Bezpieczeństwo systemów komputerowych. Metody łamania szyfrów. Kryptoanaliza. Badane własności. Cel. Kryptoanaliza - szyfry przestawieniowe.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bezpieczeństwo systemów komputerowych. Metody łamania szyfrów. Kryptoanaliza. Badane własności. Cel. Kryptoanaliza - szyfry przestawieniowe."

Transkrypt

1 Bezpieczeństwo systemów komputerowych Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym tekstem jawnym Łamanie z adaptacyjnie wybranym tekstem jawnym Łamanie z wybranym szyfrogramem Łamanie z wybranym kluczem mgr Katarzyna Trybicka-Francik pok. 503 Cel Badane własności Całkowite złamanie szyfru Ogólne wnioskowanie Lokalne wnioskowanie Częściowy wnioskowanie Własność komplementarności Kolizje kluczy Klucze słabe Klucze półsłabe Punkty stałe Efekt lawinowy Podatność na znane ataki kryptograficzne Techniki Analiza statystyczna różnicowa liniowa Analiza różnicowa mocy Analiza z pomiarem czasu wykonywania operacji - szyfry przestawieniowe Łatwo rozpoznawalne częstość występowania liter Metoda kryptoanalizy metoda anagramowa Copyright by K.Trybicka-Francik 1

2 - szyfry przestawieniowe Stwórz tablice rozkładu częstotliwości diagramów trigramów dla języka naturalnego Stwórz tablice rozkładu częstotliwości diagramów trigramów dla kryptogramu Na podstawie uzyskanych statystyk wywnioskuj w jaki sposób została zmieniona kolejność znaków Szyfry oparte na alfabetach przesuniętych Sprawdzana jest cała przestrzeń klucza Szyfry korzystające z przekształceń afinicznych Analiza częstości występowania liter Algorytm relaksacyjny Peleg i Rosenfeld Szyfry wieloalfabetowe okresowe szyfry podstawieniowe Dla każdej litery a tekstu jawnego oraz litery b kryptogramu, na podstawie częstości występowania liter oblicza się prawdopodobieństwo Pr[f(a)=b]. Prawdopodobieństwa te są następnie iteracyjnie aktualizowane na podstawie częstości występowania trigramów. okres = d, czyli mamy d alfabetów szyfrowych f i : A -> C i dla 1 {1, d} E K (M.) = f 1 (m 1 )...f d (m d )f 1 (m d+1 )...f d (m zd )... Wskaźnik zgodności William Friedman w 1920 r. charakteryzuje rozkład częstości występowania liter w kryptogramie jeżeli d=1, to WZ będzie duże, jeżeli d, to WZ 1 N d d 1 WZ = 0,066 + d N 1 d N N 0,038 1 Obliczyć częstość występowania poszczególnych liter. Obliczyć Wskaźnik Zgodności. Porównać otrzymane wyniki z wynikami podanymi w tabeli. d duży Oczekiwany WZ 0,066 0,052 0,047 0,045 0,044 0,041 0,038 Copyright by K.Trybicka-Francik 2

3 -szyfry kaskadowe Metoda Kasiskiego Fryderyk w. Kasiski, oficer armi pruskiej, 1863 r. Analiza powtórzeń w kryptogramie które umożliwiają wyznaczenie okresu szyfru. M = T O B E O R N O T T O B E K = H A M H A M H A M H A M H E K (M) = A O N L O D U O F A O N L (szyfr Vignere a) d => 1, 3 lub 9 Algorytm DES różnicowa Opublikowana w 1990 przez E. Bihama i A. Shamira. Atak typu chosen plaintext. DES z 16-rundami wymaga około 2 47 par tekst jawny-kryptogram (chosen plaintext), 2 55 par przy ataku typu known plaitext. różnicowa różnicowa Z kryptograficznego punktu widzenia, ważne są następujące fazy: Operacja XOR z bitami klucza. Obliczenia wykonywane przez S-boksy. Rozważane są pary danych wejściowych, oznaczymy je przez X i Y (64x64). Różnica ciągów X i Y to X XOR Y. Kluczowa obserwacja Stosując operację XOR z bitami klucza K otrzymujemy z ciągów X i Y: X XOR K i Y XOR K Będące danymi wejściowymi dla S-boksów. Copyright by K.Trybicka-Francik 3

