Wyznaczanie ogniskowych soczewek cienkich. Badanie wad soczewek grubych.
|
|
- Paulina Szymczak
- 9 lat temu
- Przeglądów:
Transkrypt
1 O Wyznaczanie ogniskowych soczewek cienkich. Badanie wad soczewek grubych. Ceem ćwiczenia jest wyznaczenie ogniskowych cienkich soczewek: skupiającej (w oparciu o równanie soczewki i metodą Bessea) i rozpraszającej ( w oparciu o wcześniej wyznaczoną ogniskową układu soczewek) oraz zbadanie wad soczewki grubej (wyznaczenie miary aberracji serycznej, chromatycznej i astygmatyzmu). Zagadnienia do przygotowania: natura światła, odbicie światła, dyspersja, soczewki, rodzaje soczewek, właściwości soczewek i ich zastosowanie, powstawanie obrazu w soczewce skupiającej i rozpraszającej, równanie soczewki, metoda Bessea wyznaczania ogniskowej soczewki, wady soczewek grubych (aberracja seryczna, aberracja chromatyczna, astygmatyzm). Podstawowe pojęcia i deinicje Soczewki Przyjmiemy, że powierzchnie soczewek są ragmentami ser. Powierzchnie te mogą być wkęsłe ub wypukłe (w szczegóności płaskie), co daje wiee możiwości kształtowania soczewek: jako dwuwypukłe (Rys. a), dwuwkęsłe (Rys. b.), ae też wkęsło-wypukłe, płasko-wypukłe itd. Ze wzgędu na właściwości optyczne wygodniej jest podzieić soczewki na dwie kasy: skupiające (to takie, które są grubsze na środku, niż przy brzegach) i rozpraszające (na odwrót). Na rysunku pokazano przykłady biegu wiązki równoegłych promieni świetnych w przypadku soczewki: skupiającej (a) i rozpraszającej (b). a) b) F F - Rys. Położenie ogniska soczewki skupiającej (a) i rozpraszającej (b). Podstawowym parametrem charakteryzującym soczewkę jest jej ogniskowa. Rozważania zacznijmy od soczewki skupiającej. Jak pamiętamy ze szkoły, wiązka równoegłych promieni świetnych, równoegła do osi symetrii soczewki skupiającej (zwanej jej osią optyczną), po przejściu przez soczewkę, spotyka się w przybiżeniu w jednym punkcie F zwanym ogniskiem soczewki (Rys. a). Odegłość tego punktu od płaszczyzny środkowej soczewki nazywamy ogniskową soczewki. Można udowodnić że ognisko eżące po drugiej stronie
2 soczewki, znajduje się w tej samej odegłości od soczewki (nawet jeżei soczewka nie jest symetryczna). Można też wykazać, że światło wybiegające z ogniska, po przejściu przez soczewkę, biegnie równoege do osi optycznej. W przypadku soczewki rozpraszającej, w ognisku soczewki przecinają się tyko wsteczne przedłużenia promieni, które po przejściu przez soczewkę są rozbieżne (Rys. b). Ogniskową takiej soczewki uważamy za ujemną, a więc odegłość miedzy ogniskiem i soczewką wynosi w tym przypadku. Jeżei złożymy dwie soczewki o różnych ogniskowych i (soczewki muszą znajdować się bezpośrednio jedna przy drugiej), to taki zestaw działa jak soczewka o ogniskowej spełniającej związek (.) czyi ogniskowa takiego układu soczewek wynosi. (.) Obrazy tworzone przez soczewki skupiające y A B () () F F (3) x S O S B' A' Rys. Konstrukcja obrazu powstającego w soczewce skupiającej. Rozważmy układ przedstawiony na rysunku. Podwójna strzałka na środku jest symboem soczewki skupiającej, świeczka po ewej posłuży jako świecący przedmiot. Świecą wszystkie punkty świeczki: płomień świeci światłem własnym, pozostałe punkty - światłem odbitym (rozproszonym). Tak wiec każdy punkt przedmiotu wysyła rozbieżną wiązkę światła o barwie i natężeniu odpowiadających barwie i jasności danego punktu. Część tego światła pada na soczewkę. Prześedzimy, co dzieje się ze światłem opuszczającym dany punkt przedmiotu (wybraiśmy płomień) i padającym na soczewkę. Można udowodnić, że taka rozbieżna wiązka, nadbiegająca z jednego punktu, po przejściu przez soczewkę skupiającą, przetnie się za nią w przybiżeniu w jednym punkcie. Wyznaczymy go graicznie, jak na Rys.. W tym ceu rozważymy trzy szczegóne promienie: () promień równoegły do osi optycznej () promień przechodzący przez środek soczewki (3) promień przechodzący przez ognisko F.
