, j {1,..., n}, i j odlegªo± mi dzy miastem i a miastem j, c ji = c ij, c ji R +. Zadanie:

Bardziej szczegółowo

Algorytmy aproksymacyjne i parametryzowane

Algorytmy aproksymacyjne i parametryzowane Algorytmy aproksymacyjne i parametryzowane Marek Cygan Uniwersytet Warszawski 18 października 2012 Marek Cygan Algorytmy aproksymacyjne i parametryzowane 1/22 Wstęp W algorytmice problemy dzielimy na obliczeniowo

Bardziej szczegółowo

Algorytmy dynamiczne. Piotr Sankowski. - p. 1/14

Algorytmy dynamiczne. Piotr Sankowski. - p. 1/14 Algorytmy dynamiczne Piotr Sankowski - p. 1/14 Dynamiczne: drzewa wyszukiwanie wzorca w tekście spójność grafu problemy algebraiczne (FFT i inne) domknięcie przechodnie oraz dynamiczne macierze najkrótsze

Bardziej szczegółowo

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2015/16 semestr zimowy

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2015/16 semestr zimowy Studia licencjackie I ROK: Analiza Matematyczna 1 wykªad prof. dr hab. Marek Jarnicki poniedziaªki 8-10 0004 Analiza Matematyczna 1 w gr 1 dr Katarzyna Grygiel poniedziaªki 14-16 0086 Analiza Matematyczna

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z zagadnień dotyczących analizy i syntezy algorytmów z uwzględnieniem efektywności

Bardziej szczegółowo

KARTA KURSU. Algorytmy, struktury danych i techniki programowania. Algorithms, Data Structures and Programming Techniques

KARTA KURSU. Algorytmy, struktury danych i techniki programowania. Algorithms, Data Structures and Programming Techniques KARTA KURSU Nazwa Nazwa w j. ang. Algorytmy, struktury danych i techniki programowania Algorithms, Data Structures and Programming Techniques Kod Punktacja ECTS* 3 Koordynator dr Paweł Pasteczka Zespół

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Algorytmy i struktury danych

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Algorytmy i struktury danych Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 2012/2013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne

Bardziej szczegółowo

Harmonogram dla kierunku INFORMATYKA ANALITYCZNA Rok akademicki 2013/14 semestr letni

Harmonogram dla kierunku INFORMATYKA ANALITYCZNA Rok akademicki 2013/14 semestr letni Harmonogram dla kierunku INFORMATYKA ANALITYCZNA Studia licencjackie I ROK: Analiza Matematyczna 2 wykªad prof. dr hab. Wªodzimierz Zwonek poniedziaªki 8-10 0004 Analiza Matematyczna 2 w gr 1 mgr Wojciech

Bardziej szczegółowo

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2016/17 semestr letni

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2016/17 semestr letni Studia licencjackie I ROK: Analiza Matematyczna 2 wykład dr hab. Rafał Pierzchała poniedziałki 8-10 0174 Analiza Matematyczna 2 ćw gr 1 dr hab. Rafał Pierzchała poniedziałki 10-12 0086 Analiza Matematyczna

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Kod przedmiotu: ASD Rodzaj przedmiotu: Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Algorytmy i struktury danych. kierunkowy ; obowiązkowy Poziom studiów: pierwszego stopnia

Bardziej szczegółowo

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2016/17 semestr zimowy

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2016/17 semestr zimowy Studia licencjackie I ROK: Analiza Matematyczna 1 wykład dr hab. Rafał Pierzchała poniedziałki 12 14 0174 Analiza Matematyczna 1 ćw gr 1 dr hab. Rafał Pierzchała poniedziałki 8 10 0086 Analiza Matematyczna

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr

Bardziej szczegółowo

Grafy i sieci w informatyce - opis przedmiotu

Grafy i sieci w informatyce - opis przedmiotu Grafy i sieci w informatyce - opis przedmiotu Informacje ogólne Nazwa przedmiotu Grafy i sieci w informatyce Kod przedmiotu 11.9-WI-INFD-GiSwI Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki

Bardziej szczegółowo

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2015/16 semestr letni

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2015/16 semestr letni Studia licencjackie I ROK: Analiza Matematyczna 2 wykład prof. dr hab. Marek Jarnicki poniedziałki 8-10 0004 Analiza Matematyczna 2 ćw gr 1 dr Katarzyna Grygiel czwartki 8 10 0086 Analiza Matematyczna

Bardziej szczegółowo

Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, Spis treści. Wprowadzenie 2

Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, Spis treści. Wprowadzenie 2 Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, 2012 Spis treści Przedmowa XIII Część I Podstawy Wprowadzenie 2 1. Rola algorytmów w obliczeniach 4 1.1. Algorytmy 4 1.2. Algorytmy

Bardziej szczegółowo

KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4

KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski

Bardziej szczegółowo

Algorytmika i kombinatoryka tekstów

Algorytmika i kombinatoryka tekstów lgorytmika i kombinatoryka tekstów 1/21 Algorytmika i kombinatoryka tekstów Jakub Radoszewski Wręczenie Nagrody im. W. Lipskiego, 9 października 2014 r. Instytut Informatyki, Uniwersytet Warszawski Algorytmika

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski

Bardziej szczegółowo

Listy i operacje pytania

Listy i operacje pytania Listy i operacje pytania Iwona Polak iwona.polak@us.edu.pl Uniwersytet l ski Instytut Informatyki pa¹dziernika 07 Który atrybut NIE wyst puje jako atrybut elementów listy? klucz elementu (key) wska¹nik

Bardziej szczegółowo

Kierunek: Informatyka. Przedmiot:

Kierunek: Informatyka. Przedmiot: Kierunek: Informatyka Przedmiot: ALGORYTMY I Z LOŻONOŚĆ Czas trwania: Przedmiot: Jezyk wyk ladowy: semestr III obowiazkowy polski Rodzaj zaj eć Wyk lad Laboratorium Prowadzacy Prof. dr hab. Wojciech Penczek

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Wzorce projektowe kreacyjne

Wzorce projektowe kreacyjne Wzorce projektowe kreacyjne Krzysztof Ciebiera 14 pa¹dziernika 2005 1 1 Wst p 1.1 Podstawy Opis Ogólny Podstawowe informacje Wzorce kreacyjne sªu» do uabstrakcyjniania procesu tworzenia obiektów. Znaczenie

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Stacjonarne Kod kierunku: 11.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Stacjonarne Kod kierunku: 11. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/2016 Kierunek studiów: Informatyka Profil: Ogólnoakademicki

Bardziej szczegółowo

POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI Kierunek: Specjalno± : Automatyka i Robotyka (AIR) Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Podatny manipulator planarny - budowa i sterowanie Vulnerable planar

Bardziej szczegółowo

IZ2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki niestacjonarne

IZ2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki niestacjonarne KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Zmiany w Podstawie programowej przedmiotów informatycznych

Zmiany w Podstawie programowej przedmiotów informatycznych Spotkania Koordynatorów ds. Innowacji w Edukacji, 8 kwietnia 2016, MEN Zmiany w Podstawie programowej przedmiotów informatycznych dr Anna Beata Kwiatkowska Rada ds. Informatyzacji Edukacji Motto dla działań

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010.

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010. 01.10.009r. 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 009/010 Kierunek: INFORMATYKA AiSD/NSMW Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW Tryb studiów: NIESTACJONARNE

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2 Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.

Bardziej szczegółowo

Projektowanie i Analiza Algorytmów

Projektowanie i Analiza Algorytmów POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Projektowanie i Analiza Algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład

Bardziej szczegółowo

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach ( Niezale»ne szkody maja rozkªady P (X i = k) = exp( 1)/k!, P (Y i = k) = 4+k ) k (1/3) 5 (/3) k, k = 0, 1,.... Niech S = X 1 +... + X 500 + Y 1 +... + Y 500. Skªadka

Bardziej szczegółowo

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz

Bardziej szczegółowo

Problem P = NP. albo czy informacja może. biec na skróty

Problem P = NP. albo czy informacja może. biec na skróty Problem P = NP albo czy informacja może biec na skróty Damian Niwiński Problem P=NP? znalazł si e wśród problemów milenijnych, bo mówi coś istotnego o świecie, jego rozwiazanie wydaje sie wymagać przełomu

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH

OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH Strona 1 z 9 SPIS ZAJĘĆ WRAZ Z NAZWISKAMI WYKŁADOWCÓW dr hab. Mieczysław Kula Poznaj swój

Bardziej szczegółowo

Proste modele o zªo»onej dynamice

Proste modele o zªo»onej dynamice Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj

Bardziej szczegółowo

INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ

INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ dr hab. Czesław Bagiński, prof. PB Kierownik KIT dr hab. Wiktor Dańko, prof. PB dr hab. Piotr Grzeszczuk, prof. PB dr Ryszard Mazurek dr Jolanta Koszelew

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

PROGRAM STUDIÓW. Egzamin, kolokwium, projekt, aktywność na zajęciach.