4 różnicowa różnicowa Zauważmy, że: (X XOR K) XOR (Y XOR K) = X XOR Y Rozważmy S-boks S1, oraz dane wejściowe X xor Y = 34 Różnica między X xor K i Y xor K ulega zazwyczaj zmianie poprzez zastosowanie S-boksów. Nowa rożnica jest nie tylko zależna od X xor Y ale także od konkretnych wartości X xor K i Y xor K. Trick. Możliwe są następujące różnice pomiędzy danymi wyjściowymi tego S-boksu: 1 dla 8 par 2 dla 16 par 3 dla 6 par 4 dla 2 par 7 dla 12 par 8 dla 6 par D dla 8 par F dla 6 par Okazuje się, że tylko niektóre wartości X xork i Y xork są możliwe, tym samym tylko niektóre wartości dla K. Przyjmując, że różnica wynosi D to mamy do wyboru jedną z 8 par. Pierwszy element tych par to jeden z ciągów: 07, 33, 11, 25, 17, 23, 1D, 29 różnicowa różnicowa Drugi element różni się od pierwszego o 34. Jeżeli przyjmiemy, że danymi wejściowymi dla S1 był ciąg 07, to X xor K = 07, a to oznacza, że K = X xor 07 E. Biham, A. Shamir. Differential cryptanalysis of DES-like Cryptosystems. Postępujemy analogicznie dla innych par przy tym samym kluczu poszukiwanym. Prawdziwy klucz należy do przecięcia zbiorów potencjalnych kluczy. Journal of Cryptology, Vol.4 No.1, pages 3-72, 1991 może być użyta liniowa liniowa Została wprowadzona przez Mitsuru Matsui ego. Atak, który wykorzystuje liniowe zależności miedzy bitami s-bloków. Może być użyta jako: atak ze znanym tekstem jawnym, atak z tekstem zaszyfrowanym. Wymaga średnio 2 43 par tekst jawny-kryptogram Liniow aproksymacja S-boksów Chociaż S-boksy nie obliczają łatwych do przedstawienia funkcji (np.. Funkcji liniowych), nie oznacza to, że funkcji tych nie da się przedstawić w przybliżeniu. i 1 xor i 2 xor... xor i s = o 1 xor o 2 xor... xor o s gdzie i s oraz o s oznaczają s-ty bit danych wejściowych i danych wyjściowych Copyright by K.Trybicka-Francik 4

5 liniowa liniowa S-boks S5. XOR (p 7, p 18, p 24, p 29, p 47, c 7, c 18, c 24, c 29, c 47 ) = k 221 xor k 22 3 i 4 = o 0 xor o 1 xor o 2 xor o 3 Równość ta zachodzi dla 19% danych wejściowych. Dla 81% więc nie zachodzi. gdzie: p i to i-ty bit tekstu jawnego c j to j-ty bit kryptogramu k vu to v-ty bit klucza u-tej rundy Z formuł aproksymujących liniowo pojedyncze S-boksy można zbudować formuły opisujące związki pomiędzy danymi wejściowymi rundy, bitami klucza oraz wynikami rundy. Powyższa równość zachodzi z prawdopodobieństwem q Bezpieczeństwo systemów komputerowych Tradycyjne założenia odnośnie informacji dostępnych atakującemu Ataki na implementację kryptosystemów wejście Przekształcenie kryptograficzne (szyfrowanie, deszyfrowanie, generacja podpisu, itp..) wyjście mgr Katarzyna Trybicka-Francik pok. 503 Tajny klucz, K Tradycyjne założenia odnośnie informacji dostępnych atakującemu Ulatniające się informacje: czas pobór mocy promieniowanie elektromagnetyczne Dziękuję za uwagę wejście Przekształcenie kryptograficzne (szyfrowanie, deszyfrowanie, generacja podpisu, itp..) wyjście Tajny klucz, K Copyright by K.Trybicka-Francik 5

Bezpieczeństwo systemów komputerowych. Kryptoanaliza. Metody łamania szyfrów. Cel BSK_2003. Copyright by K.Trybicka-Francik 1

Bezpieczeństwo systemów komputerowych. Kryptoanaliza. Metody łamania szyfrów. Cel BSK_2003. Copyright by K.Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym

Bardziej szczegółowo

KRYPTOANALIZA. Opracowanie wewnętrzne Instytutu Informatyki Gliwice, 1999

KRYPTOANALIZA. Opracowanie wewnętrzne Instytutu Informatyki Gliwice, 1999 K. TRYBICKA-FRANCIK KRYPTOANALIZA Opracowanie wewnętrzne Instytutu Informatyki Gliwice, 1999 Kryptoanaliza Kryptoanaliza jest dziedziną wiedzy i badań zajmującą się metodami przełamywania szyfrów. Szyfr

Bardziej szczegółowo

Ochrona Systemów Informacyjnych. Elementy Kryptoanalizy

Ochrona Systemów Informacyjnych. Elementy Kryptoanalizy Ochrona Systemów Informacyjnych Elementy Kryptoanalizy Informacje podstawowe Kryptoanaliza dział kryptografii zajmujący się łamaniem szyfrów. W zależności od rodzaju informacji dostępnych w trakcie kryptoanalizy

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (1) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Algorytmy kryptograficzne Przestawieniowe zmieniają porządek znaków

