Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego"

Transkrypt

1 Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki CZŁOWIEK NAJLEPSZA INWESTYCJA Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie

2 DANE INFORMACYJNE Nazwa szkoły: Zespół Szkół Przyrodniczo-Politechnicznych w Marszewie i ID grupy: Opiekun: Zespół Szkół nr 1 w Pyrzycach 97/88_MF_G1 i 97/30_MF_G1 Dobromira Zdunek i Agnieszka Wójcicka Kompetencja: matematyczno-fizyczne Temat projektowy: Różne własności liczb naturalnych Semestr/rok szkolny: semestr II r.szk.2010/11

3 RÓŻNE WŁASNOŚCI LICZB NATURALNYCH Krótka historia liczby Liczby pierwsze Sito Eratostenesa Liczby pierwsze Mersenne a Liczba doskonała Liczby zaprzyjaźnione Ciekawe liczby Liczby Fibonacciego Trójkąt Pascala Liczby Fermata Ciekawostki

4 KRÓTKA HISTORIA LICZBY uważa się, że po raz pierwszy liczb zaczęto używać ok lat p.n.e. Z tego okresu pochodzą kości na których znaleziono ślady nacięć, uważane za próbę liczenia. Do najstarszych znaków cyfrowych należą znaki babilońskie. Liczby babilońskie są kombinacjami trzech znaków: jedynki, dziesiątki i setki. Babilończycy posługiwali się systemem pozycyjnym i układem sześćdziesiątkowym. W tym systemie znak jedynki może oznaczać: 1, 60, 1, 60, 60 2 itd. Dla wyrażenia zera pisali dwa pochyłe znaki jedynki. Ślady babilońskiej numeracji sześćdziesiątkowej odnajdujemy obecnie na przykład w rachubie czasu (godziny, minuty, sekundy),w używanych czasem nazwach kopa (60), mendel (15), tuzin (12), gros (144).

5 Z HISTORII LICZBY Grecy stosowali dwa sposoby zapisu liczb: joński i ateński. Sposobem jońskim liczby wyrażano literami alfabetu.aby napisaną liczbę odróżnić od słowa, pisano nad nią kreskę. Cyfry, którymi obecnie posługujemy się powszechnie, pochodzą od Hindusów. Narody europejskie poznały je dzięki Arabom. Polska była jednym z pierwszych krajów, który wprowadził u siebie cyfry hinduskie, a było to w XIV stuleciu. W XIX wieku Russell zdefiniował po raz pierwszy ściśle liczby naturalne jako moce zbiorów skończonych. Peano w 1889 zaksjomatyzował liczby naturalne. Na początku XX wieku von Neumann stworzył swoją konstrukcję liczb naturalnych. zbiór liczb naturalnych: n={ 0,1,2,3...}. każda liczba naturalna większa od 1 jest albo liczbą pierwszą, albo iloczynem liczb pierwszych.

6 LICZBY PIERWSZE Liczbą pierwszą nazywamy taką liczbę naturalną, która ma tylko dwa różne dzielniki: jeden i samą siebie. Kolejnymi liczbami pierwszymi są: 2, 3, 5, 7, 11, 13, 17 D 2 ={1,2} D 3 ={1,3} D 5 ={1,5} D 7 ={1,7} Liczby 0 i 1 nie są ani pierwsze, ani złożone. W XVIII wieku Christian Goldbach dostrzegł, że dowolna liczba parzysta większa od 4 może być przedstawiona jako suma dwóch liczb pierwszych np. 4 = 2 + 2, 6 = 3 + 3, 8 = 5 + 3, 48 = , 100 = itd. Liczb pierwszych jest nieskończenie wiele (twierdzenie to udowodnił w IV w. p.n.e. matematyk grecki Euklides).