PROGRAM STUDIÓW. Egzamin, kolokwium, projekt, aktywność na zajęciach. PROGRAM STUDIÓW I. INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: W y d z i a ł M a t e m a t y k i i I n f o r m a t y k i 2. Nazwa kierunku: I n f o r m a t y k a 3. Oferowane specjalności:

Bardziej szczegółowo

Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1.

Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1. Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1. Grażyna Koba MIGRA 2019 Spis treści (propozycja na 2*32 = 64 godziny lekcyjne) Moduł A. Wokół komputera i sieci komputerowych

Bardziej szczegółowo

Drzewa Gomory-Hu Wprowadzenie. Drzewa Gomory-Hu. Jakub Š cki. 14 pa¹dziernika 2009

Drzewa Gomory-Hu Wprowadzenie. Drzewa Gomory-Hu. Jakub Š cki. 14 pa¹dziernika 2009 Wprowadzenie Drzewa Gomory-Hu Jakub Š cki 14 pa¹dziernika 2009 Wprowadzenie 1 Wprowadzenie Podstawowe poj cia i fakty 2 Istnienie drzew Gomory-Hu 3 Algorytm budowy drzew 4 Problemy otwarte Wprowadzenie

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny

Bardziej szczegółowo

Zagadnienia programowania obiektowego

Zagadnienia programowania obiektowego Janusz Jabªonowski, Andrzej Szaªas Instytut Informatyki MIMUW Janusz Jabªonowski,, Andrzej Szaªas Slajd 1 z 10 Tematyka seminarium Szeroko poj ta tematyka projektowania i programowania obiektowego. Gªówny

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych

Bardziej szczegółowo

Program nauczania informatyki w gimnazjum Informatyka dla Ciebie. Modyfikacja programu klasy w cyklu 2 godzinnym

Program nauczania informatyki w gimnazjum Informatyka dla Ciebie. Modyfikacja programu klasy w cyklu 2 godzinnym Modyfikacja programu klasy 2 nym Cele modyfikacji Celem modyfikacji jest poszerzenie zakresu wiedzy zawartej w podstawie programowej które pomoże uczniom uzmysłowić sobie treści etyczne związane z pracą

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Minimalne drzewa rozpinaj ce

Minimalne drzewa rozpinaj ce y i y i drzewa Spis zagadnie«y i drzewa i lasy cykle fundamentalne i rozci cia fundamentalne wªasno±ci cykli i rozci minimalne drzewa algorytm algorytm Drzewo y i spójnego, nieskierowanego grafu prostego

Bardziej szczegółowo

Technologie Internetowe i Algorytmy

Technologie Internetowe i Algorytmy Technologie Internetowe i Algorytmy Katedra Algorytmów i Modelowania Systemów Cel Chcemy zapewnić absolwentom: dobre przygotowanie teoretyczne znajomość nowoczesnych technologii Profil absolwenta Przedmioty

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja

ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja Kierunek Informatyka Rok akademicki 2016/2017 Wydział Matematyczno-Przyrodniczy Uniwersytet Rzeszowski ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH Technika cyfrowa i architektura komputerów

Bardziej szczegółowo

PROGRAM SEMINARIUM ZAKOPANE 2011. czwartek, 1 grudnia 2011 r. Sesja przedpołudniowa

PROGRAM SEMINARIUM ZAKOPANE 2011. czwartek, 1 grudnia 2011 r. Sesja przedpołudniowa czwartek, 1 grudnia 2011 r. Sesja przedpołudniowa 9.30 9.40: 9.40 10.10: 10.10 10.40: 10.40 11.00: Otwarcie seminarium Prof. dr hab. inż. Tadeusz Czachórski prof. dr hab. inż. Robert Schaeffer, prezentacja:

Bardziej szczegółowo

ALGORYTMIKA Wprowadzenie do algorytmów

ALGORYTMIKA Wprowadzenie do algorytmów ALGORYTMIKA Wprowadzenie do algorytmów Popularne denicje algorytmu przepis opisuj cy krok po kroku rozwi zanie problemu lub osi gni cie jakiego± celu. (M. Sysªo, Algorytmy, ±ci±lejszej denicji w ksi»ce