Bardziej szczegółowo

II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI

II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI STEGANOGRAFIA Steganografia jest nauką o komunikacji w taki sposób by obecność komunikatu nie mogła zostać wykryta. W odróżnieniu od kryptografii

Bardziej szczegółowo

Bezpieczeństwo danych i przykłady kryptoanalizy prostych szyfrów. Błędy szyfrowania. Typy ataku kryptoanalitycznego

Bezpieczeństwo danych i przykłady kryptoanalizy prostych szyfrów. Błędy szyfrowania. Typy ataku kryptoanalitycznego Bezpieczeństwo danych i przykłady kryptoanalizy prostych szyfrów Błędy szyfrowania Typy ataku kryptoanalitycznego Kryptoanalityk dysponuje pewnymi danymi, które stara się wykorzystać do złamania szyfru.

Bardziej szczegółowo

Szyfrowanie informacji

Szyfrowanie informacji Szyfrowanie informacji Szyfrowanie jest sposobem ochrony informacji przed zinterpretowaniem ich przez osoby niepowołane, lecz nie chroni przed ich odczytaniem lub skasowaniem. Informacje niezaszyfrowane

Bardziej szczegółowo

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja

Bardziej szczegółowo

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie Bezpieczeństwo systemów komputerowych Podpis cyfrowy Podpisy cyfrowe i inne protokoły pośrednie Polski Komitet Normalizacyjny w grudniu 1997 ustanowił pierwszą polską normę określającą schemat podpisu

Bardziej szczegółowo

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR 1. Algorytm XOR Operacja XOR to inaczej alternatywa wykluczająca, oznaczona symbolem ^ w języku C i symbolem w matematyce.

Bardziej szczegółowo

Zarys algorytmów kryptograficznych

Zarys algorytmów kryptograficznych Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................

Bardziej szczegółowo

Kryptografia szyfrowanie i zabezpieczanie danych

Kryptografia szyfrowanie i zabezpieczanie danych Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Kryptografia szyfrowanie i zabezpieczanie danych www.agh.edu.pl

Bardziej szczegółowo

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:

Bardziej szczegółowo

n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.

n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze. Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 1

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 1 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8physdamuedupl/~tanas Wykład 1 Spis treści 1 Kryptografia klasyczna wstęp 4 11 Literatura 4 12 Terminologia 6 13 Główne postacie

Bardziej szczegółowo

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Nowy klucz jest jedynie tak bezpieczny jak klucz stary. Bezpieczeństwo systemów komputerowych

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Nowy klucz jest jedynie tak bezpieczny jak klucz stary. Bezpieczeństwo systemów komputerowych Bezpieczeństwo systemów komputerowych Zarządzanie kluczami Wytwarzanie kluczy Zredukowana przestrzeń kluczy Nieodpowiedni wybór kluczy Wytwarzanie kluczy losowych Niezawodne źródło losowe Generator bitów

Bardziej szczegółowo

Scenariusz lekcji. wymienić różnice pomiędzy kryptologią, kryptografią i kryptoanalizą;

Scenariusz lekcji. wymienić różnice pomiędzy kryptologią, kryptografią i kryptoanalizą; Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Kryptografia i kryptoanaliza. 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicje pojęć: kryptologia, kryptografia i kryptoanaliza; wymienić

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Ataki kryptograficzne.

Ataki kryptograficzne. Ataki kryptograficzne. Krótka historia kryptografii... Szyfr Cezara A -> C B -> D C -> E... X -> Z Y -> A Z -> B ROT13 - pochodna szyfru Cezara nadal używana ROT13(ROT13("Tekst jawny") = "Tekst jawny".

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Złam szyfr i odkryj tajemnicę

Złam szyfr i odkryj tajemnicę Złam szyfr i odkryj tajemnicę Krzysztof Maćkowiak www.centrum.bezpieczenstwa.pl Od wieków toczy się walka pomiędzy twórcami szyfrów a tymi, których zadaniem jest ich łamanie. W ten sposób powstała dziedzina

Bardziej szczegółowo

Algorytmy podstawieniowe

Algorytmy podstawieniowe Algorytmy podstawieniowe Nazwa: AtBash Rodzaj: Monoalfabetyczny szyfr podstawieniowy, ograniczony Opis metody: Zasada jego działanie polega na podstawieniu zamiast jednej litery, litery lezącej po drugiej

Bardziej szczegółowo

Wprowadzenie do zagadnień bezpieczeńśtwa i kryptografii

Wprowadzenie do zagadnień bezpieczeńśtwa i kryptografii Wprowadzenie do zagadnień bezpieczeńśtwa i kryptografii Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Zagadnienia bezpieczeństwa Identyfikacja i uwierzytelnienie Kontrola dostępu Poufność:

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Algorytmy podstawieniowe

Algorytmy podstawieniowe Algorytmy podstawieniowe Nazwa: AtBash Rodzaj: Monoalfabetyczny szyfr podstawieniowy, ograniczony Opis metody: Zasada jego działanie polega na podstawieniu zamiast jednej litery, litery lezącej po drugiej

Bardziej szczegółowo

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Systemy z kluczem publicznym Klasyczne systemy kryptograficzne

Bardziej szczegółowo

Ataki na algorytm RSA

Ataki na algorytm RSA Ataki na algorytm RSA Andrzej Chmielowiec 29 lipca 2009 Streszczenie Przedmiotem referatu są ataki na mechanizm klucza publicznego RSA. Wieloletnia historia wykorzystywania tego algorytmu naznaczona jest

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 10 Temat ćwiczenia: Systemy szyfrowania informacji. 1. Wstęp teoretyczny.

Bardziej szczegółowo

Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 9: Elementy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 9 1 / 32 Do tej pory chcieliśmy komunikować się efektywnie,

Bardziej szczegółowo

Przykład. Przykład. Litera Homofony C F H I M

Przykład. Przykład. Litera Homofony C F H I M Napisał Administrator 1. Klasyczne metody szyfrowania Zabezpieczanie informacji przed odczytaniem lub modyfikacją przez osoby niepowołane stosowane było już w czasach starożytnych. Ówczesne metody szyfrowania

Bardziej szczegółowo

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla

Bardziej szczegółowo

1.1. Standard szyfrowania DES

1.1. Standard szyfrowania DES 1.1. Standard szyrowania DES Powstał w latach siedemdziesiątych i został przyjęty jako standard szyrowania przez Amerykański Narodowy Instytut Standaryzacji (ang. American National Standards Institute

Bardziej szczegółowo

Bezpieczeństwo danych i systemów informatycznych. Wykład 5

Bezpieczeństwo danych i systemów informatycznych. Wykład 5 Bezpieczeństwo danych i systemów informatycznych Wykład 5 Kryptoanaliza Atak na tekst zaszyfrowany dostępny tylko szyfrogram Atak poprzez tekst częściowo znany istnieją słowa, których prawdopodobnie użyto

Bardziej szczegółowo

Bezpieczeństwo danych, zabezpieczanie safety, security

Bezpieczeństwo danych, zabezpieczanie safety, security Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός

Bardziej szczegółowo

1) indeks koincyndencji Określa prawdopodobieostwo wystąpienia w szyfrogramie dwóch jednakowych liter: N długośd szyfrogramu

1) indeks koincyndencji Określa prawdopodobieostwo wystąpienia w szyfrogramie dwóch jednakowych liter: N długośd szyfrogramu Pytania z ubiegłych lat 1) indeks koincyndencji Określa prawdopodobieostwo wystąpienia w szyfrogramie dwóch jednakowych liter: Fβ liczba wystąpieo litery β alfabetu B; N długośd szyfrogramu 2) szyfr podstawieniowy+2

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26 Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak

Bardziej szczegółowo

Kryptografia systemy z kluczem tajnym. Kryptografia systemy z kluczem tajnym

Kryptografia systemy z kluczem tajnym. Kryptografia systemy z kluczem tajnym Krótkie vademecum (słabego) szyfranta Podstawowe pojęcia: tekst jawny (otwarty) = tekst zaszyfrowany (kryptogram) alfabet obu tekstów (zwykle różny) jednostki tekstu: na przykład pojedyncza litera, digram,

Bardziej szczegółowo

Copyright by K. Trybicka-Francik 1

Copyright by K. Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm)

Bardziej szczegółowo

1. Maszyny rotorowe Enigma

1. Maszyny rotorowe Enigma Połączenie podstawowych metod szyfrowania, czyli pojedynczych podstawień lub przestawień, daje szyfr złoŝony nazywany szyfrem kaskadowym lub produktowym (ang. product cipher). Szyfry takie są połączeniem

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Szyfry przestawieniowe

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Szyfry przestawieniowe Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne Algorytmy kryptograficzne (1) Przestawieniowe zmieniają porządek znaków według pewnego schematu, tzw. figury Podstawieniowe monoalfabetyczne

Bardziej szczegółowo

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1 Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 8 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych

Bezpieczeństwo systemów komputerowych Bezpieczeństwo systemów komputerowych Wprowadzenie do kryptologii Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 16 listopada 2016 Jak ta dziedzina powinna się nazywać?

Bardziej szczegółowo

Wprowadzenie do zagadnień bezpieczeńśtwa i kryptografii

Wprowadzenie do zagadnień bezpieczeńśtwa i kryptografii Wprowadzenie do zagadnień bezpieczeńśtwa i kryptografii Patryk Czarnik Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Bezpieczeństwo sieci komputerowych MSUI 2009/10 Patryk Czarnik

Bardziej szczegółowo

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby

Bardziej szczegółowo

Implementacja algorytmu DES

Implementacja algorytmu DES mplementacja algorytmu DES Mariusz Rawski rawski@tele.pw.edu.pl www.zpt.tele.pw.edu.pl/~rawski/ Z Mariusz Rawski 1 Algorytm DES DES (Data Encryption Standard) - jest szyfrem blokowym, o algorytmie ogólnie

Bardziej szczegółowo

Wykład 7. komputerowych Integralność i uwierzytelnianie danych - główne slajdy. 16 listopada 2011

Wykład 7. komputerowych Integralność i uwierzytelnianie danych - główne slajdy. 16 listopada 2011 Wykład 7 Integralność i uwierzytelnianie danych - główne slajdy 16 listopada 2011 Instytut Informatyki Uniwersytet Jagielloński 7.1 Definition Funkcja haszujaca h odwzorowuje łańcuch bitów o dowolnej długości

Bardziej szczegółowo

Szyfry afiniczne. hczue zfuds dlcsr

Szyfry afiniczne. hczue zfuds dlcsr Szyfry afiniczne hczue zfuds dlcsr Litery i ich pozycje Rozważamy alfabet, który ma 26 liter i każdej literze przypisujemy jej pozycję. A B C D E F G H I 0 1 2 3 4 5 6 7 8 J K L M N O P Q R 9 10 11 12

Bardziej szczegółowo

Bezpieczeństwo danych i systemów informatycznych. Wykład 4

Bezpieczeństwo danych i systemów informatycznych. Wykład 4 Bezpieczeństwo danych i systemów informatycznych Wykład 4 ZAGROŻENIA I MECHANIZMY OBRONY POUFNOŚCI INFORMACJI (C.D.) 2 Mechanizmy obrony poufności informacji uwierzytelnianie autoryzacja i kontrola dostępu

Bardziej szczegółowo

Laboratorium nr 1 Szyfrowanie i kontrola integralności

Laboratorium nr 1 Szyfrowanie i kontrola integralności Laboratorium nr 1 Szyfrowanie i kontrola integralności Wprowadzenie Jedną z podstawowych metod bezpieczeństwa stosowaną we współczesnych systemach teleinformatycznych jest poufność danych. Poufność danych

Bardziej szczegółowo

Algorytmy asymetryczne

Algorytmy asymetryczne Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można

Bardziej szczegółowo

Spis treści. Przedmowa... 9

Spis treści. Przedmowa... 9 Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka KRYPTOGRAFIA STOSOWANA APPLIED CRYPTOGRAPHY Forma studiów: stacjonarne Kod przedmiotu: IO1_03 Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 7 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................

Bardziej szczegółowo

Marcin Szeliga Dane

Marcin Szeliga Dane Marcin Szeliga marcin@wss.pl Dane Agenda Kryptologia Szyfrowanie symetryczne Tryby szyfrów blokowych Szyfrowanie asymetryczne Systemy hybrydowe Podpis cyfrowy Kontrola dostępu do danych Kryptologia Model

Bardziej szczegółowo

1.10. Algorytmy asymetryczne z kluczem publicznym

1.10. Algorytmy asymetryczne z kluczem publicznym Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej Wydział Elektroniki Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik Robert

Bardziej szczegółowo

Szyfry blokowe z wykorzystaniem chaosu dyskretnego. Michał Łazicki 1

Szyfry blokowe z wykorzystaniem chaosu dyskretnego. Michał Łazicki 1 Szyfry blokowe z wykorzystaniem chaosu dyskretnego Michał Łazicki 1 Agenda Szyfry blokowe opis oraz wymagania konstrukcyjne Teoria chaosu podstawowe pojęcia Zastosowania dyskretnych układów dynamicznych

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

Copyright by K. Trybicka-Francik 1

Copyright by K. Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman

Bardziej szczegółowo

własność odporności na kolizje jest obliczeniowo trudne znalezienie dwóch dowolnych argumentów M M, dla których H(M) = H(M ).

własność odporności na kolizje jest obliczeniowo trudne znalezienie dwóch dowolnych argumentów M M, dla których H(M) = H(M ). właściwości FUNKCJE JEDNOKIERUNKOWE Dla każdego X łatwo jest obliczyć H(X) H(X) ma taka samą długość dla wszystkich tekstów X Dla zadanego Y znalezienie takiego X, że H(X) = Y jest praktycznie niemożliwe;

Bardziej szczegółowo

Sieci komputerowe. Wykład 11: Kodowanie i szyfrowanie. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 11: Kodowanie i szyfrowanie. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 11: Kodowanie i szyfrowanie Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 11 1 / 32 Kodowanie Sieci komputerowe (II UWr) Wykład

Bardziej szczegółowo

Tajemnice szyfrów. Barbara Roszkowska Lech. MATEMATYKA DLA CIEKAWYCH ŚWIATA marzec 2017

Tajemnice szyfrów. Barbara Roszkowska Lech. MATEMATYKA DLA CIEKAWYCH ŚWIATA marzec 2017 Tajemnice szyfrów Barbara Roszkowska Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA marzec 2017 Dążenie do odkrywania tajemnic tkwi głęboko w naturze człowieka, a nadzieja dotarcia tam, dokąd inni nie dotarli, pociąga

Bardziej szczegółowo

Bezpieczeństwo w sieciach bezprzewodowych WiFi. Krystian Baniak Seminarium Doktoranckie Październik 2006

Bezpieczeństwo w sieciach bezprzewodowych WiFi. Krystian Baniak Seminarium Doktoranckie Październik 2006 Bezpieczeństwo w sieciach bezprzewodowych WiFi Krystian Baniak Seminarium Doktoranckie Październik 2006 Wprowadzenie Agenda Problemy sieci bezprzewodowych WiFi Architektura rozwiązań WiFi Mechanizmy bezpieczeństwa

Bardziej szczegółowo

ROZPRAWA DOKTORSKA. Wydziaª Elektroniki Politechnika Wrocªawska. Metody ochrony przed kryptoanaliz z uszkodzeniami. mgr. in».

ROZPRAWA DOKTORSKA. Wydziaª Elektroniki Politechnika Wrocªawska. Metody ochrony przed kryptoanaliz z uszkodzeniami. mgr. in». Wydziaª Elektroniki Politechnika Wrocªawska ROZPRAWA DOKTORSKA Metody ochrony przed kryptoanaliz z uszkodzeniami mgr. in». Maciej Nikodem Promotor: dr hab. in». Janusz Biernat, prof. PWr. sªowa kluczowe:

Bardziej szczegółowo

MARIAN MOLSKI MAŁGORZATA ŁACHETA BEZPIECZEŃSTWO I AUDYT SYSTEMÓW INFORMATYCZNYCH

MARIAN MOLSKI MAŁGORZATA ŁACHETA BEZPIECZEŃSTWO I AUDYT SYSTEMÓW INFORMATYCZNYCH MARIAN MOLSKI MAŁGORZATA ŁACHETA BEZPIECZEŃSTWO I AUDYT SYSTEMÓW INFORMATYCZNYCH SPIS TREŚCI O autorach 11 Od autorów 13 Bezpieczeństwo systemów informatycznych 15 Wprowadzenie do bezpieczeństwa systemów

Bardziej szczegółowo

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla

Bardziej szczegółowo

RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA

RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA RSA Symetryczny system szyfrowania to taki, w którym klucz szyfrujący pozwala zarówno szyfrować dane, jak również odszyfrowywać je. Opisane w poprzednich rozdziałach systemy były systemami symetrycznymi.

Bardziej szczegółowo

WSIZ Copernicus we Wrocławiu

WSIZ Copernicus we Wrocławiu Bezpieczeństwo sieci komputerowych Wykład 4. Robert Wójcik Wyższa Szkoła Informatyki i Zarządzania Copernicus we Wrocławiu Plan wykładu Sylabus - punkty: 4. Usługi ochrony: poufność, integralność, dostępność,

Bardziej szczegółowo

Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi.

Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi. Spis treści: Czym jest szyfrowanie Po co nam szyfrowanie Szyfrowanie symetryczne Szyfrowanie asymetryczne Szyfrowanie DES Szyfrowanie 3DES Szyfrowanie IDEA Szyfrowanie RSA Podpis cyfrowy Szyfrowanie MD5

Bardziej szczegółowo

OCHRONA INFORMACJI W SYSTEMACH I SIECIACH KOMPUTEROWYCH SYMETRYCZNE SZYFRY BLOKOWE

OCHRONA INFORMACJI W SYSTEMACH I SIECIACH KOMPUTEROWYCH SYMETRYCZNE SZYFRY BLOKOWE OCHRONA INFORMACJI W SYSTEMACH I SIECIACH KOMPUTEROWYCH SYMETRYCZNE SZYFRY BLOKOWE 1 Tryby pracy szyfrów blokowych Rzadko zdarza się, by tekst jawny zawierał tylko 64 bity, czyli 8 znaków kodu ASCII. Zwykle

Bardziej szczegółowo

Szyfry Strumieniowe. Zastosowanie wybranych rozwiąza. zań ECRYPT do zabezpieczenia komunikacji w sieci Ethernet. Opiekun: prof.