3 Promień (), po przejściu przez soczewkę, przejdzie przez jej prawe ognisko F. Da promienia () soczewka zachowa się jak zwykła szyba i nie zmieni jego kierunku. Te dwa promienie przecinają się w punkcie, gdzie utworzy się obraz płomienia. Już tyko da kontroi sprawdzamy bieg promienia (3), który, jako przechodzący przez ognisko F, po przejściu przez soczewkę pobiegnie równoege do osi optycznej i dobiegnie do wyznaczonego już punktu przecięcia. Podobną konstrukcję naeżałoby wykonać da wiązek promieni opuszczających pozostałe punkty przedmiotu: każda z tych wiązek przetnie się w koejnych punktach obrazu. Obraz jak widać jest odwrócony. Możemy go zobaczyć na dwa sposoby: abo ustawimy ekran, na którym wszystkie wiązki promieni świetnych utworzą zestaw świecących punktów składających się na obraz, abo możemy spojrzeć z prawej strony (w ewo, wzdłuż osi optycznej oczywiście bez ekranu) wpuszczając do oka wiązki promieni, które, po przecięciu się, biegną już jako rozbieżne, czyi tak, jakby na miejscu obrazu stał świecący przedmiot. Naeży zastanowić się, daczego nie widać wtedy obrazu całego przedmiotu, tyko tę jego część, która wypada na te soczewki (odpowiedź na to pytanie naeży umieścić w sprawozdaniu). Znajdźmy położenie płaszczyzny, w której utworzy się obraz. Odegłość przedmiotu od soczewki niech wynosi x. Gdyby zachodziło x =, to rozbieżne wiązki światła padającego na soczewkę z przedmiotu, po przejściu przez soczewkę byłyby wiązkami równoegłymi, czyi przecinałyby się w nieskończoności. Datego da uzyskania obrazu musimy przedmiot ustawić w odegłości x większej od (bo wtedy wiązki promieni docierających do soczewki są mniej rozbieżne i soczewka już może je skupić). Z podobieństwa pary trójkątów S OF i A ' B' F, przy uwzgędnieniu równości S O AB oraz F B' y mamy: AB A' B' y a z podobieństwa trójkątów ABF i S OF podobnie otrzymujemy: AB x. A' B' y Dzieąc te równania stronami dostajemy x prowadzi do związku zwanego równaniem soczewki:,, co po krótkim rachunku, (.3) x y Zauważmy, że gdy przedmiot stoi bardzo daeko (duża wartość odegłości x), to zachodzi w przybiżeniu y (obraz powstaje w pobiżu ogniska). 3
4 Wyznaczanie ogniskowej soczewki skupiającej na podstawie równania soczewki Da uzyskania obrazu odegłość ekranu od przedmiotu musi być większa od czterokrotnej ogniskowej soczewki. Takie ustawienie daje gwarancję, że między przedmiotem i ekranem znajdziemy takie położenie soczewki, przy którym na ekranie powstanie ostry obraz przedmiotu. Z równania soczewki wynika bowiem zaeżność x yx. (.4) x x Ustaiiśmy już, że soczewka skupiająca utworzy obraz na odpowiednio ustawionym ekranie, gdy x. Z wykresu unkcji y x widać, że gdy x rośnie od wartości, to y maeje od nieskończoności. Przygądając się uważnie wykresowi można zauważyć, że suma x+ y, będąca odegłością przedmiotu od obrazu, początkowo maeje, osiągając najmniejszą wartość da x= y, a potem znowu rośnie. Ta najmniejsza wartość wynosi 4, co można łatwo sprawdzić wstawiając do wzoru (.4) warunek x= y. Pomiar będzie poegał na wyznaczeniu odegłości x i y a następnie obiczeniu