Bardziej szczegółowo

INŻYNIERIA OPROGRAMOWANIA

INŻYNIERIA OPROGRAMOWANIA INSTYTUT INFORMATYKI STOSOWANEJ 2013 INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania Jak? Kto? Kiedy? Co? W jaki sposób? Metodyka Zespół Narzędzia

Bardziej szczegółowo

c Marcin Sydow Planarno± Grafy i Zastosowania Tw. Eulera 7: Planarno± Inne powierzchnie Dualno± Podsumowanie

c Marcin Sydow Planarno± Grafy i Zastosowania Tw. Eulera 7: Planarno± Inne powierzchnie Dualno± Podsumowanie 7: Spis zagadnie«twierdzenie Kuratowskiego Wªasno±ci planarno±ci Twierdzenie Eulera Grafy na innych powierzchniach Poj cie dualno±ci geometrycznej i abstrakcyjnej Graf Planarny Graf planarny to taki graf,

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU INŻYNIERIA DANYCH

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU INŻYNIERIA DANYCH PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU INŻYNIERIA DANYCH NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2014/2015 Zatwierdzono:

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Kierunek: INFORMATYKA Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW. Tryb studiów: NIESTACJONARNE PIERWSZEGO STOPNIA

Bardziej szczegółowo

Propozycja integracji elementów ±wiata gry przy u»yciu drzew zachowa«

Propozycja integracji elementów ±wiata gry przy u»yciu drzew zachowa« Praca cz ±ciowo sponsorowana przez Ministerstwo Nauki i Szkolnictwa Wy»szego, grant nr N N519 172337, Integracyjna metoda wytwarzania aplikacji rozproszonych o wysokich wymaganiach wiarygodno±ciowych.

Bardziej szczegółowo

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami EFEKTY KSZTAŁCENIA 1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami Kierunkowy efekt kształcenia - symbol K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 Kierunkowy efekt

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Szeregowanie zada« Wykªad nr 6. dr Hanna Furma«czyk. 11 kwietnia 2013

Szeregowanie zada« Wykªad nr 6. dr Hanna Furma«czyk. 11 kwietnia 2013 Wykªad nr 6 11 kwietnia 2013 System otwarty - open shop O3 C max Problem O3 C max jest NP-trudny. System otwarty - open shop O3 C max Problem O3 C max jest NP-trudny. Dowód Redukcja PP O3 C max : bierzemy

Bardziej szczegółowo

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w

Bardziej szczegółowo

Rekrutacja na studia II stopnia - informatyka. 1 czerwca 2017

Rekrutacja na studia II stopnia - informatyka. 1 czerwca 2017 1 czerwca 2017 Rozliczenie studiów Natychmiast po uzyskaniu kompletu zalicze«nale»y: podpi przedmioty pod wªa±ciwe etapy zªo»y ewentualne podania maj ce wpªyw na ±redni ze studiów zgªosi (przez USOSWeb)

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2

Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2 Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: ALGORYTMY I STRUKTURY DANYCH 2 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Program studiów informatycznych na Uniwersytecie Wrocławskim

Program studiów informatycznych na Uniwersytecie Wrocławskim Program studiów informatycznych na Uniwersytecie Wrocławskim Studia stacjonarne drugiego stopnia (magisterskie) Program przyjęty przez Radę Wydziału Matematyki i Informatyki 21 maja 2013 roku ze zmianami

Bardziej szczegółowo

SEMINARIUM DYPLOMOWE - INŻYNIERSKI PROJEKT DYPLOMOWY studia I stopnia kierunek: inżynieria danych (semestr letni 2018/2019)

SEMINARIUM DYPLOMOWE - INŻYNIERSKI PROJEKT DYPLOMOWY studia I stopnia kierunek: inżynieria danych (semestr letni 2018/2019) SEMINARIUM DYPLOMOWE - INŻYNIERSKI PROJEKT DYPLOMOWY studia I stopnia kierunek: inżynieria danych (semestr letni 2018/2019) Specjalności: Pro projektowanie i obsługa systemów analitycznych, Mod modelowanie

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Matematyka Dyskretna Nazwa w języku angielskim : Discrete Mathematics Kierunek studiów : Informatyka Specjalność

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 3: Wprowadzenie do algorytmów i ich

Bardziej szczegółowo

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s

Bardziej szczegółowo

Rozwini cia asymptotyczne dla mocy testów przybli»onych

Rozwini cia asymptotyczne dla mocy testów przybli»onych Rozwini cia asymptotyczne dla mocy testów przybli»onych Piotr Majerski, Zbigniew Szkutnik AGH Kraków Wisªa 2010 P. Majerski, Z. Szkutnik, AGH () Rozwini cia mocy testów przybli»onych Wisªa 2010 1 / 22

Bardziej szczegółowo

Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia

Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences

Bardziej szczegółowo

Twierdzenie Bayesa. Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623

Twierdzenie Bayesa. Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623 Twierdzenie Bayesa Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623 Niniejszy skrypt ma na celu usystematyzowanie i uporządkowanie podstawowej wiedzy na temat twierdzenia Bayesa i jego zastosowaniu

Bardziej szczegółowo

Uogólnione drzewa Humana

Uogólnione drzewa Humana czyli ang. lopsided trees Seminarium Algorytmika 2009/2010 Plan prezentacji Sformuªowanie 1 Sformuªowanie problemów Wyj±ciowy problem Problem uogólniony 2 3 Modykacje problemu Zastosowania Plan prezentacji

Bardziej szczegółowo

Alfa-beta Ulepszenie minimax Liczba wierzchołk ow w drzewie gry. maksymalnie wd. minimalnie wbd/2c + wdd/2e Algorytmy przeszukiwania drzewa gry 5

Alfa-beta Ulepszenie minimax Liczba wierzchołk ow w drzewie gry. maksymalnie wd. minimalnie wbd/2c + wdd/2e Algorytmy przeszukiwania drzewa gry 5 Zastosowanie metody Samuela doboru współczynników funkcji oceniajacej w programie grajacym w anty-warcaby Daniel Osman promotor: dr hab. inż. Jacek Mańdziuk 1 Spis treści Algorytmy przeszukiwania drzewa

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Szczegółowy program kursów szkoły programowania Halpress

Szczegółowy program kursów szkoły programowania Halpress Szczegółowy program kursów szkoły programowania Halpress Lekcja A - Bezpłatna lekcja pokazowa w LCB Leszno "Godzina kodowania - Hour of Code (11-16 lat) Kurs (B) - Indywidualne przygotowanie do matury

Bardziej szczegółowo

Fraktale i ich zastosowanie

Fraktale i ich zastosowanie WFAIS UJ w Krakowie 20 listopada 2008 Denicja Wst p Denicja Samopodobie«stwo Wymiar fraktalny Fraktal to obiekt, który speªnia wi kszo± z poni»szych warunków: jest samopodobny; jego wymiar fraktalny jest

Bardziej szczegółowo

Informatyka wspomaga przedmioty ścisłe w szkole

Informatyka wspomaga przedmioty ścisłe w szkole Informatyka wspomaga przedmioty ścisłe w szkole Prezentuje : Dorota Roman - Jurdzińska W arkuszu I na obu poziomach występują dwa zadania związane z algorytmiką: Arkusz I bez komputera analiza algorytmów,

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia

Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2016/2017 Studia stacjonarne I

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Praca Dyplomowa Magisterska

Praca Dyplomowa Magisterska Internetowa Platform Edukacyjna w Technologii ZOPE Autor: Promotor: Dr in». Adam Doma«ski Politechnika l ska Wydziaª Automatyki, Elektroniki i Informatyki Kierunek Informatyka 22 wrze±nia 2009 Dlaczego

Bardziej szczegółowo

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa :Informatyka- - inż., rok I specjalność: Grafika komputerowa Rok akademicki 018/019 Metody uczenia się i studiowania. 1 Podstawy prawne. 1 Podstawy ekonomii. 1 Matematyka dyskretna. 1 30 Wprowadzenie do

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana

Bardziej szczegółowo

Algorytmy tekstowe. Andrzej Jastrz bski. Akademia ETI

Algorytmy tekstowe. Andrzej Jastrz bski. Akademia ETI Andrzej Jastrz bski Akademia ETI Wyszukiwanie wzorca Wyszukiwaniem wzorca nazywamy sprawdzenie, czy w podanym tekscie T znajduje si podci g P. Szukamy sªowa kot: Ala ma kota, kot ma ale. Algorytm naiwny

Bardziej szczegółowo