Szyfry Strumieniowe. Zastosowanie wybranych rozwiąza. zań ECRYPT do zabezpieczenia komunikacji w sieci Ethernet. Opiekun: prof. Szyfry Strumieniowe Zastosowanie wybranych rozwiąza zań ECRYPT do zabezpieczenia komunikacji w sieci Ethernet Arkadiusz PłoskiP Opiekun: prof. Zbigniew Kotulski Plan prezentacji Inspiracje Krótkie wprowadzenie

Bardziej szczegółowo

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 3. 1 Proste szyfry podstawieniowe przypomnienie wiadomości z laboratorium nr 1

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 3. 1 Proste szyfry podstawieniowe przypomnienie wiadomości z laboratorium nr 1 INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 3 SZYFRY PODSTAWIENIOWE: WIELOALFABETOWE, HOMOFONICZNE, POLIGRAMOWE WSTĘP DO KRYPTOANALIZY 1 Proste szyfry podstawieniowe przypomnienie wiadomości z laboratorium

Bardziej szczegółowo

Kryptografia, pojęcia podstawowe

Kryptografia, pojęcia podstawowe Bezpieczeństwo w sieciach bezprzewodowych Dr inż. Piotr Remlein remlein@et.put.poznan.pl Kryptografia, pojęcia podstawowe Kryptografia (cryptography)) z języka greckiego Krypto ukryty, tajny, graph pismo

Bardziej szczegółowo

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym) Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Monoalfabetyczny szyfr Beauforta. omnma pvazw hcybn cibcv jzwag vmjha

Monoalfabetyczny szyfr Beauforta. omnma pvazw hcybn cibcv jzwag vmjha Monoalfabetyczny szyfr Beauforta omnma pvazw hcybn cibcv jzwag vmjha Litery i ich pozycja w alfabecie Aby wykonywać działania na literach, przypisujemy im odpowiedniki liczbowe. A B C D E F G H I 0 1 2

Bardziej szczegółowo

Wykład 12. Projektowanie i Realizacja. Sieci Komputerowych. Bezpieczeństwo sieci

Wykład 12. Projektowanie i Realizacja. Sieci Komputerowych. Bezpieczeństwo sieci Projektowanie i Realizacja Sieci Komputerowych Wykład 12 Bezpieczeństwo sieci dr inż. Artur Sierszeń asiersz@kis.p.lodz.pl dr inż. Łukasz Sturgulewski luk@kis.p.lodz.pl Projektowanie i Realizacja Sieci

Bardziej szczegółowo

Potencjalne ataki Bezpieczeństwo

Potencjalne ataki Bezpieczeństwo Potencjalne ataki Bezpieczeństwo Przerwanie przesyłania danych informacja nie dociera do odbiorcy Przechwycenie danych informacja dochodzi do odbiorcy, ale odczytuje ją również strona trzecia szyfrowanie

Bardziej szczegółowo

Czym jest szyfrowanie?

Czym jest szyfrowanie? XXIV Konferencja Stowarzyszenia Nauczycieli Matematyki Zakopane (Kościelisko), luty 2015 warsztaty: Matematyczne czasoumilacze Tajniki szyfrowania i zabawa z kalkulatorem Szyfr sposób utajniania (szyfrowania)

Bardziej szczegółowo

PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna

PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna PuTTY Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje

Bardziej szczegółowo

Estymacja kosztów łamania systemu kryptograficznego

Estymacja kosztów łamania systemu kryptograficznego Estymacja kosztów łamania systemu kryptograficznego Andrzej Chmielowiec 17maja2007 Streszczenie Przedmiotem artykułu jest prezentacja modelu matematycznego dla zagadnienia opłacalności łamania systemu

Bardziej szczegółowo

Bezpieczeństwo systemów i sieci komputerowych

Bezpieczeństwo systemów i sieci komputerowych Bezpieczeństwo systemów i sieci komputerowych Kryptologia (2) Szyfry blokowe Szyfry kaskadowe Propozycja Shannona Bezpieczny szyfr można zbudować operując na dużych przestrzeniach komunikatów i kluczy

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Wykład 4 Temat: Algorytm symetryczny Twofish: cele projektowane, budowa bloków, opis algorytmu, wydajność algorytmu.

Wykład 4 Temat: Algorytm symetryczny Twofish: cele projektowane, budowa bloków, opis algorytmu, wydajność algorytmu. Wykład 4 Temat: Algorytm symetryczny Twofish: cele projektowane, budowa bloków, opis algorytmu, wydajność algorytmu. W roku 1972 Narodowe Biuro Standardów (obecnie Narodowy Instytut Standardów i Technologii

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 9 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 9 Spis treści 14 Podpis cyfrowy 3 14.1 Przypomnienie................... 3 14.2 Cechy podpisu...................

Bardziej szczegółowo

Wybrane zagadnienia teorii liczb

Wybrane zagadnienia teorii liczb Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja

Bardziej szczegółowo

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm

Bardziej szczegółowo

Szyfry Vigenere a. Grzegorz Szkibiel

Szyfry Vigenere a. Grzegorz Szkibiel Szyfry Vigenere a Grzegorz Szkibiel Blaise de Vigenere 1523-1596, 1596, francuski dyplomata i krypto- graf. Szyfr Vigenere a został akurat tak nazwany z powodu błęb łędnego przypisu dokonanego w XIX wieku.