ogniskowej: y xy x x. (.5) x y Układ doświadczany do wyznaczania ogniskowych w oparciu o równanie soczewki przestawiony jest schematycznie na Rys. 3. przedmiot źródłoświatła x y soczewka ekran Rys. 3. Ława optyczna do wyznaczania ogniskowych soczewek. Wyznaczanie ogniskowej soczewki skupiającej metodą Bessea Wykonując powyżej opisany pomiar zapewne zauważyiśmy, że przy ustaonej odegłości ( > 4) można znaeźć dwa położenia soczewki, dające ostry obraz. Przyczynę zrozumiemy rozwiązując równanie służące wyznaczeniu tego położenia. Da ustaonej odegłości mamy y = -x i równanie soczewki (.3) można zapisać w postaci: x x czyi x x 0 4
5 a więc są dwa rozwiązania: x 4, oraz x 4 (pamiętamy, że 4, więc wyrażenie pod pierwiastkiem jest na pewno dodatnie). x x d Rys. 4. Metoda Bessea wyznaczania ogniskowych soczewek. Pomiar będzie tym razem poegał na wyznaczeniu odegłości d obydwu położeń soczewki dających ostry obraz przedmiotu (Rys.4). Znając tę odegłość, równą wg teorii d x x 4, wyznaczymy ogniskową (po przekształceniach): d. (.6) 4 Wady soczewek Wszystkie powyższe wywody teoretyczne naeży traktować jako przybiżone modee. W szczegóności nie jest prawdą, że rozważane wiązki promieni, po przejściu przez soczewkę, skupiają się dokładnie w jednym punkcie. Skutkuje to oczywiście nieostrością obrazów uzyskiwanych za pomocą prostych, pojedynczych soczewek. Mechanizmy powstawania tych niedokładności są różne tu omówimy podstawowe trzy z nich: aberrację seryczną, aberrację chromatyczną i astygmatyzm. Aberracja seryczna. Okazuje się, że w przypadku soczewek o powierzchniach serycznych, promienie przechodzące przez ich skraj skupiają się nieco biżej soczewki, niż te przechodzące przez okoicę środka. Tak więc gdyby występowała tyko ta wada optyczna, to ognisko, zamiast być punktem, byłoby krótkim odcinkiem eżącym na osi optycznej. W rzeczywistości jednak na aberrację seryczną nakładają się też inne niedoskonałości soczewki, o czym niżej. Aberracja chromatyczna. Znając rozszczepiające działanie pryzmatu mamy świadomość zaeżności współczynnika załamania światła od długości ai świetnej. Światło białe jest mieszanką a o różnych długościach, tak więc spodziewamy się, że ognisko (nawet to ideane, punktowe) da każdej długości ai, czyi da każdej barwy, będzie w innym miejscu. Najsiniej załamuje się światło ioetowe, więc ognisko ioetowe będzie eżało najbiżej soczewki. Ogniskowe odpowiadające koejnym barwom (niebieskiej, zieonej, żółtej i czerwonej) będą coraz dłuższe. 5
6 Astygmatyzm. Astygmatyzm jest wadą, która ujawnia się, gdy promienie padają na soczewkę pod kątem innym, niż kąt prosty (a prawie zawsze tak jest). Jeżei na skręconą wzgędem osi ławy soczewkę (na rysunku 5 mamy widok z góry) skierujemy wiązkę równoegłą, to okaże się że ogniskowa da promieni eżących w płaszczyźnie napiętej na pionie i osi ławy jest nieco dłuższa od ogniskowej da promieni eżących w płaszczyźnie poziomej. o o 5 0 Rys. 5. Ława optyczna do badania astygmatyzmu soczewek grubych (widok z góry). Zjawisko to zaobserwujemy stosując specjanie przygotowany przedmiot złożony