7 SITO ERATOSTENESA W III w. p.n.e. matematyk grecki Eratostenes z Cyreny podał metodę wyznaczania liczb pierwszych, zwaną sitem Eratostenesa. Aby znaleźć wszystkie liczby pierwsze wśród liczb od 1 do 100 należy ustawić liczby w ciąg:

8 Jak znaleźć wszystkie liczby pierwsze od 1 do 100? Skreślamy 1 ponieważ nie jest liczbą pierwszą. Listę rozpoczyna liczba 2. Jest to liczba pierwsza. Należy wykreślić wszystkie liczby większe od 2 i podzielne przez 2. Najmniejszą liczbą po liczbie 2 jest teraz liczba 3 Następnie należy wykreślić z listy wszystkie liczby większe od 3 i podzielne przez 3. Najmniejszą liczbą na liście po liczbie 3 jest liczba 5. Skreślamy teraz wszystkie liczby podzielne przez 5 i większe od 5. Najmniejszą liczbą na liście po liczbie 5 jest liczba 7. Wykreślamy wszystkie jej wielokrotności. W ten sposób można znaleźć wszystkie liczby pierwsze od 1 do 100. Oto one: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

9 LICZBY PIERWSZE MERSENNE A W XVII wieku francuski mnich Marin Mersenne rozpatrywał możliwość istnienia liczb pierwszych postaci 2 n -1. Stwierdził, że 2 n - 1 jest liczbą pierwszą tylko dla n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257. W rzeczywistości Mersenne popełnił 5 błędów. Wykazano w XIX wieku, że: M 61, M 89, M 107 są liczbami pierwszymi; natomiast M 67 i M 257 są liczbami złożonymi. Liczby postaci M n = 2 n - 1, gdzie n jest liczbą pierwszą, a wynik daje liczbę pierwszą nazywamy liczbami Mersenne'a. W 1876 r. E. Lucasowi udało się udowodnić, że jest liczbą pierwszą i przez następnych siedem dekad była to największa liczba pierwsza.

10 POSZUKIWANIE LICZB PIERWSZYCH MERSENNE'A W 1952 roku R. M. Robinson przy użyciu komputera znalazł liczby pierwsze Mersenne'a M 521 i M 607. Były to pierwsze tego rodzaju odkrycia. W chwili obecnej duże liczby pierwsze będące liczbami Mersenne'a poszukuje się za pomocą: metody polegającej na obliczaniu wyrazów pewnego ciągu rekurencyjnego podanego przez E. Lucasa i D.H. Lehmera. projektów obliczeń rozproszonych takich jak GIMPS. Obecnie największą liczbą Mersenne'a jest znaleziona w 2006 roku i licząca cyfr. Mając do dyspozycji coraz to mocniejsze jednostki obliczeniowe, w każdej chwili możemy spodziewać się odkrycia nowej liczby pierwszej Mersenne'a.

11 LICZBA DOSKONAŁA Liczba doskonała to taka liczba, która jest równa sumie wszystkich swoich dzielników mniejszych od niej samej. Dwie liczby doskonałe znane były w starożytności: 6 i 28. D 6 ={1,2,3} 6 = D 28 ={1,2,4,7,14} 28= Zagadnieniem liczb doskonałych zajmował się Euklides (IV w. p.n.e.). to on znalazł dwie Kolejne liczby doskonałe: 496 i = =

12 LICZBA DOSKONAŁA W IX księdze Elementów Euklides podał sposób znajdowania liczb doskonałych parzystych: należy obliczać sumy kolejnych potęg dwójki np Jeżeli któraś z otrzymanych sum okaże się liczbą pierwszą, należy pomnożyć ją przez ostatni składnik i otrzymamy liczbę doskonałą = = = = = = 496 Reguła odnajdowania parzystych liczb doskonałych: N=2 k-1 (2 k -1), gdzie (2 k -1) musi być liczbą pierwszą dla k>1 (naturalnego). Znajdowanie liczb doskonałych według powyższej reguły: k 2 k-1 2 k -1 Liczby doskonałe

13 LICZBA DOSKONAŁA W roku1536 Hudalrichus Regius pokazał, że jest liczbą pierwszą, a więc 2 12 (2 13 1) = jest liczbą doskonałą (piątą). Na początku XVII wieku Cataldi odkrył szóstą i siódmą liczbę doskonałą 2 16 (2 17 1) = ,2 18 (2 19 1) = Dwa tysiące lat po Euklidesie, Leonhard Euler znalazł trzy kolejne liczby doskonałe. W roku 1732: 2 30 (2 31 1) = i pozostawała największą znaną liczbą doskonałą przez 150 lat. W roku 1883 Pervusin pokazał, że 2 60 (2 61 1) jest doskonała. Ostatnią znalezioną "ręcznie" w 1911 roku jest liczba ( ), która ma 173 cyfry w rozwinięciu dziesiętnym.