Bardziej szczegółowo

Szyfry strumieniowe RC4. Paweł Burdzy Michał Legumina Sebastian Stawicki

Szyfry strumieniowe RC4. Paweł Burdzy Michał Legumina Sebastian Stawicki Szyfry strumieniowe RC4 Paweł Burdzy Michał Legumina Sebastian Stawicki Szyfry strumieniowe W kryptografii, szyfrowanie strumieniowe jest szyfrowaniem, w którym szyfrowaniu podlega na raz jeden bit (czasem

Bardziej szczegółowo

Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas)

Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Hosting WWW Bezpieczeństwo hostingu WWW Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Szyfrowana wersja protokołu HTTP Kiedyś używany do specjalnych zastosowań (np. banki internetowe), obecnie zaczyna

Bardziej szczegółowo

Wprowadzenie do technologii VPN

Wprowadzenie do technologii VPN Sieci komputerowe są powszechnie wykorzystywane do realizacji transakcji handlowych i prowadzenia działalności gospodarczej. Ich zaletą jest błyskawiczny dostęp do ludzi, którzy potrzebują informacji.

Bardziej szczegółowo

Szyfry strumieniowe. Wykład 6. Binarny addytywny szyfr strumieniowy

Szyfry strumieniowe. Wykład 6. Binarny addytywny szyfr strumieniowy Szyfry strumieniowe Wykład 6 Szyfry strumieniowe Szyfry strumieniowe stanowią klasę szyfrów z kluczem symetrycznym. Ich zasada działania polega na szyfrowaniu każdego znaku tekstu jawnego osobno, używając

Bardziej szczegółowo

Przewodnik użytkownika

Przewodnik użytkownika STOWARZYSZENIE PEMI Przewodnik użytkownika wstęp do podpisu elektronicznego kryptografia asymetryczna Stowarzyszenie PEMI Podpis elektroniczny Mobile Internet 2005 1. Dlaczego podpis elektroniczny? Podpis

Bardziej szczegółowo

Implementacja algorytmu szyfrującego

Implementacja algorytmu szyfrującego Warszawa 25.01.2008 Piotr Bratkowski 4T2 Przemysław Tytro 4T2 Dokumentacja projektu Układy Cyfrowe Implementacja algorytmu szyfrującego serpent w układzie FPGA 1. Cele projektu Celem projektu jest implementacja

Bardziej szczegółowo

Plan wykładu. Ochrona zasobów w systemach gospodarki elektronicznej. Usługi ochrony. Klasyfikacja zagrożeń. Wykład: Systemy gospodarki elektronicznej

Plan wykładu. Ochrona zasobów w systemach gospodarki elektronicznej. Usługi ochrony. Klasyfikacja zagrożeń. Wykład: Systemy gospodarki elektronicznej Ochrona zasobów w systemach gospodarki mgr inż. K. Trybicka-Francik Plan wykładu Rola kryptografii Klasyfikacja usług kryptograficznych Umieszczenie funkcji szyfrującej Generacja i dystrybucja y Złożone

Bardziej szczegółowo

Kryptoanaliza algorytmu chaotycznego szyfrowania obrazu

Kryptoanaliza algorytmu chaotycznego szyfrowania obrazu Kryptoanaliza algorytmu chaotycznego szyfrowania obrazu Karol Jastrzębski Praca magisterska Opiekun: dr hab. inż. Zbigniew Kotulski Plan prezentacji Teoria chaosu: Wprowadzenie, cechy układów chaotycznych,

Bardziej szczegółowo

Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji

Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl informatyka + 2 Plan Szyfrowanie (kryptologia):

Bardziej szczegółowo

Matematyczna podróż w głąb Enigmy

Matematyczna podróż w głąb Enigmy Barbara Roszkowska Lech Matematyczna podróż w głąb Enigmy MATEMATYKA LA CIEKAWYCH ŚWIATA Kryptologia Steganografia (steganos- zakryty) zajmuje się ukrywaniem istnienia wiadomości Kryptografia (kryptos)

Bardziej szczegółowo

(b) (d) 3,3,2,3,3,0,0,

(b) (d) 3,3,2,3,3,0,0, -KOLO A -- 441 [1] Wykonaj poniższe operacje w arytmetyce (mod m). Podaj rozwiązanie w zbiorze {0 1... m-1}. [9] Wyznacz wartość symbolu Jacobiego. Zapisz numery własności z których kolejno korzystałeś.

Bardziej szczegółowo

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie Laboratorium Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie programowalnym FPGA. 1. Zasada działania algorytmów Algorytm Vernam a wykorzystuje funkcję

Bardziej szczegółowo