z inii poziomych i pionowych - obrazy tych zespołów inii będą powstawały w różnych płaszczyznach: obrazy inii pionowych biżej soczewki, obrazy poziomych daej.. Przebieg pomiarów.. Ogniskowa soczewki wyznaczana bezpośrednio z równania soczewki Orientacyjną i bardzo przybiżoną wartość ogniskowej soczewki ustaamy rzutując na dłoń obraz odegłego przedmiotu (ampa na korytarzu, okno odegłe o kika metrów). Wracamy na stanowisko i na ławie optycznej ustawiamy świecący przedmiot i ekran we wzajemnej odegłości wyraźnie większej, niż czterokrotność ogniskowej, ustaonej wcześniej w przybiżeniu. Po wybraniu i ustaeniu pozycji przedmiotu i ekranu na ławie optycznej (od razu zapisujemy te dane, wraz z szacowanymi niepewnościami odczytu) ustawiamy na ławie soczewkę w uchwycie i szukamy takiego jej położenia, aby na ekranie powstał ostry obraz przedmiotu. Zapisujemy położenie soczewki. Czynność powtarzamy 0-krotnie, czyi, nie patrząc na wskaźnik położenia i nie sugerując się poprzednimi odczytami, dziesięciokrotnie szukamy położenia soczewki dającego ostry obraz. Obracamy soczewkę w uchwycie o 80 stopni i powtarzamy całą procedurę. Takie postępowanie posłuży sprawdzeniu, czy płaszczyzna soczewki przechodzi dokładnie przez oś jej uchwytu i wskaźnik położenia na ławie. Sprawa wyjaśni się dopiero przy opracowywaniu wyników, kiedy porównamy obydwa wyiczone średnie położenia. Może się okazać, że te średnie położenia będą się od siebie różniły o wiekość porównywaną ze standardowymi odchyeniami średnich, obiczonymi w zwykły sposób da każdej z serii dziesięciu pomiarów. Gdybyśmy wtedy do daszych rachunków przyjęi średnie położenie soczewki z jednej tyko z dwóch serii pomiarów, to do wyiczonego da tej serii odchyenia standardowego średniej naeżałoby dodać połowę wspomnianej różnicy jako błąd systematyczny, obciążający tę serię. Postąpimy jednak inaczej: obiczymy średnią arytmetyczną da wszystkich dwudziestu pomiarów i poiczymy odchyenie standardowe da tej łącznej serii, co uwoni nas w tym przypadku od obowiązku uwzgędnienia błędu 6
7 systematycznego wynikającego z wadiwej konstrukcji uchwytu. Nie oznacza to oczywiście, że mamy zapomnieć o błędach systematycznych (zapisanych już wcześniej) wynikających z wadiwego odczytu położeń przedmiotu i ekranu... Ogniskowa soczewki wyznaczana metodą Bessea Metoda Bessea uchodzi za bardziej precyzyjną od tej poprzedniej, a to z tej przyczyny, że automatycznie uwania nas od wyżej opisanych niedogodności płynących z możiwego nieprecyzyjnego wykonania uchwytu soczewki. Tak więc dziesięciokrotnie znajdujemy obydwa położenia soczewki dające ostre obrazy, zapisując wyniki na bieżąco..3. Wyznaczanie ogniskowej soczewki rozpraszającej Tworzymy układ złożony z dwóch stykających się soczewek: jednej skupiającej, której ogniskową znajdziemy później na podstawie poprzednich pomiarów, i drugiej, rozpraszającej, a więc o ujemnej, nieznanej ogniskowej. Soczewki trzeba tak dobrać, aby zestaw skupiał światło. Metodą Bessea mierzymy ogniskową zestawu i na podstawie wzoru (.) wyiczamy ogniskową. Układ ten ma mniejszą