14 LICZBA DOSKONAŁA DRUGIEGO RODZAJU W roku 1952, po raz pierwszy do poszukiwań liczb doskonałych użyto maszyny liczącej. Do tej pory znano ich tylko 12, w ciągu roku znaleziono kolejne 5. Ostatnią znaleziono w 2001 roku. Największa liczba doskonała: ( ) ( ) liczy ona cyfr w rozwinięciu dziesiętnym. Liczbą doskonałą drugiego rodzaju nazywamy taką liczbę naturalną, która jest równa iloczynowi swoich dzielników właściwych (mniejszych od niej). Na przykład liczba 10 jest taką liczbą bo 10=1 2 5 (1, 2, 5 jej dzielniki bez niej samej).

15 LICZBY ZAPRZYJAŹNIONE Liczby zaprzyjaźnione to para różnych liczb naturalnych takich, że suma dzielników każdej z tych liczb równa się drugiej (nie licząc dzielników przez samą siebie). Pierwsza para takich liczb została podana przez Pitagorasa, są to liczby 220 i 284 (para najmniejszych liczb zaprzyjaźnionych) Dzielniki właściwe liczby 284 to: D 284 ={1,2,4,71,142} 220= (liczba 220 jest sumą dzielników liczby 284) Dzielniki właściwe liczby 220 to: D 220 ={1,2,4,5,10,11,20,22,44,55,110} 284= (liczba 284 jest sumą dzielników liczby 220).

16 HISTORIA LICZB 220 i 284 Gdy zapytano Pitagorasa: "Co to jest przyjaciel?" - odpowiedział: "Przyjaciel to drugi ja; przyjaźń, to stosunek liczb 220 i 284". Stąd podobno pochodzi owa nazwa liczb zaprzyjaźnionych. W starożytności liczbom zaprzyjaźnionym przypisywano znaczenie mistyczne. Starożytni Grecy wierzyli, że amulety z wygrawerowanymi liczbami zaprzyjaźnionymi zapewniają szczęście w miłości. Przez dobre dwa tysiące lat para ta była właściwie jedyną znaną,,powszechnie'', chociaż arabski matematyk z IX wieku, Thabit ibn Kurrah, podaje regułę wyszukiwania liczb zaprzyjaźnionych: jeżeli trzy liczby: oraz są wszystkie liczbami pierwszymi i n>2, to 2npq i 2nr tworzą parę liczb zaprzyjaźnionych.

17 Każda liczba doskonała jest zaprzyjaźniona sama ze sobą. Znanych jest około miliona par liczb zaprzyjaźnionych. Inne pary liczb zaprzyjaźnionych to: 1184 i i i i i i i i i LICZBY ZAPRZYJAŹNIONE Liczbami zaprzyjaźnionymi zajmowali się ci sami matematycy, którzy szukali także liczb pierwszych: Mersenne, Fermat, a także Kartezjusz, Euler. Polski matematyk Jan Brożek znalazł parę liczb zaprzyjaźnionych: i 18416

18 CIEKAWE LICZBY Liczby bliźniacze to dwie liczby pierwsze różniące się o 2. Przykładami par liczb bliźniaczych są: 3 i 5; 5 i 7; 11 i 13 ; 17 i 19; 29 i 31. Nie wiadomo do chwili obecnej, czy istnieje nieskończenie wiele par liczb bliźniaczych. Największą znaną parą liczb bliźniaczych jest para liczb: ( i ) Liczby czworacze to takie liczby pierwsze: p, p+2, p+6, p+8, dające dwie pary liczb bliźniaczych. np.: 5, 7, 11, 13; 11, 13, 17, 19; 191, 193, 197, 199; 821, 823, 827, 829.

19 CZY ZNASZ TE LICZBY? Liczby lustrzane to takie dwie liczby, które są lustrzanym odbiciem, np.: 125 i 521, 68 i 86, 17 i 71, 3245 i Jeżeli napiszemy dowolną liczbę i jej lustrzane odbicie, np.1221, to tak otrzymana liczba jest podzielna przez :11=192 Liczbą automorficzną nazywamy liczbę, której kwadrat kończy się tymi samymi cyframi co sama liczba np.: 5 2 =25, 76 2 =5776, = ,

20 CZY ZNASZ TE LICZBY? Liczby Sophie Germain to takie liczby pierwsze p jeżeli 2p+1 jest także liczbą pierwszą np.: 5, 11, 23, 29, 41. Liczby względnie pierwsze to liczby, które nie mają wspólnego dzielnika. Parą liczb względnie pierwszych jest licznik i mianownik ułamka nieskracalnego,np.6 i 13, 20 i 35. Liczby palindromiczne - liczby naturalne, które czyta się tak samo od początku i od końca. Przykłady takich liczb: 55, 494, 30703, 414,

21 LICZBY TRÓJKĄTNE Nazwa "liczby trójkątne" pochodzi stąd, że każda taka liczba o numerze n jest liczbą np. kół jednakowej wielkości, z których można ułożyć trójkąt równoboczny o boku zbudowanym z n kół. Oto sposób odnajdywania kolejnych liczb trójkątnych i zarazem ich geometryczna ilustracja: Na przykład: 1, 3, 6, 10, 15, 21, 28, 35,...

22 LICZBY KWADRATOWE Nazwa "liczby kwadratowe" pochodzi stąd, że każda taka liczba o numerze n jest liczbą np. kół jednakowej wielkości, z których można ułożyć kwadrat o boku zbudowanym z n kół. Oto sposób odnajdywania kolejnych liczb kwadratowych i zarazem ich geometryczna ilustracja: Na przykład: 1, 4, 9, 16, 25, 36, 49,...

23 LICZBY FIBONACCIEGO Liczby Fibonacciego to liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem dwóch pierwszych) jest sumą dwóch poprzednich (tj. 1,1,2,3,5,8,13, 21, 34,...). Nazwa pochodzi od imienia Leonarda z Pizy zwanego Fibonaccim, który w 1202 podał ten ciąg.

24 Ciąg Fibonacciego to ulubiony ciąg przyrody. Taki ciąg liczbowy opisuje np. liczbę pędów rośliny jednostajnie przyrastającej w latach (np. drzewa) Róże kalafiora zielonego, poczynając od czubka układają się w kształt spiral. Jeśli obliczymy ilość lewo- i prawoskrętnych spiral, to okaże się, że są to liczby z ciągu Fibonacciego. Podobną ilość spiral tworzą ziarna słonecznika czy łuski szyszki.

25 TRÓJKĄT PASCALA Jednym z najbardziej interesujących układów liczbowych jest trójkąt Pascala (od nazwiska Blaise'a Pascala, sławnego francuskiego matematyka i filozofa). Został on tak nazwany, ponieważ liczby, które w nim występują układają się w trójkąt. Trójkąt Pascala tworzy się z liczb naturalnych zgodnie z następującą regułą: W wierzchołku trójkąta oraz wzdłuż boków wychodzących z tego wierzchołka są jedynki. Reszta liczb powstaje w ten sposób, że liczba będąca w kolejnym rzędzie jest sumą dwóch liczb, które są bezpośrednio nad nią.

26 Własności trójkąta Pierwsza przekątna to oczywiście same jedynki, następna przekątna ma liczby naturalne,trzecia przekątna utworzona została z liczb trójkątnych. Czwarta przekątna ma liczby czworościenne Suma liczb w poziomym rzędzie to kolejne potęgi liczby 2. Po usunięciu z trójkąta wszystkich liczb parzystych pozostałe liczby nieparzyste układają się w geometryczny wzór trójkąta Sierpińskiego.

27 LICZBY FERMATA Liczby Fermata to liczby mające postać gdzie n jest liczba całkowitą nieujemną. 3, 5, 17, 257,... Matematyk francuski Pierre de Fermat przypuszczał, że wszystkie liczby mające tę postać są liczbami pierwszymi. Okazało się, że liczby F 0 =3, F 1 =5, F 2 =17, F 3 =257, F 4 =65537 są liczbami pierwszymi, natomiast F 5 = jest liczbą złożoną i dzieli się przez 641.

28 CIEKAWOSTKI O LICZBACH Największa liczba pierwsza ( cyfr), która nie jest liczbą Mersenne'a: Największą liczbą pierwszą poznaną przed erą elektroniki jest 44-cyfrowa tzw. liczba Ferriera: ( ) / 17 znaleziona za pomocą mechanicznego kalkulatora Istnieją liczby pierwsze złożone z kolejnych cyfr np.:23, 67, 4567, , , W dwóch ostatnich liczbach cyfry występują w tak zwanym rosnącym porządku cyklicznym, tzn. po kolei, z tym że po 9 może być 0 lub 1. Trudniej trafić na liczby pierwsze z malejącym porządkiem cyklicznym: 43, 10987, i 1987.

29 CIEKAWOSTKI O LICZBACH Liczba zestawiona z początkowych 38 cyfr rozwinięcia dziesiętnego liczby π, jest pierwsza. Są wielocyfrowe liczby pierwsze, które składają się z samych jedynek np (23-cyfrowa). Liczba nie tylko jest pierwsza, ale liczby otrzymane z niej przez kolejne obcinanie cyfr od prawej też są pierwsze: , , 73939, 7393, 739, 73, 7. Wielkie liczby pierwsze służą do testowania mocy obliczeniowej superkomputerów. Klucze najlepszych szyfrów oparte są na liczbach pierwszych. Są użyteczne przy konstruowaniu kodów korekcyjnych do wyszukiwania błędów w przekazie obrazów i danych (satelity, sondy kosmiczne...) oraz w czytnikach CD wysokiej jakości.

30 BIBLIOGRAFIA W. Sierpiński, Arytmetyka teoretyczna, PWN, Warszawa 1966 W. Sierpiński, Wstęp to teorii liczb, WSiP, Warszawa 1987 J.H. Conway, R.K. Guy Księga Liczb W. Sięrpiński, Teoria liczb, PAN, Warszawa a

31 Dziękujemy za uwagę :

Rozmaitości matematyczne. dr Agnieszka Kozak Instytut Matematyki UMCS

Rozmaitości matematyczne. dr Agnieszka Kozak Instytut Matematyki UMCS Rozmaitości matematyczne dr Agnieszka Kozak Instytut Matematyki UMCS Liczby i zbiory Liczby naturalne Liczby pierwsze Liczby złożone Liczby doskonałe I i II Liczby bliźniacze Liczby zaprzyjaźnione Liczby

Bardziej szczegółowo

Podzielność liczb; iloczyn i suma dzielników

Podzielność liczb; iloczyn i suma dzielników Podzielność liczb; iloczyn i suma dzielników Liczba dzielników Postać (rozkład) kanoniczna każdej liczby N = p α1 1 pα2 2... pαr 1 pαr r. Każdy dzielnik d naszej liczby ma swojego partnera d 1 : N = d

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania

Zadania do samodzielnego rozwiązania Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową

Bardziej szczegółowo

Czy liczby pierwsze zdradzą swoje tajemnice? Czy liczby pierwsze zdradzą swoje tajemnice?

Czy liczby pierwsze zdradzą swoje tajemnice? Czy liczby pierwsze zdradzą swoje tajemnice? Czy liczby pierwsze zdradzą swoje tajemnice? Czy liczby pierwsze zdradzą swoje tajemnice? Wstęp Liczby pierwsze były tematem rozważań uczonych już od wieków. Pierwsze wzmianki na temat liczb pierwszych

Bardziej szczegółowo

Jeśli lubisz matematykę

Jeśli lubisz matematykę Witold Bednarek Jeśli lubisz matematykę Część 3 Opole 011 1 Wielokąt wypukły i kąty proste Pewien wielokąt wypukły ma cztery kąty proste. Czy wielokąt ten musi być prostokątem? Niech n oznacza liczbę wierzchołków

Bardziej szczegółowo

(mniejszych od 10 9 ) podanych przez użytkownika, wypisze komunikat TAK, jeśli są to liczby bliźniacze i NIE, w przeciwnym przypadku.

(mniejszych od 10 9 ) podanych przez użytkownika, wypisze komunikat TAK, jeśli są to liczby bliźniacze i NIE, w przeciwnym przypadku. Zadanie 1 Już w starożytności matematycy ze szkoły pitagorejskiej, którzy szczególnie cenili sobie harmonię i ład wśród liczb, interesowali się liczbami bliźniaczymi, czyli takimi parami kolejnych liczb

Bardziej szczegółowo

Chen Prime Liczby pierwsze Chena

Chen Prime Liczby pierwsze Chena Chen Prime Liczby pierwsze Chena Chen Jingrun Data urodzenia: 22 maj 1933 Data śmierci: 19 marzec 1996 Pochodzi z wielodzietnej rodziny z Fuzhou, Fujian, Chiny. W 1953 roku skończył wydział matematyki

Bardziej szczegółowo

Ciągi liczbowe. - oznacza, że a(1) = a 1, a(2) = a 2, a(n) = a n a 1, a 2, a 3, a 4,... a n a(n) a n

Ciągi liczbowe. - oznacza, że a(1) = a 1, a(2) = a 2, a(n) = a n a 1, a 2, a 3, a 4,... a n a(n) a n Ciągi liczbowe Spis treści Ciąg liczbowy Ciąg liczbowy skończony Ciąg liczbowy nieskończony Przykłady i sposoby określania ciągu, suma n początkowych wyrazów ciągu Suma n początkowych, kolejnych wyrazów

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

LICZBY PIERWSZE. Jan Ciurej Radosław Żak

LICZBY PIERWSZE. Jan Ciurej Radosław Żak LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna

Bardziej szczegółowo

Liczby pierwsze. Jacek Nowicki Wersja 1.0

Liczby pierwsze. Jacek Nowicki Wersja 1.0 Liczby pierwsze Jacek Nowicki Wersja 1.0 Wprowadzenie do liczb pierwszych www.liczbypierwsze.com Wiele liczb naturalnych daje się rozłożyć na czynniki mniejsze np. 10=5*2 lub 111=3*37. Jednak istnieją

Bardziej szczegółowo

Liczby pierwsze. Jacek Nowicki Wersja 0.92

Liczby pierwsze. Jacek Nowicki Wersja 0.92 Jacek Nowicki Wersja 0.92 Wprowadzenie do liczb pierwszych Wiele liczb naturalnych daje się rozłożyć na czynniki mniejsze np. 10=5*2 lub 111=3*37. Jednak istnieją liczby, które nie mogą być rozłożone w

Bardziej szczegółowo

Luty 2001 Algorytmy (8) 2000/2001

Luty 2001 Algorytmy (8) 2000/2001 Algorytm Euklidesa Danymi są dwie nieujemne liczby całkowite m i n. Liczba k jest największym wspólnym dzielnikiem m i n, jeśli dzieli m oraz n i jest największą liczbą o tej własności - oznaczamy ją przez

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Wybrane zagadnienia teorii liczb

Wybrane zagadnienia teorii liczb Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja

Bardziej szczegółowo

Liczby pierwsze. Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku.

Liczby pierwsze. Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku. Liczby pierwsze Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku. Liczbą pierwszą nazywany każdą taką liczbę naturalną, która posiada dokładnie dwa dzielniki naturalne, czyli jest podzielna

Bardziej szczegółowo

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7 Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Liczby definicje, oznaczenia, własności A n n a R a j f u r a, M a t e m a t y k a s e m e s t r, W S Z i M w S o c h a c z e w i e Kody kolorów: pojęcie zwraca uwagę A n n a R a j f u r a, M a

Bardziej szczegółowo

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane

Bardziej szczegółowo

Zestaw zadań dotyczących liczb całkowitych

Zestaw zadań dotyczących liczb całkowitych V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 4A/15 Liczby Fibonacciego Spośród ciągów zdefiniowanych rekurencyjnie, jednym z najsłynniejszych jest ciąg Fibonacciego (z roku 1202)

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 4

Algorytmy i struktury danych. Wykład 4 Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych

Bardziej szczegółowo

LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24

LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24 LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24 x=6 ODP: Podstawą (bazą), w której spełniona jest ta zależność

Bardziej szczegółowo

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska, Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb Carl Friedrich Gauss O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH OPRACOWANIE: MATEUSZ OLSZAMOWSKI KL 6A, ALEKSANDER SUCHORAB

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas

Bardziej szczegółowo

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16 Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności

Bardziej szczegółowo

w. SIERPIŃSKI (Warszawa)

w. SIERPIŃSKI (Warszawa) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria II: WIADOMOŚCI MA.TEMATYCZNE IX (1966) w. SIERPIŃSKI (Warszawa) O podzielności liczb Odczyt popularny, wygłoszony w Warszawie 11 listopada 1964 r. Z

Bardziej szczegółowo

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 25 lutego 2014 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest

Bardziej szczegółowo

Liczby. Wymagania programowe kl. VII. Dział

Liczby. Wymagania programowe kl. VII. Dział Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15 Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15 Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1. Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,

Bardziej szczegółowo

Sumy kwadratów kolejnych liczb naturalnych

Sumy kwadratów kolejnych liczb naturalnych Sumy kwadratów kolejnych liczb naturalnych Andrzej Nowicki 24 maja 2015, wersja kk-17 Niech m < n będą danymi liczbami naturalnymi. Interesować nas będzie równanie ( ) y 2 + (y + 1) 2 + + (y + m 1) 2 =

Bardziej szczegółowo

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Liczba pierwsza to taka liczba n, która posiada dokładnie dwa dzielniki: 1 i

Liczba pierwsza to taka liczba n, która posiada dokładnie dwa dzielniki: 1 i WSTĘP Definicja Liczba pierwsza to taka liczba n, która posiada dokładnie dwa dzielniki: 1 i n. Uwaga: W myśl powyższej definicji 1 NIE jest liczbą pierwszą ponieważ posiada jeden dzielnik naturalny (a

Bardziej szczegółowo

Liczby całkowite. Zadania do pierwszych dwóch lekcji

Liczby całkowite. Zadania do pierwszych dwóch lekcji Matematyka w klasie IE Zadania do zajęć w Marynce Jesień 2012 Liczby całkowite prof. W. Gajda Zagadka Pomyśl sobie jakąś dużą liczbę całkowitą. Dodaj do niej tę samą liczbę. Do uzyskanej sumy dodaj jeszcze

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII.

Wymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII. Przedmiotowy system oceniania z matematyki w klasie VII. Ocena roczna Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

Elementy teorii liczb. Matematyka dyskretna

Elementy teorii liczb. Matematyka dyskretna Elementy teorii liczb Matematyka dyskretna Teoria liczb dziedzina matematyki, zajmująca się badaniem własności liczb (początkowo tylko naturalnych). Jej początki sięgają starożytności. Zajmowali się nią

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2. Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych

Bardziej szczegółowo

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( ) Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 3/10 indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 4/14 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV DOBRY DZIAŁ 1. LICZBY NATURALNE

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV DOBRY DZIAŁ 1. LICZBY NATURALNE WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY DZIAŁ 1. LICZBY NATURALNE dodaje liczby bez przekraczania progu dziesiątkowego, odejmuje liczby w zakresie

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

Matematyka z kluczem

Matematyka z kluczem Matematyka z kluczem Wymagania edukacyjne z matematyki Klasa 4 rok szkolny 2017/2018 Danuta Górak Dział I Liczby naturalne część 1 Wymagania na poszczególne oceny 1. odczytuje współrzędne punktów zaznaczonych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV Dział I Liczby naturalne część 1 Uczeń otrzymuje ocenę dopuszczającą, jeśli: 1. odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki)

Bardziej szczegółowo

Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019

Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 LICZBY Uczeń otrzymuje ocenę dopuszczającą, jeśli: rozpoznaje cyfry używane do zapisu liczb w

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV Ocena Dopuszczający Osiągnięcia ucznia odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje słownie liczby zapisane

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: 1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące

Bardziej szczegółowo

Wrocław, Wstęp do informatyki i programowania: liczby pierwsze. Wydział Matematyki Politechniki Wrocławskiej.

Wrocław, Wstęp do informatyki i programowania: liczby pierwsze. Wydział Matematyki Politechniki Wrocławskiej. Wrocław, 28.11.2017 Wstęp do informatyki i programowania: liczby pierwsze Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Zajmiemy się liczbami pierwszymi... liczby

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH dodawać w pamięci

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

stopień oblicza jeden z czynników, mając iloczyn i drugi czynnik

stopień oblicza jeden z czynników, mając iloczyn i drugi czynnik Liczby i działania zna pojęcie składnika i sumy zna pojęcie odjemnej, odjemnika i różnicy stosuje prawo przemienności pamięciowo dodaje liczby w zakresie 200 bez przekraczani progu dziesiątkowego i z jego

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV I SEMESTR a) Wymagania konieczne (na ocenę dopuszczającą) Obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez

Bardziej szczegółowo

Wielokąty foremne. (Konstrukcje platońskie)

Wielokąty foremne. (Konstrukcje platońskie) Wielokąty foremne (Konstrukcje platońskie) 1 Definicja 1. Wielokąt wypukły nazywa się foremny, jeżeli ma wszystkie kąty równe i wszystkie boki równe. Przykładami wielokątów foremnych są trójkąt równoboczny,

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 20/205 KOD UCZNIA Etap: Data: Czas pracy: szkolny 7 listopada 20 r. 90 minut Informacje

Bardziej szczegółowo

STOSUNEK LICZB PIERWSZYCH DO ICH ILOCZYNÓW

STOSUNEK LICZB PIERWSZYCH DO ICH ILOCZYNÓW 1 STOSUNEK LICZB PIERWSZYCH DO ICH ILOCZYNÓW W rzeczywistości rozmieszczenie liczb pierwszych uzależnione, jest od ścisłego stosunku do swoich iloczynów, a ten wynika ze zdolności do tworzenia identycznych

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2010/11

Jarosław Wróblewski Matematyka Elementarna, lato 2010/11 Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Dane są liczby naturalne m, n. Wówczas dla dowolnej liczby naturalnej k, liczba k jest podzielna

Bardziej szczegółowo

Skrypt 31. Powtórzenie do matury Liczby rzeczywiste

Skrypt 31. Powtórzenie do matury Liczby rzeczywiste Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 31 Powtórzenie do matury

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

PLAN DYDAKTYCZNY Z MATEMATYKI DLA KLASY IV

PLAN DYDAKTYCZNY Z MATEMATYKI DLA KLASY IV PLAN DYDAKTYCZNY Z MATEMATYKI DLA KLASY IV OPRACOWANY W OPARCIU O PROGRAM NAUCZANIA MATEMATYKA Z PLUSEM NUMER TEMAT LEKCJI UWAGI I GŁÓWNE ZAGADNIENIA LEKCJI 1 2 3 LICZBY NATURALNE 1-2 3-4 5-6 7-8 9-11

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje

Bardziej szczegółowo

Liczby geometryczne. Radosław Żak Katolickie Gimnazjum im. Świętej Rodziny z Nazaretu. Kraków Opieka: dr Jacek Dymel

Liczby geometryczne. Radosław Żak Katolickie Gimnazjum im. Świętej Rodziny z Nazaretu. Kraków Opieka: dr Jacek Dymel Liczby geometryczne Radosław Żak Katolickie Gimnazjum im. Świętej Rodziny z Nazaretu Kraków 2016 Opieka: dr Jacek Dymel 1 Spis treści: 1.Wstęp... 3 2.Liczby wielokątne... 4 3.Trzeci wymiar...8 4.Czwarty

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i

Bardziej szczegółowo

SCENARIUSZE ZAJĘĆ DO KLASY II realizowane w ciągu pięciu dni. OPRACOWAŁA: BOŻENA GŁÓWCZYK

SCENARIUSZE ZAJĘĆ DO KLASY II realizowane w ciągu pięciu dni. OPRACOWAŁA: BOŻENA GŁÓWCZYK SCENARIUSZE ZAJĘĆ DO KLASY II realizowane w ciągu pięciu dni. OPRACOWAŁA: BOŻENA GŁÓWCZYK BLOK TEMATYCZNY: CYFRY RZYMSKIE OD I DO XII CELE: poznanie cyfr rzymskich, rozumienie pojęć: cyfra liczba, doba,

Bardziej szczegółowo