E - siła elektromotoryczna źródła napięcia, R w. = 0 - rezystancja wewnętrzna
|
|
- Franciszek Lech Kaczmarczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykład II UKŁAD ZASILANIA ZE ŹÓDŁEM NAPIĘCIA ŹÓDŁA PĄDU, ŹÓDŁA NAPIĘCIA SPAWNOŚĆ UKŁADU ZASILANIA ZE ŹÓDŁEM NAPIĘCIA DOPASOWANIE ODBIONIKA DO ŹÓDŁA PAWO OHMA I PAWA KICHHOFFA
2 GENEATOY ENEGII ELEKTYCZNEJ Idealne źródło napięcia Charakterystyka napięciowo-prądowa idealnego źródła napięcia. E - siła elektromotoryczna źródła napięcia, w 0 - rezystancja wewnętrzna Przy E const, gdy w 0 (oporność wewnętrzna źródła), teoretycznie można pobierać prąd I
3 GENEATOY ENEGII ELEKTYCZNEJ zeczywiste źródło napięcia w > 0 Schemat układu zastępczego z rzeczywistym źródłem napięcia. Gdy w > 0 jest U U odb I. odb. Bilans napięć w obwodzie ze źródłem o rezystancji wewnętrznej w : E I. w + U U U odb E I. w
4 GENEATOY ENEGII ELEKTYCZNEJ zeczywiste źródło napięcia cd.. w > 0 stan jałowy rzeczywistego źródła napięcia: stan zwarcia rzeczywistego źródła napięcia: Charakterystyka zewnętrzna (obciążenia) rzeczywistego źródła napięcia.
5 GENEATOY ENEGII ELEKTYCZNEJ Idealne źródło prądu w 0 I żr prąd źródłowy (wydajność prądowa źródła) Charakterystyka napięciowo prądowa idealnego źródła prądu. Przy I const, gdy w 0 (oporność wewnętrzna źródła), teoretycznie można pobierać napięcie U
6 GENEATOY ENEGII ELEKTYCZNEJ zeczywiste źródło prądu w > 0 Schemat układu zastępczego z rzeczywistym źródłem prądu, w > 0 G w > 0 Jeżeli oraz I I obc I I + źr w I obc zatem I obc I źr U w I źr U G w
7 GENEATOY ENEGII ELEKTYCZNEJ zeczywiste źródło prądu w > 0 stan jałowy rzeczywistego źródła prądu: stan zwarcia rzeczywistego źródła prądu : Charakterystyka zewnętrzna (obciążenia) rzeczywistego źródła prądu.
8 ÓWNOWAŻNA ZAMIANA ŹÓDEŁ Zamiana źródła napięcia na źródło prądu Bilans napięć w układzie: -> -> stąd: dla: gdy:
9 ÓWNOWAŻNA ZAMIANA ŹÓDEŁ Zamiana źródła prądu na źródło napięcia Bilans prądów w układzie: -> gdy: stąd:
10 SPAWNOŚĆ UKŁADU ZASILANIA ZE ŹÓDŁEM NAPIĘCIA moc użyteczna dostarczana przez źródło: moc użyteczna pobierana przez odbiornik: U I P w o odb ) ( w o o dst U I U P + 2 sprawność układu zasilania: E U U U I U I P P odb o odb o dst odb 2 η 0,5 1 0 ) ( η η η w w w o w w o dst odb U U P P jeśli jeśli
11 DOPASOWANIE ODBIONIKA DO ŹÓDŁA prąd odbiornika: I U o + w moc wydzielana na odbiorniku: Badanie ekstremum: P( ) max,?
12 POSTACI PAW OHMA I PAW KICHHOFFA Postać wektorowa Prawa Ohma : gdzie: E - Natężenie pola elektrycznego (wektor) J - gęstość prądu (wektor ) - przewodność właściwa, konduktywność
13 POSTACI PAW OHMA I PAW KICHHOFFA Postać wektorowa I prawa Kirchhoffa: pole wektorowe gęstości prądu jest bezźródłowe J - gęstość prądu (wektor ) S przekrój poprzeczny
14 POSTACI PAW OHMA I PAW KICHHOFFA Postać wektorowa II prawa Kirchhoffa: Uwaga: W różnych punktach drogi całkowania: A B, B C, natężenie pola elektrycznego E jest różne w związku z rozmaitymi przekrojami poprzecznymi i różnymi konduktywnościami na drodze całkowania.
15 POSTACI PAW OHMA I PAW KICHHOFFA Postać skalarna Prawa Ohma: lub Postać skalarna I prawa Kirchhoffa: Suma algebraiczna prądów zbiegających się w dowolnym węźle obwodu jest równa zeru I I 2 + I3 I 4 I5 Można to wyrazić wzorem ogólnym: n I k k 1 0
16 POSTACI PAW OHMA I PAW KICHHOFFA Postać skalarna II prawa Kirchhoffa: Suma algebraiczna napięć źródłowych i odbiornikowych w dowolnym oczku obwodu jest równa zeru Można to wyrazić wzorem ogólnym n k 1 n + E k U k 1 k 0
17 MOC I ENEGIA PĄDU ELEKTYCZNEGO Załóżmy, że na zaciskach rezystora, przez który płynie prąd I, występuje różnica potencjałów (napięcie) U. Przy przepływie prądu przez poprzeczny przekrój przewodnika w czasie t przemieści się ładunek QI t. Energia użytkowa na przemieszczenie tego ładunku W U QUit (jednostka 1 dżul [J]). Energia ta wydziela się na rezystorze w postaci ciepła. U I I G U W I 2 t W G U 2 t ( U 2 t ) / Zgodnie z prawem Joule a-lenza: Energia przekształcona na rezystancji w ciepło, jest wprost proporcjonalna do kwadratu prądu I, rezystancji przewodnika i czasu t. Stosunek energii prądu elektrycznego do czasy nazywamy mocą elektryczną i oznaczamy przez P. P W / t U I (jednostka to 1 wat [W]). Moc elektryczna jest równa iloczynowi napięcia i prądu. Możemy również korzystać z zależności: P I 2 P G U 2 U 2 /
18 BILANS ENEGETYCZNY Podczas przepływu prądu przez oporniki wydziela się na nich ciepło. Zgodnie z zasadą zachowania energii ilość ciepła wydzielona w jednostce czasu winna być równa ilości energii dostarczonej przez źródła układu: Gdy układ zasilany jest tylko ze źródła sem : Gdy układ zasilany jest tylko ze źródeł prądu : Całkowity bilans energetyczny w układzie elektrycznym : BILANS MOCY Suma algebraiczna mocy oddawanych (lub pobieranych) przez źródła energii elektrycznej jest równa sumie mocy pobieranych przez rezystory stanowiące odbiorniki.
19 METODY OZWIĄZYWANIA OZGAŁĘZIONYCH UKŁADÓW LINIOWYCH PĄDU STAŁEGO
20 ZASADA SUPEPOZYCJI Prąd w k-ej gałęzi jest równy sumie algebraicznych prądów wzbudzanych przez każdą siłę elektromotoryczną układu z osobna. I I + I k k1 k 2 I ki
21 ZASADA SUPEPOZYCJI Jest to zasada ważna dla wszystkich liniowych układów elektrycznych Przy uziemieniu jednego dowolnego punktu układu rozpływ prądów w układzie nie zmienia się. Tok postępowania przy obliczaniu obwodu metoda superpozycji przy dzianiu w obwodzie i źródeł napięcia lub prądu: 1. ozpatrywany obwód zastępujemy przez i obwodów takich, że w każdym z nich działa tylko jedno źródło, rezystancje pozostają bez zmiany, pozostałe źródła napięcia zastępujemy zwarciem a źródła prądu rozwarciem, 2. Każdy z otrzymanych obwodów obliczamy niezależnie stosując prawa Kirchhoffa lub metodę przekształceń (w każdym ze składowych obwodów działa tylko jedno źródło), 3. Prąd w dowolnej gałęzi obliczamy jako sumę algebraiczną prądów występujących w danej gałęzi w każdym z i obwodów składowych.
22 METODA PAW KICHHOFFA Układ rozgałęziony jest rozwiązywany ze względu na niewiadome układu tj. najogólniej ze względu na prądy gałęziowe. Zagadnienie jest następujące: 1. Ile równań należy ułożyć żeby rozwiązać układ? 2. Zgodnie z którym prawem Kirchhoffa (I i II)? Jeśli: b liczba gałęzi układu; b źr liczna gałęzi układu ze źródłami prądu To: liczba nieznanych prądów (b b źr ) ; zakładamy, że znamy źródła prądowe. Liczba równań liniowo niezależnych zgodnie z I pr. Kirchhoffa wynosi : (y 1), gdzie: y liczba węzłów układu Pozostałe równania należy ułożyć zgodnie z II pr. Kirchhoffa tj. (b b źr ) (y 1) b b źr y + 1; ponadto: - układając równania zgodnie z II pr. Kirchhoffa należy uwzględnić wszystkie gałęzie układu, - każde nowe oczko, dla którego układane jest równanie, winno zawierać co najmniej jedną nową gałąź; są to tzw. oczka niezależne.
23 METODA PAW KICHHOFFA - PZYKŁAD Dane: E 1 80V E 2 64V 1 6Ω 2 4Ω 3 3Ω 4 1Ω Szukane: I 1? I 2? I 3?
24 METODA PAW KICHHOFFA - PZYKŁAD ozwiązanie zadania - kolejne etapy rozwiązania układu. 1. W układzie: b 3, b źr 0, y 2; 2. Zgodnie z I prawem Kirchhoffa liczba równań (y-1), tj. jedno równanie prądowe; 3. Zgodnie z II prawem Kirchhoffa liczba równań: (b b źr ) (y 1) (3 0) (2 1) 2, dwa równania napięciowe; 4. Wybór oczek niezależnych: 5. Określenie obiegu konturowego w oczkach niezależnych, w tym przypadku zgodnie z ruchem wskazówek zegara; Po rozwiązaniu układu trzech równań z trzema niewiadomymi otrzymuje się: I 1 14A; I 2 15A; I 3-1A Znak minus oznacza, że zwrot prądu rzeczywistego jest przeciwny do przyjętego na rysunku. b liczba gałęzi układu; b źr liczna gałęzi układu ze źródłami prądu y liczba węzłów układu
25 METODA PĄDÓW OCZKOWYCH Wprowadza się pojęcie nierzeczywistego prądu oczkowego, przyjmując, że: 1. Każde niezależne oczko ma swój prąd oczkowy; 2. Ze względu na prądy oczkowe, dla oczek niezależnych układa się równania napięciowe; 3. ównania oczkowe są rozwiązywane (przede wszystkim) ze względu na prądy oczkowe. 4. Następnie zostają wyznaczone prądy gałęziowe z pomocą I prawa Kirchhoffa. W metodzie prądów oczkowych zasadnicza liczba niewiadomych jest równa liczbie prądów oczkowych, stąd podstawowy układ równań jest mniejszy niż w metodzie praw Kirchhoffa.
26 METODA PĄDÓW OCZKOWYCH Wprowadza się pojęcia ułatwiające opisanie i zdefiniowanie równań: Oczko obwodu elektrycznego to zbiór połączonych ze sobą elementów tworzących drogę zamkniętą dla przepływu prądu, mającą tą właściwość, że po usunięciu któregokolwiek elementu ze zbioru pozostałe elementy nie tworzą drogi zamkniętej. ezystancja własna oczka jest równa sumie rezystancji gałęzi tworzących oczko. ezystancja wzajemna np. oczka I z oczkiem II jest równa rezystancji gałęzi wspólnej dla obu oczek. Znak tej rezystancji zależy od przyjętych zwrotów obiegowych oczek (znak + zwroty zgodne). Prądem oczkowym nazywamy prąd umyślny płynący przez wszystkie gałęzie oczka Napięcie źródłowe oczkowe jest równe sumie napięć źródłowych wszystkich gałęzi tworzących oczko.
27 METODA PĄDÓW OCZKOWYCH - PZYKŁAD ównanie napięciowe pierwszego oczka: lub: ównanie napięciowe drugiego oczka: lub: W postaci ogólnej:
28 Georg Simon Ohm ( ) Urodził się 16 marca w 1787 r. w miasteczku Erlangen. W nauce matematyki i fizyki w okresie gimnazjalnym pomagał mu ojciec, który był ślusarzem. W 16 roku życia rozpoczął studia w zakresie matematyki i fizyki. Po dwuletniej nauce przerwał studia i rozpoczął pracę nauczyciela dokonując pierwszych odkryć. Ohm przeszedł do historii nauki dzięki okryciu zależności między napięciem elektrycznym, natężeniem prądu przepływającego i oporu, jaki pokonuje on w przewodnikach, zwanej dziś prawem Ohma (IU/). Wprawdzie już Ampere i Davy byli bliscy odkrycia tego prawa, lecz nie potrafili go sformułować. Wszystkie prawa zastrzeżone Wydawnictwo Naukowe PWN SA Warszawa
29 Georg Simon Ohm ( ) Ohm wykazał również, że prąd płynący przez kilka przewodników jednocześnie, rozdziela się proporcjonalnie w zależności od oporu poszczególnych przewodów. Do swoich doświadczeń jako źródło prądu wykorzystał odkryty przez Seebecka termoelement, który składał się z dwóch przewodów - miedzianego i bizmutowego. Miejsca zetknięcia tych przewodów zanurzył jedno we wrzącej wodzie, a drugie w lodzie, dzięki czemu uzyskał trwały i równomierny prąd. Ogniwo to włączył w obwód i badał przepływ prądu przez przewodniki o różnej grubości (przekroju) i długości, sprawdzając przy tym różnego rodzaju metale. Podczas tych doświadczeń ustalił co przyczynia się do zmian oporu - określił wartości oporu właściwego dla poszczególnych metali oraz zależność, że opór elektryczny przewodnika jest proporcjonalny do jego długości i odwrotnie proporcjonalny do jego pola przekroju poprzecznego. Ohm stwierdził także, że ogrzane metalowe przewodniki stawiają większy opór prądowi, natomiast w przypadku cieczy przewodzące prąd ogrzanie powoduje zmniejszenie oporu. Obok prac badawczych z dziedziny elektryczności, Ohm zajmował się także zagadnieniami akustyki (akustyczne prawo Ohma) i interferencji światła. W 1842 r. nadano mu tytułu członka Pruskiej Akademii Nauk w Berlinie oraz przyznano medal Londyńskiego Towarzystwa Królewskiego. Wszystkie prawa zastrzeżone Wydawnictwo Naukowe PWN SA Warszawa
30 KONIEC WYKŁADU II
Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe
Przygotowanie do gzaminu Potwierdzającego Kwalifikacje Zawodowe Powtórzenie materiału Opracował: mgr inż. Marcin Wieczorek Obwód elektryczny zespół połączonych ze sobą elementów, umożliwiający zamknięty
Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych
Podstawy elektrotechniki V1 Na potrzeby wykładu z Projektowania systemów pomiarowych 1 Elektrotechnika jest działem nauki zajmującym się podstawami teoretycznymi i zastosowaniami zjawisk fizycznych z dziedziny
Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h
Metody rozwiązywania obwodów elektrycznych ozwiązaniem obwodu elektrycznego - określa się wyznaczenie wartości wszystkich prądów płynących w rozpatrywanym obwodzie bądź wartości wszystkich napięć panujących
Do podr.: Metody analizy obwodów lin. ATR 2003 Strona 1 z 5. Przykład rozwiązania zadania kontrolnego nr 1 (wariant 57)
o podr.: Metody analizy obwodów lin. T Strona z Przykład rozwiązania zadania kontrolnego nr (wariant 7) Zgodnie z tabelą Z- dla wariantu nr 7 b 6, c 7, d 9, f, g. Schemat odpowiedniego obwodu (w postaci
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych
Pracownia Automatyki i lektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWCZN Analiza obwodów liniowych przy wymuszeniach stałych. CL ĆWCZNA Celem ćwiczenia jest praktyczno-analityczna ocena złożonych
Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0.
Prawa Kirchhoffa Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. k=1,2... I k =0 Suma napięć w oczku jest równa zeru: k u k =0 Elektrotechnika,
Obwody rozgałęzione. Prawa Kirchhoffa
Obwody rozgałęzione. Prawa Kirchhoffa Węzeł Oczko - * - * * 4-4 * 4 Pierwsze prawo Kirchhoffa. Suma natęŝeń prądów wchodzących do węzła sieci elektrycznej jest równa sumie natęŝeń prądów wychodzących z
1 K A T E D R A F I ZYKI S T O S O W AN E J
1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku
Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu
Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej
10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH
OWODY SYGNŁY 0. MTODY NLGOYTMCZN NLZY OWODÓW LNOWYCH 0.. MTOD TNSFGUCJ Przez termin transfiguracji rozumiemy operację kolejnego uproszczenia struktury obwodu (zmniejszenie liczby gałęzi i węzłów), przy
Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa.
Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa. Materiały dydaktyczne dla kierunku Technik Optyk (W) Kwalifikacyjnego kursu zawodowego. Prawo Ohma NatęŜenie prądu zaleŝy wprost proporcjonalnie
STAŁY PRĄD ELEKTRYCZNY
STAŁY PRĄD ELEKTRYCZNY Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch
Metody analizy obwodów w stanie ustalonym
Metody analizy obwodów w stanie ustalonym Stan ustalony Stanem ustalonym obwodu nazywać będziemy taki stan, w którym charakter odpowiedzi jest identyczny jak charakter wymuszenia, to znaczy odpowiedzią
Podstawy elektrotechniki
Podstawy elektrotechniki Odpowiedzialny za przedmiot (wykłady): dr hab. inż. Tomasz Chady prof. ZUT Ćwiczenia: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać STUDENT
42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe
Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,
Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO
Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.
Wykład FIZYKA II. 2. Prąd elektryczny. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 2. Prąd elektryczny Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ UCH ŁADUNKÓW Elektrostatyka zajmowała się ładunkami
Źródła siły elektromotorycznej = pompy prądu
Źródła siły elektromotorycznej = pompy prądu komórki elektrochemiczne ogniwo Volty akumulator generatory elektryczne baterie I urządzenia termoelektryczne E I I Prądnica (dynamo) termopara fotoogniwa ogniwa
Podstawy elektrotechniki
Podstawy elektrotechniki Odpowiedzialny za przedmiot (wykłady): dr hab. inż. Tomasz Chady prof. ZUT Ćwiczenia: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać STUDENT
4. OBWODY LINIOWE PRĄDU STAŁEGO 4.1. ŹRÓDŁA RZECZYWISTE
OODY I SYGNŁY 1 4. OODY LINIOE PRĄDU STŁEGO 4.1. ŹRÓDŁ RZECZYISTE Z zależności (2.19) oraz (2.20) wynika teoretyczna możliwość oddawania przez źródła idealne do obwodu dowolnie dej mocy chwilowej. by uniknąć
Lekcja 14. Obliczanie rozpływu prądów w obwodzie
Lekcja 14. Obliczanie rozpływu prądów w obwodzie Zad 1.Oblicz wartość rezystancji zastępczej obwodu z rysunku. Dane: R1= 10k, R2= 20k. Zad 2. Zapisz równanie I prawa Kirchhoffa dla węzła obwodu elektrycznego
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych.
Prąd elektryczny stały W poprzednim dziale (elektrostatyka) mówiliśmy o ładunkach umieszczonych na przewodnikach, ale na takich, które są odizolowane od otoczenia. W temacie o prądzie elektrycznym zajmiemy
WYDZIAŁ.. LABORATORIUM FIZYCZNE
W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się
Elementy elektroniczne i przyrządy pomiarowe
Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania
PODSTAWY ELEKTROTECHNIKI I
PODSTAWY ELEKTROTECHNIKI I mgr inż. Grzegorz Strzeszewski ZespółSzkółnr2wWyszkowie 26 kwietnia 2013 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania
Obwody elektryczne prądu stałego
Obwody elektryczne prądu stałego Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 12 grudnia 2015 Plan wykładu: 1. Rozwiązanie zadania z poprzedniego
Wykład III DWÓJNIKI AKTYWNE LINIOWE
Wykład DWÓJNK AKTYWNE LNOWE DZELNK NAPĘCA. OZSZEZANE ZAKES POMAOWEO WOLTOMEZA Połączone szeregowo rezystancje tworzą dzielnik napięcia. Napięcie zasilające ten układ dzieli się na rezystancjach proporcjonalnie
Podstawy fizyki sezon 2 3. Prąd elektryczny
Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny
PODSTAWY ELEKTOTECHNIKI LABORATORIUM
PODSTAWY ELEKTOTECHNIKI LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 8 OBWODY PRĄDU STAŁEGO -PODSTAWOWE PRAWA 1. Cel ćwiczenia Doświadczalne zbadanie podstawowych praw teorii
Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego
Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego I. Prawa Kirchoffa Celem ćwiczenia jest zapoznanie się z rozpływami prądów w obwodach rozgałęzionych
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W
Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium
Wybrane zagadnienia teorii obwodów Osoba odpowiedzialna za przedmiot (wykłady): dr hab. inż. Ryszard Pałka prof. PS ćwiczenia i projekt: dr inż. Krzysztof Stawicki e-mail: ks@ps.pl w temacie wiadomości
Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych
Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka
Zajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka
1 Zajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka I. Obwody elektryczne prądu stałego 1. Pojęcie terminów: wielkość, wartość, jednostka wielkości Wielkością fizyczną nazywamy cechę zjawiska fizycznego.
średnia droga swobodna L
PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa
Prąd stały Elementy obwodu elektrycznego. Wykład 2
Prąd stały lementy obwodu elektrycznego Wykład Prądelektryczny Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych, odbywający się w określonym środowisku pod wpływem pola elektrycznego.
Pole przepływowe prądu stałego
Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera
Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa
Lekcja 9. Pierwsze i drugie prawo Kirchhoffa 1. I prawo Kirchhoffa Pierwsze prawo Kirchhoffa mówi, że dla każdego węzła obwodu elektrycznego suma algebraiczna prądów jest równa zeru. i 0 Symbol α odpowiada
Prąd elektryczny - przepływ ładunku
Prąd elektryczny - przepływ ładunku I Q t Natężenie prądu jest to ilość ładunku Q przepływającego przez dowolny przekrój przewodnika w ciągu jednostki czasu t. Dla prądu stałego natężenie prądu I jest
Podstawy fizyki sezon 2 3. Prąd elektryczny
Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
Obwody liniowe. Sprawdzanie praw Kirchhoffa
POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel
ładunek pobrany ze źródła jest równy sumie ładunków na poszczególnych kondensatorach
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl Połączenie równoległe kondensatorów na każdym kondensatorze jest takie samo napięcie napięcie źródła ładunek pobrany ze źródła jest równy sumie ładunków
Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy
Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne
Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym
Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu
Prąd elektryczny 1/37
Prąd elektryczny 1/37 Prąd elektryczny Prądem elektrycznym w przewodniku metalowym nazywamy uporządkowany ruch elektronów swobodnych pod wpływem sił pola elektrycznego. Prąd elektryczny może również płynąć
PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI OPÓR OBWODY Z PRADEM STAŁYM. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI PRAD OPÓR OBWODY Z PRADEM STAŁYM Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Najważniejsze
Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia.
Powtórzenie wiadomości z klasy II Przepływ prądu elektrycznego. Obliczenia. Prąd elektryczny 1. Prąd elektryczny uporządkowany (ukierunkowany) ruch cząstek obdarzonych ładunkiem elektrycznym, nazywanych
E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia
Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia Sprawdzenie zasady superpozycji. Sprawdzenie twierdzenia Thevenina. Sprawdzenie twierdzenia Nortona. Czytanie schematów
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
Wyznaczanie wielkości oporu elektrycznego różnymi metodami
Wyznaczanie wielkości oporu elektrycznego różnymi metodami Obowiązkowa znajomość zagadnień: Co to jest prąd elektryczny, napięcie i natężenie prądu? Co to jest opór elektryczny i od czego zależy? Prawo
dr inż. Krzysztof Stawicki
Wybrane zagadnienia teorii obwodów 1 dr inż. Krzysztof Stawicki e-mail: ks@zut.edu.pl w temacie wiadomości proszę wpisać tylko słowo STUDENT strona www: ks.zut.edu.pl/wzto 2 Wybrane zagadnienia teorii
Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek:
Dr inż. Agnieszka Wardzińska 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Konsultacje: Poniedziałek : 8.00-9.30 Czwartek: 8.00-9.30 Impedancja elementów dla prądów przemiennych
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
KONKURS FIZYCZNY CZĘŚĆ 3. Opracowanie Agnieszka Janusz-Szczytyńska
KONKURS FIZYCZNY CZĘŚĆ 3 Opracowanie Agnieszka Janusz-Szczytyńska ZAGADNIENIA DO KONKURSU ETAP II Kolorem czerwonym zaznaczone są zagadnienia wykraczające poza program nauczania, na zielono zagadnienia,
E wektor natęŝenia pola, a dr element obwodu, którego zwrot określa przyjęty kierunek obchodzenia danego oczka.
Lista 9. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. InŜ. Środ.; kierunek InŜ. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
Prąd elektryczny. 1.1.Pojęcie prądu elektrycznego
Prąd elektryczny 1.1.Pojęcie prądu elektrycznego Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych. Czynnikiem wywołującym ten ruch jest różnica potencjałów, czyli istnienie napięcia.
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ELEKTROTECHNIKA 2. Kod przedmiotu: Eef 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka
LICZBY ZESPOLONE W ELEKTROTECHNICE, ELEKTRYCZNY WEKTOR ZESPOLONY, METODA SYMBOLICZNA,
Wykład VIII LICZBY ZESPOLONE W ELEKTROTECHNICE, ELEKTRYCZNY WEKTOR ZESPOLONY, METODA SYMBOLICZNA, ROZWIĄZYWANIA UKŁADÓW ROZGAŁĘZIONYCH PRĄDU PRZEMIENNEGO POSTACI LICZB ZESPOLONYCH Wskazy prądu i napięcia:
PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3
PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!
PRĄD STAŁY. Prąd elektryczny to uporządkowany ruch ładunków wewnątrz przewodnika pod wpływem przyłożonego pola elektrycznego.
PĄD STAŁY Prąd elektryczny to uporządkowany ruch ładunków wewnątrz przewodnika pod wpływem przyłożonego pola elektrycznego. ŁADUNEK SWOBODNY byłby w stałym polu elektrycznym jednostajnie przyspieszany
Prowadzący zajęcia. dr inŝ. Ryszard MAŃCZAK
Elektrotechnika Prowadzący zajęcia dr inŝ. yszard MAŃCZAK POLITECHNIKA POZNAŃSKA Wydział Maszyn oboczych i Transportu Instytut Maszyn oboczych i Pojazdów Samochodowych Zakład Pojazdów Samochodowych i Transportu
Ćw. 8 Weryfikacja praw Kirchhoffa
Ćw. 8 Weryfikacja praw Kirchhoffa. Cel ćwiczenia Wyznaczenie całkowitej rezystancji rezystorów połączonych równolegle oraz szeregowo, poprzez pomiar prądu i napięcia. Weryfikacja praw Kirchhoffa. 2. Zagadnienia
9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH
OBWOD SGNAŁ 9. METOD SECOWE (ALGORTMCZNE) ANALZ OBWODÓW LNOWCH 9.. WPROWADZENE ANALZA OBWODÓW Jeżeli przy badaniu obwodu elektrycznego dane są parametry elementów i schemat obwodu, a poszukiwane są napięcia
Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa. Ćwiczenie wirtualne
Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa Ćwiczenie wirtualne Marcin Zaremba 2015-03-31 Projekt współfinansowany przez Unię Europejską w ramach
Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?
Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie
Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO
Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO IDEALNA REZYSTANCJA W OBWODZIE PRĄDU PRZEMIENNEGO Symbol rezystora: Idealny rezystor w obwodzie prądu przemiennego:
pobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka
6. Prąd elektryczny zadania z arkusza I 6.7 6.1 6.8 6.9 6.2 6.3 6.10 6.4 6.5 6.11 Na zmieszczonym poniżej wykresie przedstawiono charakterystykę prądowo-napięciową żarówki. 600 500 400 I, ma 300 200 6.6
1. Obwody prądu stałego
Obwody prądu stałego 3 1. Obwody prądu stałego 1.1. Źródła napięcia i źródła prądu. Symbol źródła pokazuje rys. 1.1. Pokazane źródła są źródłami idealnymi bezrezystancyjnymi i charakteryzują się jedynie
Podstawy Teorii Obwodów
Podstawy Teorii Obwodów 203 Model obwodowy... 2 Klasyfikacjaobwodów.... 3 Założenia.... 4 Opis obwodów...... 5 Topologiaobwodu........ 6 Rodzaje elementówobwodów.... 7 Konwencje oznaczeńelementówobwodów....
teoretyczne podstawy działania
Techniki Niskotemperaturowe w medycynie Seminarium Termoelektryczne urządzenia chłodnicze - teoretyczne podstawy działania Edyta Kamińska IMM II st. Sem I 1 Spis treści Termoelektryczność... 3 Zjawisko
Obwody prądu zmiennego
Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania
Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia
Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Wyrobienie umiejętności łączenia obwodów elektrycznych rozgałęzionych oraz sprawdzenie praw prądu stałego. Czytanie schematów
1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4
1) Wyprowadź wzór pozwalający obliczyć rezystancję B i konduktancję G B zastępczą układu. 1 2 3 6 B 4 2) Wyprowadź wzór pozwalający obliczyć impedancję (Z, Z) i admitancję (Y, Y) obwodu. Narysować wykres
2. Narysuj schemat zastępczy rzeczywistego źródła napięcia i oznacz jego elementy.
Ćwiczenie 2. 1. Czym się różni rzeczywiste źródło napięcia od źródła idealnego? Źródło rzeczywiste nie posiada rezystancji wewnętrznej ( wew = 0 Ω). Źródło idealne posiada pewną rezystancję własną ( wew
PODSTAWY METROLOGII ĆWICZENIE 2 REZYSTANCJA WEWNĘTRZNA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3
PODSTAWY METROLOGII ĆWICZENIE 2 REZYSTANCJA WEWNĘTRZNA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem
Co było na ostatnim wykładzie?
Co było na ostatnim wykładzie? Rzeczywiste źródło napięcia: Demonstracja: u u s (t) R u= us R + RW Zależy od prądu i (czyli obciążenia) w.2, p.1 Podłączamy różne obciążenia (różne R). Co dzieje się z u?
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.
Metoda superpozycji - rozwiązanie obwodu elektrycznego.
Metoda superpozycji - rozwiązanie obwodu elektrycznego. W celu rozwiązania obwodu elektrycznego przedstawionego na rysunku poniżej musimy zapisać dla niego prądowe i napięciowe równania Kirchhoffa. Rozwiązanie
Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.
Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11
NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC
II prawo Kirchhoffa algebraiczna suma zmian potencjału napotykanych przy pełnym obejściu dowolnego oczka jest równa zeru klucz zwarty w punkcie a - ładowanie kondensatora równanie ładowania Fizyka ogólna
Czego można się nauczyć z prostego modelu szyny magnetycznej
Czego można się nauczyć z prostego modelu szyny magnetycznej 1) Hamowanie magnetyczne I B F L m v L Poprzeczka o masie m może się przesuwać swobodnie po dwóch równoległych szynach, odległych o L od siebie.
Pracownia Fizyczna i Elektroniczna 2014
Pracownia Fizyczna i Elektroniczna 04 http://pe.fw.ed.pl/ Wojciech DOMNK ozbłysk gamma GB 08039B 9.03.008 teleskop Pi of the Sky sfilmował najpotężniejszą eksplozję obserwowaną przez człowieka pierwszy
Scenariusz lekcji fizyki w klasie drugiej gimnazjum
Scenariusz lekcji fizyki w klasie drugiej gimnazjum Temat: Opór elektryczny, prawo Ohma. Czas trwania: 1 godzina lekcyjna Realizowane treści podstawy programowej Przedmiot fizyka matematyka Realizowana
Przykłady zadań. Gimnazjum im. Jana Pawła II w Sułowie
4. Moc i praca Przykłady zadań 10 Przykład 4.1 Oblicz moc silnika elektrycznego, przez który przepływa prąd o natężeniu I = 5 A, przy napięciu U = 230 V. Dane: Szukane Wzór U = 230 V P P= U I I = 5 A Rozwiązanie
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona
Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 4 lutego 4 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych
E12. Wyznaczanie parametrów użytkowych fotoogniwa
1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych
ELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,
Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:
Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:
ELEKTROTECHNIKA I ELEKTRONIKA
UNIERSYTET TECHNOLOGICZNO-PRZYRODNICZY BYDGOSZCZY YDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆICZENIE: E3 BADANIE ŁAŚCIOŚCI
SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ
Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia