Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
|
|
- Andrzej Bukowski
- 10 lat temu
- Przeglądów:
Transkrypt
1 Sieci komputerowe Wykład 9: Elementy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 9 1 / 32
2 Do tej pory chcieliśmy komunikować się efektywnie, teraz chcemy komunikować się też bezpiecznie. Sieci komputerowe (II UWr) Wykład 9 2 / 32
3 Spis treści 1 Szyfrowanie Szyfrowanie symetryczne Szyfrowanie asymetryczne 2 Uwierzytelnianie 3 Certyfikaty Sieci komputerowe (II UWr) Wykład 9 3 / 32
4 Co to właściwie jest bezpieczna komunikacja? Alicja Bob niezabezpieczony kanal dane Pożadane cechy: Poufność (tylko Alicja i Bob wiedza, co jest przesyłane) Uwierzytelnianie (potwierdzanie tożsamości partnera) Sieci komputerowe (II UWr) Wykład 9 4 / 32
5 Co to właściwie jest bezpieczna komunikacja? Alicja Bob niezabezpieczony kanal dane Pożadane cechy: Poufność (tylko Alicja i Bob wiedza, co jest przesyłane) Uwierzytelnianie (potwierdzanie tożsamości partnera) Sieci komputerowe (II UWr) Wykład 9 4 / 32
6 Alicja i Bob? Posługujemy się przykładem Alicji i Boba. Reprezentuje to: komunikację między dwoma osobami komunikację między fizyczna osoba a serwerem/usługa (np. bankiem) komunikację między dwiema usługami (np. wymieniajacymi tablice routingu) Sieci komputerowe (II UWr) Wykład 9 5 / 32
7 Szyfrowanie Poufność Sieci komputerowe (II UWr) Wykład 9 6 / 32
8 Szyfrowanie Jak osiagn ać poufność? Alicja Bob niezabezpieczony kanal dane Szyfrować! Alicja ma do wysłania tekst jawny m. Alicja oblicza i wysyła szyfrogram s = E(m). Bob zna funkcję D = E 1 i oblicza: D(s) = E 1 (E(m)) = m. Sieci komputerowe (II UWr) Wykład 9 7 / 32
9 Szyfrowanie Szyfry monoalfabetyczne (podstawieniowe) Szyfry monoalfabetyczne Funkcja E operuje na pojedynczych literach, przykładowo E zmienia literę a na d, b na h itd. Stosowane już w czasach Juliusza Cezara (wtedy E(a) = (a + 3) mod 26). Jak adwersarz może złamać taki szyfr? Sieci komputerowe (II UWr) Wykład 9 8 / 32
10 Szyfrowanie Szyfry monoalfabetyczne (podstawieniowe) Szyfry monoalfabetyczne Funkcja E operuje na pojedynczych literach, przykładowo E zmienia literę a na d, b na h itd. Stosowane już w czasach Juliusza Cezara (wtedy E(a) = (a + 3) mod 26). Jak adwersarz może złamać taki szyfr? To zależy od tego, co adwersarz (czyli świnia) potrafi! Alicja Bob niezabezpieczony kanal dane Sieci komputerowe (II UWr) Wykład 9 8 / 32
11 Szyfrowanie Szyfry monoalfabetyczne, cd. Alicja niezabezpieczony kanal dane Bob Jak zgadnać E (typy ataków): Atak z wybranym tekstem jawnym: świnia potrafi zmusić Alicję, żeby wysłała wybrany przez świnię tekst. Przykładowo: Pchnąć w tę łódź jeża lub ośm skrzyń fig. Atak ze znanym tekstem jawnym: świnia potrafi podgladn ać kilka par (tekst jawny, szyfrogram). Atak ze znanym szyfrogramem: Świnia ma tylko dostęp do kanału, widzi szyfrogramy analiza statystyczna. Sieci komputerowe (II UWr) Wykład 9 9 / 32
12 Szyfrowanie Szyfry monoalfabetyczne, cd. Alicja niezabezpieczony kanal dane Bob Jak zgadnać E (typy ataków): Atak z wybranym tekstem jawnym: świnia potrafi zmusić Alicję, żeby wysłała wybrany przez świnię tekst. Przykładowo: Pchnąć w tę łódź jeża lub ośm skrzyń fig. Atak ze znanym tekstem jawnym: świnia potrafi podgladn ać kilka par (tekst jawny, szyfrogram). Atak ze znanym szyfrogramem: Świnia ma tylko dostęp do kanału, widzi szyfrogramy analiza statystyczna. Sieci komputerowe (II UWr) Wykład 9 9 / 32
13 Szyfrowanie Szyfry monoalfabetyczne, cd. Alicja niezabezpieczony kanal dane Bob Jak zgadnać E (typy ataków): Atak z wybranym tekstem jawnym: świnia potrafi zmusić Alicję, żeby wysłała wybrany przez świnię tekst. Przykładowo: Pchnąć w tę łódź jeża lub ośm skrzyń fig. Atak ze znanym tekstem jawnym: świnia potrafi podgladn ać kilka par (tekst jawny, szyfrogram). Atak ze znanym szyfrogramem: Świnia ma tylko dostęp do kanału, widzi szyfrogramy analiza statystyczna. Sieci komputerowe (II UWr) Wykład 9 9 / 32
14 Szyfrowanie Szyfry monoalfabetyczne, cd. Alicja niezabezpieczony kanal dane Bob Jak zgadnać E (typy ataków): W każdym przypadku: te szyfry sa trywialne do złamania. Główne zastosowanie praktyczne: ROT-13. Atak z wybranym tekstem jawnym: świnia potrafi zmusić Alicję, żeby wysłała wybrany przez świnię tekst. Przykładowo: Pchnąć w tę łódź jeża lub ośm skrzyń fig. Atak ze znanym tekstem jawnym: świnia potrafi podgladn ać kilka par (tekst jawny, szyfrogram). Atak ze znanym szyfrogramem: Świnia ma tylko dostęp do kanału, widzi szyfrogramy analiza statystyczna. Sieci komputerowe (II UWr) Wykład 9 9 / 32
15 Szyfrowanie Szyfrowanie symetryczne Szyfrowanie symetryczne Szyfrowanie symetryczne Alicja i Bob ustalaja pewien wspólny klucz K. Szyfrogram E K (m) jest funkcja tekstu jawnego m i klucza K. Algorytm obliczajacy E (np. DES lub AES) jest znany wszystkim! Istnieje funkcja deszyfrujaca D = E 1 korzystajaca z klucza, taka że D K (E K (m)) = m. Symetryczność = ten sam klucz jest używany do szyfrowania i deszyfrowania s = E K (m) oblicza D K (s) = m Sieci komputerowe (II UWr) Wykład 9 10 / 32
16 Szyfrowanie Szyfrowanie symetryczne, cd. Szyfrowanie symetryczne Szyfrowanie symetryczne, cd. Algorytm E to zazwyczaj złożenie wielu odwracalnych operacji bitowych (xor, przesunięcia itp) Algorytm D to te odwrotności tych operacji wykonane w odwrotnej kolejności. Funkcje E i D sa szybko obliczalne. Siła kryptograficzna algorytmu zależy głównie od długości klucza (56 bitów w przypadku DES, dla AES). Sieci komputerowe (II UWr) Wykład 9 11 / 32
17 Szyfrowanie Diabeł tkwi w szczegółach Szyfrowanie symetryczne One-Time Pad Szyfrowanie z kluczem symetrycznym. E K (m) = m xor K (klucz musi być co najmniej tak długi jak tekst jawny) Jak bezpieczne jest to szyfrowanie? Matematycznie: na podstawie samego szyfrogramu niemożliwy do złamania (nie dostajemy żadnej informacji poza długościa tekstu) Ale: trywialne odzyskiwanie klucza jeśli znamy tekst jawny! Sieci komputerowe (II UWr) Wykład 9 12 / 32
18 Szyfrowanie Diabeł tkwi w szczegółach Szyfrowanie symetryczne One-Time Pad Szyfrowanie z kluczem symetrycznym. E K (m) = m xor K (klucz musi być co najmniej tak długi jak tekst jawny) Jak bezpieczne jest to szyfrowanie? Matematycznie: na podstawie samego szyfrogramu niemożliwy do złamania (nie dostajemy żadnej informacji poza długościa tekstu) Ale: trywialne odzyskiwanie klucza jeśli znamy tekst jawny! Sieci komputerowe (II UWr) Wykład 9 12 / 32
19 Szyfrowanie Diabeł tkwi w szczegółach Szyfrowanie symetryczne One-Time Pad Szyfrowanie z kluczem symetrycznym. E K (m) = m xor K (klucz musi być co najmniej tak długi jak tekst jawny) Jak bezpieczne jest to szyfrowanie? Matematycznie: na podstawie samego szyfrogramu niemożliwy do złamania (nie dostajemy żadnej informacji poza długościa tekstu) Ale: trywialne odzyskiwanie klucza jeśli znamy tekst jawny! Sieci komputerowe (II UWr) Wykład 9 12 / 32
20 Szyfrowanie Szyfrowanie symetryczne Szyfrowanie symetryczne Główny problem: jak ustalić wspólny klucz K? Rozwiazanie: przesłać innym, zabezpieczonym kanałem (zazwyczaj niepraktyczne / drogie) Lepiej zastosować inne podejście: szyfrowanie asymetryczne (do przesyłania klucza lub całej wiadomości) Sieci komputerowe (II UWr) Wykład 9 13 / 32
21 Szyfrowanie Szyfrowanie symetryczne Szyfrowanie symetryczne Główny problem: jak ustalić wspólny klucz K? Rozwiazanie: przesłać innym, zabezpieczonym kanałem (zazwyczaj niepraktyczne / drogie) Lepiej zastosować inne podejście: szyfrowanie asymetryczne (do przesyłania klucza lub całej wiadomości) Sieci komputerowe (II UWr) Wykład 9 13 / 32
22 Szyfrowanie Szyfrowanie asymetryczne Szyfrowanie asymetryczne, założenia Bob ma dwa klucze klucz publiczny e (na stronie WWW) klucz prywatny d (w sejfie) Istnieje algorytm szyfrujacy E i deszyfrujacy D taki, że dla dowolnej wiadomości m zachodzi D d (E e (m)) = m. s = E e (m) zna: e, m zna: (e, d) oblicza: D d (s) = m podsluchuje: e, s m i d sa trudno obliczalne na podstawie s = E e (m) i e! Sieci komputerowe (II UWr) Wykład 9 14 / 32
23 Efekt Szyfrowanie Szyfrowanie asymetryczne Każdy może wysłać wiadomość do Boba, ale odczytać może ja tylko Bob. Czy takie szyfrowanie jest w ogóle możliwe do zrealizowania? Tak! Idea: pewne odwracalne operacje sa łatwiejsze do wykonania niż ich odwrotności (np. mnożenie liczb pierwszych kontra rozkład na czynniki pierwsze). Przykładowy algorytm: RSA notatki. Uwaga: W przypadku one-time pad mamy bezpieczeństwo teorioinformacyjne (nie da się odczytać szyfrogramu), tutaj mamy bezpieczeństwo kryptograficzne (odczytanie jest bardzo trudne obliczeniowo). Sieci komputerowe (II UWr) Wykład 9 15 / 32
24 Efekt Szyfrowanie Szyfrowanie asymetryczne Każdy może wysłać wiadomość do Boba, ale odczytać może ja tylko Bob. Czy takie szyfrowanie jest w ogóle możliwe do zrealizowania? Tak! Idea: pewne odwracalne operacje sa łatwiejsze do wykonania niż ich odwrotności (np. mnożenie liczb pierwszych kontra rozkład na czynniki pierwsze). Przykładowy algorytm: RSA notatki. Uwaga: W przypadku one-time pad mamy bezpieczeństwo teorioinformacyjne (nie da się odczytać szyfrogramu), tutaj mamy bezpieczeństwo kryptograficzne (odczytanie jest bardzo trudne obliczeniowo). Sieci komputerowe (II UWr) Wykład 9 15 / 32
25 Efekt Szyfrowanie Szyfrowanie asymetryczne Każdy może wysłać wiadomość do Boba, ale odczytać może ja tylko Bob. Czy takie szyfrowanie jest w ogóle możliwe do zrealizowania? Tak! Idea: pewne odwracalne operacje sa łatwiejsze do wykonania niż ich odwrotności (np. mnożenie liczb pierwszych kontra rozkład na czynniki pierwsze). Przykładowy algorytm: RSA notatki. Uwaga: W przypadku one-time pad mamy bezpieczeństwo teorioinformacyjne (nie da się odczytać szyfrogramu), tutaj mamy bezpieczeństwo kryptograficzne (odczytanie jest bardzo trudne obliczeniowo). Sieci komputerowe (II UWr) Wykład 9 15 / 32
26 Efekt Szyfrowanie Szyfrowanie asymetryczne Każdy może wysłać wiadomość do Boba, ale odczytać może ja tylko Bob. Czy takie szyfrowanie jest w ogóle możliwe do zrealizowania? Tak! Idea: pewne odwracalne operacje sa łatwiejsze do wykonania niż ich odwrotności (np. mnożenie liczb pierwszych kontra rozkład na czynniki pierwsze). Przykładowy algorytm: RSA notatki. Uwaga: W przypadku one-time pad mamy bezpieczeństwo teorioinformacyjne (nie da się odczytać szyfrogramu), tutaj mamy bezpieczeństwo kryptograficzne (odczytanie jest bardzo trudne obliczeniowo). Sieci komputerowe (II UWr) Wykład 9 15 / 32
27 Problemy (1) Szyfrowanie Szyfrowanie asymetryczne Problem z szyfrowaniem symetrycznym Jak ustalić wspólny klucz? Sieci komputerowe (II UWr) Wykład 9 16 / 32
28 Problemy (2) Szyfrowanie Szyfrowanie asymetryczne Problem z szyfrowaniem asymetrycznym Sieci komputerowe (II UWr) Wykład 9 17 / 32
29 Problemy (2), cd. Szyfrowanie Szyfrowanie asymetryczne Problem z szyfrowaniem asymetrycznym Skad wiemy, że klucz publiczny Boba faktycznie do niego należy? Sieci komputerowe (II UWr) Wykład 9 18 / 32
30 Problemy (2), cd. Szyfrowanie Szyfrowanie asymetryczne Problem z szyfrowaniem asymetrycznym Skad wiemy, że klucz publiczny Boba faktycznie do niego należy? Scenariusz 1: Alicja spotyka się fizycznie z Bobem i dostaje od niego klucz publiczny. Ale kontakt fizyczny = możliwość ustalenia klucza symetrycznego; po co zawracać sobie głowę kryptografia asymetryczna? Sieci komputerowe (II UWr) Wykład 9 18 / 32
31 Problemy (2), cd. Szyfrowanie Szyfrowanie asymetryczne Problem z szyfrowaniem asymetrycznym Skad wiemy, że klucz publiczny Boba faktycznie do niego należy? Scenariusz 2: Bob wysyła na poczatku komunikacji Jestem Bob, mój klucz publiczny to b. Problem: To ja, Bob. Moj klucz publiczny to s Sieci komputerowe (II UWr) Wykład 9 18 / 32
32 Problemy (2), cd. Szyfrowanie Szyfrowanie asymetryczne Problem z szyfrowaniem asymetrycznym Skad wiemy, że klucz publiczny Boba faktycznie do niego należy? Scenariusz 3: Bob umieszcza swój klucz publiczny na swojej stronie WWW. Prawie dobrze, pod warunkiem, że świnia nie włamie się na stronę WWW i nie podmieni klucza! Sieci komputerowe (II UWr) Wykład 9 18 / 32
33 Problemy (2), cd. Szyfrowanie Szyfrowanie asymetryczne Problem z szyfrowaniem asymetrycznym Skad wiemy, że klucz publiczny Boba faktycznie do niego należy? Rozwiazanie: Certyfikaty. O certyfikatach za chwilę. Sieci komputerowe (II UWr) Wykład 9 18 / 32
34 Uwierzytelnianie Uwierzytelnianie Sieci komputerowe (II UWr) Wykład 9 19 / 32
35 Uwierzytelnianie Normalny scenariusz Założenia Alicja zna klucz publiczny Boba. jeszcze nie wiemy jak to zapewnić w sensowny sposób! Alicja wysyła wiadomość do Boba zaszyfrowana jego kluczem publicznym. Co wiedza poszczególne osoby? Bob nie musi się uwierzytelniać, bo jeśli Alicja wysyła wiadomość zaszyfrowana kluczem publicznym Boba to i tak może ja przeczytać tylko Bob. Ale Bob nie wie, kto tak naprawdę wysłał wiadomość! Sieci komputerowe (II UWr) Wykład 9 20 / 32
36 Uwierzytelnianie Normalny scenariusz Założenia Alicja zna klucz publiczny Boba. jeszcze nie wiemy jak to zapewnić w sensowny sposób! Alicja wysyła wiadomość do Boba zaszyfrowana jego kluczem publicznym. Co wiedza poszczególne osoby? Bob nie musi się uwierzytelniać, bo jeśli Alicja wysyła wiadomość zaszyfrowana kluczem publicznym Boba to i tak może ja przeczytać tylko Bob. Ale Bob nie wie, kto tak naprawdę wysłał wiadomość! Sieci komputerowe (II UWr) Wykład 9 20 / 32
37 Uwierzytelnianie Normalny scenariusz Założenia Alicja zna klucz publiczny Boba. jeszcze nie wiemy jak to zapewnić w sensowny sposób! Alicja wysyła wiadomość do Boba zaszyfrowana jego kluczem publicznym. Co wiedza poszczególne osoby? Bob nie musi się uwierzytelniać, bo jeśli Alicja wysyła wiadomość zaszyfrowana kluczem publicznym Boba to i tak może ja przeczytać tylko Bob. Ale Bob nie wie, kto tak naprawdę wysłał wiadomość! To ja, Alicja. Oto wiadomosc... Sieci komputerowe (II UWr) Wykład 9 20 / 32
38 Uwierzytelnianie Normalny scenariusz Założenia Alicja zna klucz publiczny Boba. jeszcze nie wiemy jak to zapewnić w sensowny sposób! Alicja wysyła wiadomość do Boba zaszyfrowana jego kluczem publicznym. Co wiedza poszczególne osoby? Bob nie musi się uwierzytelniać, bo jeśli Alicja wysyła wiadomość zaszyfrowana kluczem publicznym Boba to i tak może ja przeczytać tylko Bob. Ale Bob nie wie, kto tak naprawdę wysłał wiadomość! Uwaga na marginesie: w przypadku szyfrowania symetrycznego nie mamy tego problemu, bo Alicja udowadnia swoja tożsamość znajomościa klucza (który jest znany przecież tylko Alicji i Bobowi). Sieci komputerowe (II UWr) Wykład 9 20 / 32
39 Uwierzytelnianie Wróćmy do algorytmu RSA Funkcje D i E sa takie same. Klucz prywatny d można zamienić miejscami z publicznym e, tj. dla każdego tekstu m zachodzi nie tylko D d (E e (m)) = m, ale również D e (E d (m)) = m. E d (m) nazywamy podpisem cyfrowym tekstu m. To nie do końca prawda, ale nie będziemy się tym tutaj przejmować. Tylko posiadacz klucza prywatnego d jest w stanie tak podpisać m, ale zweryfikować taki podpis może każdy, kto posiada klucz publiczny e! Jak wykorzystać to w uwierzytelnianiu? Sieci komputerowe (II UWr) Wykład 9 21 / 32
40 Uwierzytelnianie Wróćmy do algorytmu RSA Funkcje D i E sa takie same. Klucz prywatny d można zamienić miejscami z publicznym e, tj. dla każdego tekstu m zachodzi nie tylko D d (E e (m)) = m, ale również D e (E d (m)) = m. E d (m) nazywamy podpisem cyfrowym tekstu m. To nie do końca prawda, ale nie będziemy się tym tutaj przejmować. Tylko posiadacz klucza prywatnego d jest w stanie tak podpisać m, ale zweryfikować taki podpis może każdy, kto posiada klucz publiczny e! Jak wykorzystać to w uwierzytelnianiu? Sieci komputerowe (II UWr) Wykład 9 21 / 32
41 Uwierzytelnianie Wróćmy do algorytmu RSA Funkcje D i E sa takie same. Klucz prywatny d można zamienić miejscami z publicznym e, tj. dla każdego tekstu m zachodzi nie tylko D d (E e (m)) = m, ale również D e (E d (m)) = m. E d (m) nazywamy podpisem cyfrowym tekstu m. To nie do końca prawda, ale nie będziemy się tym tutaj przejmować. Tylko posiadacz klucza prywatnego d jest w stanie tak podpisać m, ale zweryfikować taki podpis może każdy, kto posiada klucz publiczny e! Jak wykorzystać to w uwierzytelnianiu? Sieci komputerowe (II UWr) Wykład 9 21 / 32
42 Złe rozwiazanie Uwierzytelnianie To ja, Alicja Wysylam X oraz Y = E d (X) klucz publiczny: e klucz prywatny: d zna: e = klucz publiczny Alicji Sprawdza, czy E e (Y ) = X Problem: Świnia może nagrać tę transmisję i odtworzyć później w komunikacji z Bobem (nie rozumiejac nawet co jest przesyłane)! Sieci komputerowe (II UWr) Wykład 9 22 / 32
43 Złe rozwiazanie Uwierzytelnianie To ja, Alicja Wysylam X oraz Y = E d (X) klucz publiczny: e klucz prywatny: d zna: e = klucz publiczny Alicji Sprawdza, czy E e (Y ) = X Problem: Świnia może nagrać tę transmisję i odtworzyć później w komunikacji z Bobem (nie rozumiejac nawet co jest przesyłane)! Sieci komputerowe (II UWr) Wykład 9 22 / 32
44 Uwierzytelnianie Uwierzytelnianie za pomoca podpisu cyfrowego To ja, Alicja X Y = E d (X) klucz publiczny: e klucz prywatny: d zna: e = klucz publiczny Alicji Sprawdza, czy E e (Y ) = X Bob wybiera unikatowe, wcześniej niewykorzystywane X Alicja udowadnia w ten sposób że jest posiadaczka klucza prywatnego pasujacego do klucza publicznego Alicji. Sieci komputerowe (II UWr) Wykład 9 23 / 32
45 Certyfikaty Skad wziać czyjś klucz publiczny? I przy szyfrowaniu i przy uwierzytelnianiu wszystko opiera się na znajomości klucza publicznego drugiej strony (tj. na wierze w zwiazek posiadanego klucza publicznego z fizyczna osoba, która znamy). Nie należy ufać kluczom publicznym znalezionym na stronach WWW! Jest pewien sens w ich umieszczaniu, ale i tak wymaga nawiazania kontaktu z fizyczna osoba + wykorzystania funkcji skrótu ( za tydzień). Sieci komputerowe (II UWr) Wykład 9 24 / 32
46 Certyfikaty Skad wziać czyjś klucz publiczny? I przy szyfrowaniu i przy uwierzytelnianiu wszystko opiera się na znajomości klucza publicznego drugiej strony (tj. na wierze w zwiazek posiadanego klucza publicznego z fizyczna osoba, która znamy). Nie należy ufać kluczom publicznym znalezionym na stronach WWW! Jest pewien sens w ich umieszczaniu, ale i tak wymaga nawiazania kontaktu z fizyczna osoba + wykorzystania funkcji skrótu ( za tydzień). Sieci komputerowe (II UWr) Wykład 9 24 / 32
47 Certyfikaty Certyfikaty Sieci komputerowe (II UWr) Wykład 9 25 / 32
48 Certyfikaty Certyfikaty Załóżmy, że mamy: Klucz publiczny pewnej instytucji C. Wiarę w to, że instytucja C świadomie wykorzystuje podpisy cyfrowe. Wiadomość klucz publiczny osoby G to g podpisana przez instytucję C. Na tej podstawie: Potrafimy zweryfikować, że to faktycznie C podpisała powyższa wiadomość. Ufamy osadowi instytucji C. A zatem wiadomość jest prawdziwa mamy klucz publiczny osoby G! Sieci komputerowe (II UWr) Wykład 9 26 / 32
49 Certyfikaty Certyfikaty Załóżmy, że mamy: Klucz publiczny pewnej instytucji C. Wiarę w to, że instytucja C świadomie wykorzystuje podpisy cyfrowe. Wiadomość klucz publiczny osoby G to g podpisana przez instytucję C. Na tej podstawie: Potrafimy zweryfikować, że to faktycznie C podpisała powyższa wiadomość. Ufamy osadowi instytucji C. A zatem wiadomość jest prawdziwa mamy klucz publiczny osoby G! Sieci komputerowe (II UWr) Wykład 9 26 / 32
50 Certyfikaty Certyfikaty Załóżmy, że mamy: Klucz publiczny pewnej instytucji C. Wiarę w to, że instytucja C świadomie wykorzystuje podpisy cyfrowe. Wiadomość klucz publiczny osoby G to g podpisana przez instytucję C. to jest certyfikat Na tej podstawie: Potrafimy zweryfikować, że to faktycznie C podpisała powyższa wiadomość. Ufamy osadowi instytucji C. A zatem wiadomość jest prawdziwa mamy klucz publiczny osoby G! Sieci komputerowe (II UWr) Wykład 9 26 / 32
51 Certyfikaty Urzędy certyfikujace (CA) Instytucje takie jak C nazywamy urzędami certyfikujacymi. Przegladarki WWW maja zaszyta listę kluczy publicznych kilkudziesięciu urzędów certyfikujacych prezentacja. Do bezpiecznej komunikacji z serwerami WWW służy protokół HTTPS = HTTP + SSL. SSL odpowiada za szyfrowanie i uwierzytelnianie. Sieci komputerowe (II UWr) Wykład 9 27 / 32
52 SSL Certyfikaty Przy łaczeniu z serwerem WWW z wykorzystaniem SSL: Serwer WWW wysyła certyfikat (klucz publiczny + dane o stronie) podpisany przez pewne CA. Przegladarka sprawdza, czy posiada klucz publiczny tego CA, jeśli tak to sprawdza prawdziwość podpisu CA na certyfikacie. Przegladarka sprawdza, czy dane o stronie opisuja tę stronę, z która zamierzamy się łaczyć. W tym momencie mamy uwierzytelniony serwer i możemy szyfrować wiadomości dla serwera WWW. Uwaga: W SSL zazwyczaj nie uwierzytelnia się użytkownika, choć jest to teoretycznie możliwe. Sieci komputerowe (II UWr) Wykład 9 28 / 32
53 SSL Certyfikaty Przy łaczeniu z serwerem WWW z wykorzystaniem SSL: Serwer WWW wysyła certyfikat (klucz publiczny + dane o stronie) podpisany przez pewne CA. Przegladarka sprawdza, czy posiada klucz publiczny tego CA, jeśli tak to sprawdza prawdziwość podpisu CA na certyfikacie. Przegladarka sprawdza, czy dane o stronie opisuja tę stronę, z która zamierzamy się łaczyć. W tym momencie mamy uwierzytelniony serwer i możemy szyfrować wiadomości dla serwera WWW. Uwaga: W SSL zazwyczaj nie uwierzytelnia się użytkownika, choć jest to teoretycznie możliwe. Sieci komputerowe (II UWr) Wykład 9 28 / 32
54 SSL, certyfikaty Certyfikaty Certyfikaty zwykłe = zaświadczenie, że łaczymy się faktycznie z konkretna strona (zamknięta kłódka w Chrome) prezentacja Czy jeśli sklep internetowy blabla.org posługuje się takim certyfikatem, to należy podać mu numer karty kredytowej? To nie znaczy, że łaczymy się ze strona należac a do instytucji blabla! Certyfikaty rozszerzone = zaświadczenie, że łaczymy się ze strona danej instytucji (w Chrome: kłódka + nazwa instytucji) prezentacja Wadliwe certyfikaty, najczęściej firma X podpisuje sama dla siebie prezentacja Sieci komputerowe (II UWr) Wykład 9 29 / 32
55 SSL, certyfikaty Certyfikaty Certyfikaty zwykłe = zaświadczenie, że łaczymy się faktycznie z konkretna strona (zamknięta kłódka w Chrome) prezentacja Czy jeśli sklep internetowy blabla.org posługuje się takim certyfikatem, to należy podać mu numer karty kredytowej? To nie znaczy, że łaczymy się ze strona należac a do instytucji blabla! Certyfikaty rozszerzone = zaświadczenie, że łaczymy się ze strona danej instytucji (w Chrome: kłódka + nazwa instytucji) prezentacja Wadliwe certyfikaty, najczęściej firma X podpisuje sama dla siebie prezentacja Sieci komputerowe (II UWr) Wykład 9 29 / 32
56 SSL, certyfikaty Certyfikaty Certyfikaty zwykłe = zaświadczenie, że łaczymy się faktycznie z konkretna strona (zamknięta kłódka w Chrome) prezentacja Czy jeśli sklep internetowy blabla.org posługuje się takim certyfikatem, to należy podać mu numer karty kredytowej? To nie znaczy, że łaczymy się ze strona należac a do instytucji blabla! Certyfikaty rozszerzone = zaświadczenie, że łaczymy się ze strona danej instytucji (w Chrome: kłódka + nazwa instytucji) prezentacja Wadliwe certyfikaty, najczęściej firma X podpisuje sama dla siebie prezentacja Sieci komputerowe (II UWr) Wykład 9 29 / 32
57 Klucze sesji Certyfikaty Powiedzieliśmy: mamy uwierzytelniony serwer i możemy szyfrować wiadomości dla serwera WWW Problemy techniczne Serwer musi też jakoś szyfrować dane do nas. Moglibyśmy mu teraz wysłać swój klucz publiczny... Podstawowy problem: szyfrowanie asymetryczne jest nieefektywne (RSA jest ok razy wolniejszy niż AES) Rozwiazanie: 1 przegladarka generuje symetryczny klucz sesji; 2 przegladarka szyfruje go kluczem publicznym serwera WWW i wysyła do serwera WWW; 3 dalsza komunikacja jest szyfrowana kluczem sesji. Sieci komputerowe (II UWr) Wykład 9 30 / 32
58 Uwagi końcowe SSL można uważać za dodatkowa warstwę pomiędzy transportowa i aplikacji (tak, wydzielenie warstwy prezentacji w ISO OSI ma jakiś sens!) SSL może być też wykorzystywany np. przy odbieraniu i wysyłaniu poczty. Kryptografia asymetryczna jest wykorzystywana m.in. przy wysyłaniu wiadomości (PGP) i pracy zdalnej (SSH) ( za tydzień). Sieci komputerowe (II UWr) Wykład 9 31 / 32
59 Lektura dodatkowa Kurose, Ross: rozdział , 8.5 Tanenbaum: rozdział Sieci komputerowe (II UWr) Wykład 9 32 / 32
Sieci komputerowe. Wykład 11: Podstawy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 11: Podstawy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 11 1 / 35 Spis treści 1 Szyfrowanie 2 Uwierzytelnianie
Sieci komputerowe. Wykład 11: Kodowanie i szyfrowanie. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 11: Kodowanie i szyfrowanie Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 11 1 / 32 Kodowanie Sieci komputerowe (II UWr) Wykład
Sieci komputerowe. Wykład 10: Kodowanie i szyfrowanie. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 10: Kodowanie i szyfrowanie Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 10 1 / 29 Kodowanie Sieci komputerowe (II UWr) Wykład
2 Kryptografia: algorytmy symetryczne
1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;
Bezpieczeństwo w Internecie
Elektroniczne Przetwarzanie Informacji Konsultacje: czw. 14.00-15.30, pokój 3.211 Plan prezentacji Szyfrowanie Cechy bezpiecznej komunikacji Infrastruktura klucza publicznego Plan prezentacji Szyfrowanie
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 1
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8physdamuedupl/~tanas Wykład 1 Spis treści 1 Kryptografia klasyczna wstęp 4 11 Literatura 4 12 Terminologia 6 13 Główne postacie
Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi.
Spis treści: Czym jest szyfrowanie Po co nam szyfrowanie Szyfrowanie symetryczne Szyfrowanie asymetryczne Szyfrowanie DES Szyfrowanie 3DES Szyfrowanie IDEA Szyfrowanie RSA Podpis cyfrowy Szyfrowanie MD5
Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna
1. Wstęp Wprowadzenie do PKI Infrastruktura klucza publicznego (ang. PKI - Public Key Infrastructure) to termin dzisiaj powszechnie spotykany. Pod tym pojęciem kryje się standard X.509 opracowany przez
WSIZ Copernicus we Wrocławiu
Bezpieczeństwo sieci komputerowych Wykład 4. Robert Wójcik Wyższa Szkoła Informatyki i Zarządzania Copernicus we Wrocławiu Plan wykładu Sylabus - punkty: 4. Usługi ochrony: poufność, integralność, dostępność,
2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Przewodnik użytkownika
STOWARZYSZENIE PEMI Przewodnik użytkownika wstęp do podpisu elektronicznego kryptografia asymetryczna Stowarzyszenie PEMI Podpis elektroniczny Mobile Internet 2005 1. Dlaczego podpis elektroniczny? Podpis
Sieci komputerowe Wykład 7. Bezpieczeństwo w sieci. Paweł Niewiadomski Katedra Informatyki Stosowanej Wydział Matematyki UŁ niewiap@math.uni.lodz.
Sieci komputerowe Wykład 7. Bezpieczeństwo w sieci Paweł Niewiadomski Katedra Informatyki Stosowanej Wydział Matematyki UŁ niewiap@math.uni.lodz.pl Zagadnienia związane z bezpieczeństwem Poufność (secrecy)
II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI
II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI STEGANOGRAFIA Steganografia jest nauką o komunikacji w taki sposób by obecność komunikatu nie mogła zostać wykryta. W odróżnieniu od kryptografii
Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:
Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA
Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972
PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna
PuTTY Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje
Wykład 4. Metody uwierzytelniania - Bezpieczeństwo (3) wg The Java EE 5 Tutorial Autor: Zofia Kruczkiewicz
Wykład 4 Metody uwierzytelniania - Bezpieczeństwo (3) wg The Java EE 5 Tutorial Autor: Zofia Kruczkiewicz Struktura wykładu 1. Protokół SSL do zabezpieczenia aplikacji na poziomie protokołu transportowego
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby
Podstawy systemów kryptograficznych z kluczem jawnym RSA
Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych
Bezpieczeństwo danych, zabezpieczanie safety, security
Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός
n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.
Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany
Laboratorium nr 3 Podpis elektroniczny i certyfikaty
Laboratorium nr 3 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi
Wykład 4. komputerowych Protokoły SSL i TLS główne slajdy. 26 października 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński
Wykład 4 Protokoły SSL i TLS główne slajdy 26 października 2011 Instytut Informatyki Uniwersytet Jagielloński 4.1 Secure Sockets Layer i Transport Layer Security SSL zaproponowany przez Netscape w 1994
Authenticated Encryption
Authenticated Inż. Kamil Zarychta Opiekun: dr Ryszard Kossowski 1 Plan prezentacji Wprowadzenie Wymagania Opis wybranych algorytmów Porównanie mechanizmów Implementacja systemu Plany na przyszłość 2 Plan
Algorytmy asymetryczne
Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można
Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski
Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje
Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie
Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy
ZiMSK. Konsola, TELNET, SSH 1
ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl Konsola, TELNET, SSH 1 Wykład
Sieci komputerowe. Wykład 9: Poczta elektroniczna. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 9: Poczta elektroniczna Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 9 1 / 28 Historia 1971. Ray Tomlinson wysyła pierwszego
Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić?
Bezpieczeństwo Danych Technologia Informacyjna Uwaga na oszustów! Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe czy hasła mogą być wykorzystane do kradzieŝy! Jak się przed nią
Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1
Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Kryptografia Rok akademicki: 2032/2033 Kod: IIN-1-784-s Punkty ECTS: 3 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Specjalność: - Poziom studiów: Studia I stopnia
BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie
Bezpieczeństwo systemów komputerowych Podpis cyfrowy Podpisy cyfrowe i inne protokoły pośrednie Polski Komitet Normalizacyjny w grudniu 1997 ustanowił pierwszą polską normę określającą schemat podpisu
Kryptografia szyfrowanie i zabezpieczanie danych
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Kryptografia szyfrowanie i zabezpieczanie danych www.agh.edu.pl
Bezpieczna poczta i PGP
Bezpieczna poczta i PGP Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2010/11 Poczta elektroniczna zagrożenia Niechciana poczta (spam) Niebezpieczna zawartość poczty Nieuprawniony dostęp (podsłuch)
Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas)
Hosting WWW Bezpieczeństwo hostingu WWW Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Szyfrowana wersja protokołu HTTP Kiedyś używany do specjalnych zastosowań (np. banki internetowe), obecnie zaczyna
BSK. Copyright by Katarzyna Trybicka-Fancik 1. Nowy klucz jest jedynie tak bezpieczny jak klucz stary. Bezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Zarządzanie kluczami Wytwarzanie kluczy Zredukowana przestrzeń kluczy Nieodpowiedni wybór kluczy Wytwarzanie kluczy losowych Niezawodne źródło losowe Generator bitów
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla
Podstawy Secure Sockets Layer
Podstawy Secure Sockets Layer Michał Grzejszczak 20 stycznia 2003 Spis treści 1 Wstęp 2 2 Protokół SSL 2 3 Szyfry używane przez SSL 3 3.1 Lista szyfrów.................................... 3 4 Jak działa
Zarys algorytmów kryptograficznych
Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................
SSL (Secure Socket Layer)
SSL --- Secure Socket Layer --- protokół bezpiecznej komunikacji między klientem a serwerem, stworzony przez Netscape. SSL w założeniu jest podkładką pod istniejące protokoły, takie jak HTTP, FTP, SMTP,
Laboratorium nr 5 Podpis elektroniczny i certyfikaty
Laboratorium nr 5 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi
Wykład 3 Bezpieczeństwo przesyłu informacji; Szyfrowanie
Wykład 3 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy
Szyfrowanie RSA (Podróż do krainy kryptografii)
Szyfrowanie RSA (Podróż do krainy kryptografii) Nie bójmy się programować z wykorzystaniem filmów Academy Khana i innych dostępnych źródeł oprac. Piotr Maciej Jóźwik Wprowadzenie metodyczne Realizacja
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 9 Spis treści 14 Podpis cyfrowy 3 14.1 Przypomnienie................... 3 14.2 Cechy podpisu...................
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Serwer SSH. Wprowadzenie do serwera SSH Instalacja i konfiguracja Zarządzanie kluczami
Serwer SSH Serwer SSH Wprowadzenie do serwera SSH Instalacja i konfiguracja Zarządzanie kluczami Serwer SSH - Wprowadzenie do serwera SSH Praca na odległość potrzeby w zakresie bezpieczeństwa Identyfikacja
KUS - KONFIGURACJA URZĄDZEŃ SIECIOWYCH - E.13 ZABEZPIECZANIE DOSTĘPU DO SYSTEMÓW OPERACYJNYCH KOMPUTERÓW PRACUJĄCYCH W SIECI.
Zabezpieczanie systemów operacyjnych jest jednym z elementów zabezpieczania systemów komputerowych, a nawet całych sieci komputerowych. Współczesne systemy operacyjne są narażone na naruszenia bezpieczeństwa
Algorytmy podstawieniowe
Algorytmy podstawieniowe Nazwa: AtBash Rodzaj: Monoalfabetyczny szyfr podstawieniowy, ograniczony Opis metody: Zasada jego działanie polega na podstawieniu zamiast jednej litery, litery lezącej po drugiej
Program szkolenia: Bezpieczny kod - podstawy
Program szkolenia: Bezpieczny kod - podstawy Informacje: Nazwa: Kod: Kategoria: Grupa docelowa: Czas trwania: Forma: Bezpieczny kod - podstawy Arch-Sec-intro Bezpieczeństwo developerzy 3 dni 75% wykłady
SET (Secure Electronic Transaction)
SET (Secure Electronic Transaction) Krzysztof Maćkowiak Wprowadzenie SET (Secure Electronic Transaction) [1] to protokół bezpiecznych transakcji elektronicznych. Jest standardem umożliwiający bezpieczne
Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.
Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Scenariusz lekcji. wymienić różnice pomiędzy kryptologią, kryptografią i kryptoanalizą;
Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Kryptografia i kryptoanaliza. 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicje pojęć: kryptologia, kryptografia i kryptoanaliza; wymienić
Szyfrowanie informacji
Szyfrowanie informacji Szyfrowanie jest sposobem ochrony informacji przed zinterpretowaniem ich przez osoby niepowołane, lecz nie chroni przed ich odczytaniem lub skasowaniem. Informacje niezaszyfrowane
Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana
Plan całości wykładu. Ochrona informacji 1
Plan całości wykładu Wprowadzenie Warstwa aplikacji Warstwa transportu Warstwa sieci Warstwa łącza i sieci lokalne Podstawy ochrony informacji (2 wykłady) (2 wykłady) (2 wykłady) (3 wykłady) (3 wykłady)
Informatyka na WPPT. prof. dr hab. Jacek Cichoń dr inż. Marek Klonowski
prof. dr hab. Jacek Cichoń jacek.cichon@pwr.wroc.pl dr inż. Marek Klonowski marek.klonowski@pwr.wroc.pl Instytut Matematyki i Informatyki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA
RSA Symetryczny system szyfrowania to taki, w którym klucz szyfrujący pozwala zarówno szyfrować dane, jak również odszyfrowywać je. Opisane w poprzednich rozdziałach systemy były systemami symetrycznymi.
Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki
Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana
Czym jest kryptografia?
Szyfrowanie danych Czym jest kryptografia? Kryptografia to nauka zajmująca się układaniem szyfrów. Nazwa pochodzi z greckiego słowa: kryptos - "ukryty", gráphein "pisać. Wyróżniane są dwa główne nurty
Technologia Internetowa w organizacji giełdy przemysłowej
Technologia Internetowa w organizacji giełdy przemysłowej Poruszane problemy Handel elektroniczny - giełda przemysłowa Organizacja funkcjonalna giełdy Problemy techniczne tworzenia giełdy internetowej
Sieci komputerowe. Wykład 1: Podstawowe pojęcia i modele. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 1: Podstawowe pojęcia i modele Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 1 1 / 14 Komunikacja Komunikacja Komunikacja = proces
Bezpieczeństwo kart elektronicznych
Bezpieczeństwo kart elektronicznych Krzysztof Maćkowiak Karty elektroniczne wprowadzane od drugiej połowy lat 70-tych znalazły szerokie zastosowanie w wielu dziedzinach naszego życia: bankowości, telekomunikacji,
Podpis elektroniczny
Podpis elektroniczny Powszechne stosowanie dokumentu elektronicznego i systemów elektronicznej wymiany danych oprócz wielu korzyści, niesie równieŝ zagroŝenia. Niebezpieczeństwa korzystania z udogodnień
Bezpieczeństwo systemów komputerowych. Metody łamania szyfrów. Kryptoanaliza. Badane własności. Cel. Kryptoanaliza - szyfry przestawieniowe.
Bezpieczeństwo systemów komputerowych Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym tekstem jawnym Łamanie z adaptacyjnie wybranym tekstem jawnym Łamanie
Bezpieczeństwo systemów komputerowych. Kryptoanaliza. Metody łamania szyfrów. Cel BSK_2003. Copyright by K.Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym
Algorytmy podstawieniowe
Algorytmy podstawieniowe Nazwa: AtBash Rodzaj: Monoalfabetyczny szyfr podstawieniowy, ograniczony Opis metody: Zasada jego działanie polega na podstawieniu zamiast jednej litery, litery lezącej po drugiej
Zastosowania PKI dla wirtualnych sieci prywatnych
Zastosowania PKI dla wirtualnych sieci prywatnych Andrzej Chrząszcz NASK Agenda Wstęp Sieci Wirtualne i IPSEC IPSEC i mechanizmy bezpieczeństwa Jak wybrać właściwą strategię? PKI dla VPN Co oferują dostawcy
Szyfry Strumieniowe. Zastosowanie wybranych rozwiąza. zań ECRYPT do zabezpieczenia komunikacji w sieci Ethernet. Opiekun: prof.
Szyfry Strumieniowe Zastosowanie wybranych rozwiąza zań ECRYPT do zabezpieczenia komunikacji w sieci Ethernet Arkadiusz PłoskiP Opiekun: prof. Zbigniew Kotulski Plan prezentacji Inspiracje Krótkie wprowadzenie
Protokoły zdalnego logowania Telnet i SSH
Protokoły zdalnego logowania Telnet i SSH Krzysztof Maćkowiak Wprowadzenie Wykorzystując Internet mamy możliwość uzyskania dostępu do komputera w odległej sieci z wykorzystaniem swojego komputera, który
Bezpieczeństwo usług oraz informacje o certyfikatach
Bezpieczeństwo usług oraz informacje o certyfikatach Klienci banku powinni stosować się do poniższych zaleceń: nie przechowywać danych dotyczących swojego konta w jawnej postaci w miejscu, z którego mogą
Systemy Mobilne i Bezprzewodowe laboratorium 12. Bezpieczeństwo i prywatność
Systemy Mobilne i Bezprzewodowe laboratorium 12 Bezpieczeństwo i prywatność Plan laboratorium Szyfrowanie, Uwierzytelnianie, Bezpieczeństwo systemów bezprzewodowych. na podstawie : D. P. Agrawal, Q.-A.
Parametry systemów klucza publicznego
Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego
Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm
Zdalne logowanie do serwerów
Zdalne logowanie Zdalne logowanie do serwerów Zdalne logowanie do serwerów - cd Logowanie do serwera inne podejście Sesje w sieci informatycznej Sesje w sieci informatycznej - cd Sesje w sieci informatycznej
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm)
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman
Protokół SSL/TLS. Algorytmy wymiany klucza motywacja
Protokół SSL/TLS Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Algorytmy wymiany klucza motywacja Kryptografia symetryczna efektywna Ale wymagana znajomość tajnego klucza przez obie strony
Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.)
Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna (?) stosowaną metodę szyfrowania -mimo że włamujący
Protokół SSL/TLS. Patryk Czarnik. Bezpieczeństwo sieci komputerowych MSUI 2009/10. Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski
Protokół SSL/TLS Patryk Czarnik Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Bezpieczeństwo sieci komputerowych MSUI 2009/10 Patryk Czarnik (MIMUW) 04 SSL BSK 2009/10 1 / 30 Algorytmy
Rozdział 5. Bezpieczeństwo komunikacji
Moduł 1. Wykorzystanie internetowych technologii komunikacyjnych Rozdział 5. Bezpieczeństwo komunikacji Zajęcia 5. 2 godziny Nauczymy się: Rozróżniać szyfrowanie symetryczne i asymetryczne. Sprawdzać,
13.05.2008. Gerard Frankowski, Błażej Miga Zespół Bezpieczeństwa PCSS. Konferencja SECURE 2008 Warszawa, 2-3.10.2008
13.05.2008 Gerard Frankowski, Błażej Miga Zespół Bezpieczeństwa PCSS Konferencja SECURE 2008 Warszawa, 2-3.10.2008 1 Agenda Kim jesteśmy i co robimy? Wprowadzenie Szyfrowanie danych PKI, algorytm RSA,
Kryptologia przykład metody RSA
Kryptologia przykład metody RSA przygotowanie: - niech p=11, q=23 n= p*q = 253 - funkcja Eulera phi(n)=(p-1)*(q-1)=220 - teraz potrzebne jest e które nie jest podzielnikiem phi; na przykład liczba pierwsza
Bazy danych i usługi sieciowe
Bazy danych i usługi sieciowe Bezpieczeństwo Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) BDiUS w. X Jesień 2014 1 / 27 Bezpieczeństwo Zabezpiecza się transmisje zasoby aplikacje
Zastosowania informatyki w gospodarce Wykład 5
Instytut Informatyki, Automatyki i Robotyki Zastosowania informatyki w gospodarce Wykład 5 Podstawowe mechanizmy bezpieczeństwa transakcji dr inż. Dariusz Caban dr inż. Jacek Jarnicki dr inż. Tomasz Walkowiak
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka KRYPTOGRAFIA STOSOWANA APPLIED CRYPTOGRAPHY Forma studiów: stacjonarne Kod przedmiotu: IO1_03 Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj
Bezpieczeństwo informacji w systemach komputerowych
Bezpieczeństwo informacji w systemach komputerowych Andrzej GRZYWAK Rozwój mechanizmów i i systemów bezpieczeństwa Szyfry Kryptoanaliza Autentyfikacja Zapory Sieci Ochrona zasobów Bezpieczeństwo przechowywania
Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (1) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Algorytmy kryptograficzne Przestawieniowe zmieniają porządek znaków
Praktyczne aspekty wykorzystania nowoczesnej kryptografii. Wojciech A. Koszek <dunstan@freebsd.czest.pl>
Praktyczne aspekty wykorzystania nowoczesnej kryptografii Wojciech A. Koszek Wprowadzenie Kryptologia Nauka dotycząca przekazywania danych w poufny sposób. W jej skład wchodzi
Ataki kryptograficzne.
Ataki kryptograficzne. Krótka historia kryptografii... Szyfr Cezara A -> C B -> D C -> E... X -> Z Y -> A Z -> B ROT13 - pochodna szyfru Cezara nadal używana ROT13(ROT13("Tekst jawny") = "Tekst jawny".
Bezpieczna poczta i PGP
Bezpieczna poczta i PGP Patryk Czarnik Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Bezpieczeństwo sieci komputerowych MSUI 2009/10 Patryk Czarnik (MIMUW) 06 PGP BSK 2009/10 1 / 24
urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania
Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja
Bezpieczeństwo systemów komputerowych. Opis działania PGP. Poczta elektroniczna. System PGP (pretty good privacy) Sygnatura cyfrowa MD5
Bezpieczeństwo systemów komputerowych Poczta elektroniczna Usługi systemu PGP szyfrowanie u IDEA, RSA sygnatura cyfrowa RSA, D5 kompresja ZIP zgodność poczty elektronicznej konwersja radix-64 segmentacja
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5.
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Schemat Hornera. Wyjaśnienie: Zadanie 1. Pozycyjne reprezentacje
WEP: przykład statystycznego ataku na źle zaprojektowany algorytm szyfrowania
WEP: przykład statystycznego ataku na źle zaprojektowany algorytm szyfrowania Mateusz Kwaśnicki Politechnika Wrocławska Wykład habilitacyjny Warszawa, 25 października 2012 Plan wykładu: Słabości standardu