zdoność skupiającą, niż sama soczewka o ogniskowej (bo ta druga rozprasza), więc (ujemny mianownik), czyi 0, czego oczekiwaiśmy..4. Obserwacja wad soczewek Zgromadzone oprzyrządowanie (przesłony, itry barwne itd.) umożiwia: usuwanie z wiązki równoegłej promieni przyosiowych abo peryeryjnych (da zaobserwowania aberracji serycznej); przepuszczanie przez soczewkę światła o okreśonej barwie (ujawni się aberracja chromatyczna); odwzorowywanie przez skręconą soczewkę obiektów iniowych poziomych ub pionowych (zobaczymy skutki astygmatyzmu). Wykorzystamy tu zestaw inii poziomych i pionowych naniesionych na podświetoną płytkę, wykorzystywaną jako przedmiot. Przy ustaonym położeniu skręconej soczewki obrazy inii pionowych powstaną biżej soczewki, niż tych poziomych, co stwierdzimy, manewrując odpowiednio ekranem. W sprawozdaniu naeży zamieścić szczegółowy opis czynności, które pozwoiły zaobserwować wymienione wyżej trzy eekty. 3. Opracowanie wyników 3.. Pomiar ogniskowej bezpośrednio z równania Opracowanie wyników da tego pomiaru będzie poegało na wyiczeniu odegłości obrazu od przedmiotu (będzie to różnica dwóch położeń ustaonych na początku, obarczona 7
8 niepewnością systematyczną sys, którą oszacujemy, ogądając zestaw pomiarowy) i średniej wartości odegłości x soczewki od przedmiotu (z dwudziestu pomiarów rachunki naeży wykonać np. za pomocą programu Origin dostępnego w Pracowni wraz z instrukcją). Z tych danych obiczamy wartość ogniskowej: xy x( x). x y Niepewność zupełnej: wyznaczonej w ten sposób ogniskowej obiczymy metodą różniczki x x x x x Źródłem niepewności x jest oszacowany przez nas błąd systematyczny odczytu położenia przedmiotu (początek odcinka x) i niepewność średniego położenia soczewki (koniec odcinka x). Naeży pamiętać o tym, że niepewność x jest sumą (nie różnicą!) tych dwóch niepewności. Wspomnianą niepewność średniej z dwudziestu pomiarów obiczamy wykorzystując np. program Origin. Niepewność z koei jest sumą oszacowanych wcześniej niepewności systematycznych da odczytu położenia przedmiotu (początek odcinka ) i obrazu (koniec odcinka ). 3.. Pomiar ogniskowej metodą Bessea. Metodą różniczki zupełnej obiczamy niepewność wyznaczonej tą metodą ogniskowej d : 4 d x d d d 4. 4 Odchyenie d jest sumą odchyeń standardowych da obydwu średnich położeń soczewki (czyi położeń końców odcinka d), - tu ponownie korzystamy np. z programu Origin. Niepewność była omówiona wcześniej. Naeży porównać ze sobą niepewności metodami Pomiar ogniskowej soczewki rozpraszającej Obiczamy niepewność ogniskowej metodą różniczki zupełnej: da ogniskowej wyznaczonej obydwoma Niepewność ogniskowej zestawu wyiczymy w opisany wyżej sposób, właściwy da metody Bessea. Niepewność ogniskowej soczewki skupiającej obiczyiśmy już wcześniej.. 8
Wyznaczanie ogniskowych soczewek i badanie ich wad
O Wyznaczanie ogniskowych soczewek i badanie ich wad Celem ćwiczenia jest wyznaczenie ogniskowych cienkich soczewek: skupiającej (w oparciu o równanie soczewki i metodą Bessela) i rozpraszającej (za pomocą
Wyznaczanie ogniskowych soczewek i badanie ich wad.
O. Wyznaczanie ogniskowych soczewek i badanie ich wad. I. Wstęp teoretyczny. Soczewki Przyjmiemy, Ŝe powierzchnie soczewek są ragmentami ser. Powierzchnie te mogą być wklęsłe lub wypukłe (w szczególności
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
Doświadczalne wyznaczanie ogniskowej cienkiej soczewki skupiającej
Doświadczalne wyznaczanie ogniskowej cienkiej skupiającej Wprowadzenie Soczewka ciało przezroczyste dla światła ograniczone zazwyczaj dwiema powierzchniami kulistymi lub jedną kulistą i jedną płaską 1.
WYZNACZANIE OGNISKOWYCH SOCZEWEK
WYZNACZANIE OGNISKOWYCH SOCZEWEK Cel ćwiczenia:. Wyznaczenie ogniskowej cienkiej soczewki skupiającej.. Wyznaczenie ogniskowej cienkiej soczewki rozpraszającej (za pomocą wcześniej wyznaczonej ogniskowej
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.
Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności
Ć W I C Z E N I E N R O-3
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
Ćwiczenie nr 53: Soczewki
Wydział Imię i nazwisko.. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaiczenia OCENA Ćwiczenie nr : Soczewki Ce ćwiczenia
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej
Pomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny
f = -50 cm ma zdolność skupiającą
19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło
+OPTYKA 3.stacjapogody.waw.pl K.M.
Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w
SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK
SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK Temat: Soczewki. Zdolność skupiająca soczewki. Prowadzący: Karolina Górska Czas: 45min Wymagania szczegółowe podstawy programowej (cytat): 7.5) opisuje (jakościowo)
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia
Ć W I C Z E N I E N R O-4
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-4 BADANIE WAD SOCZEWEK I Zagadnienia do opracowania Równanie soewki,
Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki
Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia
Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.
msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych
Człowiek najlepsza inwestycja FENIKS
FENIKS - długoalowy program odbudowy, popularyzacji i wsagania izyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i inormatycznych uczniów Pracownia Fizyczna
Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
WOJSKOWA AKADEMIA TECHNICZNA
1 WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ NOWYCH TECHNOLOGII I CHEMII FIZYKA Ćwiczenie laboratoryjne nr 43 WYZNACZANIE ABERRACJI SFERYCZNEJ SOCZEWEK I ICH UKŁADÓW Autorzy: doc. dr inż. Wiesław Borys dr inż.
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1
Załamanie na granicy ośrodków
Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018
Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i
35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2
Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,
Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego
1 z 7 JM-test-MathJax Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego Korekta 24.03.2014 w Błąd maksymalny (poprawione formuły na niepewności maksymalne dla wzorów 41.1 i 41.11)
Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
Optyka 2012/13 powtórzenie
strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono
Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został
Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf
B Dodatek C f h A x D y E G h Z podobieństwa trójkątów ABD i DEG wynika z h x a z trójkątów DC i EG ' ' h h y ' ' to P ( ) h h h y f to ( 2) y h x y x y f ( ) i ( 2) otrzymamy to yf xy xf f f y f h f yf
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.
Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.
OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o
- 1 - OPTYKA - ĆWICZENIA
- 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.
LABORATORIUM Z FIZYKI
Projekt Plan rozwoj Politechniki Częstochowskiej współinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Nmer Projekt: POKL.04.0.0-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 6 Wyznaczanie ogniskowych soczewek ze wzoru soczewkowego i metodą Bessela Kalisz, luty 2005 r. Opracował: Ryszard
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH
Ćwiczenie 77 E. Idczak POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH Cel ćwiczenia: zapoznanie się z procesem wytwarzania obrazów przez soczewki cienkie oraz z metodami wyznaczania odległości ogniskowych
ŚWIATŁO I JEGO ROLA W PRZYRODZIE
ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw
20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.
Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
Optyka geometryczna MICHAŁ MARZANTOWICZ
Optyka geometryczna Optyka geometryczna światło jako promień, opis uproszczony Optyka falowa światło jako fala, opis pełny Fizyka współczesna: światło jako cząstka (foton), opis pełny Optyka geometryczna
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ WADY SOCZEWEK 1. Cel dwiczenia Zapoznanie z niektórymi wadami soczewek i pomiar aberracji sferycznej, chromatycznej i astygmatyzmu badanych soczewek. 2. Zakres wymaganych
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Wyznaczanie współczynnika załamania światła
Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie
STOLIK OPTYCZNY 1 V Przyrząd jest przeznaczony do wykonywania ćwiczeń uczniowskich z optyki geometrycznej.
STOLIK OPTYCZNY 1 V 7-19 Przyrząd jest przeznaczony do wykonywania ćwiczeń uczniowskich z optyki geometrycznej. 6 4 5 9 7 8 3 2 Rys. 1. Wymiary w mm: 400 x 165 x 140, masa 1,90 kg. Na drewnianej podstawie
Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).
Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny
4.8 Wyznaczanie ogniskowych soczewek i badanie wad soczewek(o2)
204 Fale 4.8 Wyznaczanie ogniskowych soczewek i badanie wad soczewek(o2) Celem ćwiczenia jest pomiar ogniskowych soczewek skupiających i rozpraszających oraz badanie wad soczewek: aberracji sferycznej,
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Wykład XI. Optyka geometryczna
Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie
Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.
Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy
OPTYKA W INSTRUMENTACH GEODEZYJNYCH
OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.
Soczewki. Ćwiczenie 53. Cel ćwiczenia
Ćwiczenie 53 Soczewki Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej. Obserwacja i pomiar wad odwzorowań
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność.
Soczewki konstrukcja obrazu Krótkowzroczność i dalekowzroczność. SOCZEWKA jest to przezroczyste ciało ograniczone powierzchniami kulistymi Soczewki mogą być Wypukłe Wklęsłe i są najczęściej skupiające
SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach
Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w
Optyka. Wykład X Krzysztof Golec-Biernat. Zwierciadła i soczewki. Uniwersytet Rzeszowski, 20 grudnia 2017
Optyka Wykład X Krzysztof Golec-Biernat Zwierciadła i soczewki Uniwersytet Rzeszowski, 20 grudnia 2017 Wykład X Krzysztof Golec-Biernat Optyka 1 / 20 Plan Tworzenie obrazów przez zwierciadła Równanie zwierciadła
Wyznaczanie zależności współczynnika załamania światła od długości fali światła
Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali
Katedra Fizyki i Biofizyki UWM, Instrukcje do ćwiczeń laboratoryjnych z biofizyki. Maciej Pyrka wrzesień 2013
M Wyznaczanie zdolności skupiającej soczewek za pomocą ławy optycznej. Model oka. Zagadnienia. Podstawy optyki geometrycznej: Falowa teoria światła. Zjawisko załamania i odbicia światła. Prawa rządzące
Projekt Czy te oczy mogą kłamac
Projekt Czy te oczy mogą kłamac Zajęcia realizowane metodą przewodniego tekstu Cel główny: Rozszerzenie wiedzy na temat mechanizmu widzenia. Treści kształcenia zajęć interdyscyplinarnych: Fizyka: Rozchodzenie
OPTYKA GEOMETRYCZNA Własności układu soczewek
OPTYKA GEOMETRYCZNA Własności układu soczewek opracował: Dariusz Wardecki Wstęp Soczewką optyczną nazywamy bryłę z przezroczystego materiału, ograniczoną (przynajmniej z jednej strony) zakrzywioną powierzchnią
Ć W I C Z E N I E N R O-1
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O- WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ SPEKTROMETRU
Wyznaczanie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 26 V 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczanie długości fali świetlnej metodą pierścieni Newtona
Plan wynikowy (propozycja)
Plan wynikowy (propozycja) 2. Optyka (co najmniej 12 godzin lekcyjnych, w tym 1 2 godzin na powtórzenie materiału i sprawdzian bez treści rozszerzonych) Zagadnienie (tematy lekcji) Światło i jego właściwości
Ć W I C Z E N I E N R O-6
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-6 WYZNACZANIE DŁUGOŚCI FAL PODSTAWOWYCH BARW W WIDMIE ŚWIATŁA BIAŁEGO
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders
I PRACOWNIA FIZYCZNA, UMK TORUŃ
I PRACOWNIA FIZYCZNA, UMK TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W SZKLE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA Instrukcje wykonali: G. Maciejewski, I. Gorczyńska
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis
Problemy optyki geometrycznej. Zadania problemowe z optyki
. Zadania problemowe z optyki I LO im. Stefana Żeromskiego w Lęborku 3 lutego 2012 Zasada Fermata Sens fizyczny zasady Zasada, sformułowana przez Pierre a Fermata w 1650 roku dotyczy czasu przejścia światła
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza
ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia
Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej.
STOLIK OPTYCZNY V 7-19 Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. Na drewnianej podstawie (1) jest umieszczona mała Ŝaróweczka (2) 3,5 V, 0,2 A, którą moŝna
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
TABELA INFORMACYJNA Imię i nazwisko autora opracowania wyników: Klasa: Ocena: Numery w dzienniku
TABELA INFORMACYJNA Imię i nazwisko autora opracowania wyników: Klasa: Ocena: Numery w dzienniku Imiona i nazwiska pozostałych członków grupy: Data: PRZYGOTOWANIE I UMIEJĘTNOŚCI WEJŚCIOWE: Należy posiadać
Wyznaczanie stałej słonecznej i mocy promieniowania Słońca
Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Jak poznać Wszechświat, jeśli nie mamy bezpośredniego dostępu do każdej jego części? Ta trudność jest codziennością dla astronomii. Obiekty astronomiczne
SPRAWDZIAN NR Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek).
SPRAWDZIAN NR 1 JOANNA BOROWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek). Dokończ zdanie. Wybierz stwierdzenie A albo
TEST nr 1 z działu: Optyka
Grupa A Testy sprawdzające TEST nr 1 z działu: Optyka imię i nazwisko W zadaniach 1. 17. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. klasa data 1 Gdy światło rozchodzi się w próżni, jego prędkć
Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją
CZĘŚĆ A CZŁOWIEK Pytania badawcze: Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją Czy obraz świata jaki rejestrujemy naszym okiem jest zgodny z rzeczywistością? Jaki obraz otoczenia
Ława optyczna. Podręcznik dla uczniów
Podręcznik dla uczniów Ława optyczna Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza /2, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1
Włodzimierz Wolczyński 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 ODBICIE ŚWIATŁA. ZWIERCIADŁA Do analizy obrazów w zwierciadle sferycznym polecam aplet fizyczny http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA
Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego
mgr Mateusz Wojtaszek, dr Dagmara Sokołowska Dodatek A Promień światła zawsze wraca do punktu, z którego został wysłany.
Poniższe dodatki są przeznaczone dla nauczycieli. Kolorem czerwonym na rysunkach zaznaczono bieg promieni padających na lustra, zwierciadła i soczewki. Proponowane dodatki są rozszerzeniem nieobowiązkowym
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Badamy jak światło przechodzi przez soczewkę - obrazy. tworzone przez soczewki.
1 Badamy jak światło przechodzi przez soczewkę - obrazy tworzone przez soczewki. Czas trwania zajęć: 2h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń:
Optyka. Matura Matura Zadanie 24. Soczewka (10 pkt) 24.1 (3 pkt) 24.2 (4 pkt) 24.3 (3 pkt)
Matura 2006 Zadanie 24. Soczewka (10 pkt) Optyka W pracowni szkolnej za pomocą cienkiej szklanej soczewki dwuwypukłej o jednakowych promieniach krzywizny, zamontowanej na ławie optycznej, uzyskiwano obrazy
Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne
POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu