Logika Temporalna i Automaty Czasowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Logika Temporalna i Automaty Czasowe"

Transkrypt

1 Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (2) Logika LTL Paweł Głuchowski, Politechnika Wrocławska wersja 2.1

2 Treść wykładu Charakterystyka logiki LTL Czas w Linear Temporal Logic (LTL) Do czego można zastosować LTL? 2

3 Treść wykładu Składnia i semantyka Struktura czasowa (struktura Kripkego) Podstawowe operatory temporalne Pochodne operatory temporalne Kolejność priorytetów operatorów i spójników logicznych 3

4 Treść wykładu Przykładowe prawa Dualność operatorów Dualność par operatorów Przestawność operatora X Idempotencja (duplikacja/redukcja) operatorów Rozdzielność operatorów temporalnych względem spójników logicznych Charakterystyka stałego punktu Pewne istotne implikacje 4

5 Treść wykładu Przykładowe formuły Przykłady Ćwiczenia 5

6 Charakterystyka logiki LTL Czas w Linear Temporal Logic (LTL) Do czego można zastosować LTL? 6

7 Charakterystyka logiki LTL Czas w Linear Temporal Logic (LTL) Czas jest: punktowy, liniowy, lewostronnie skończony (nieograniczony od teraźniejszego momentu do przyszłości). Do czego można zastosować LTL? do opisu i analizy deterministycznych: algorytmów, właściwości niedeterministycznych algorytmów; gdzie nie ma różnych wariantów przepływu czasu. 7

8 Składnia i semantyka Struktura czasowa (struktura Kripkego) Podstawowe operatory temporalne Pochodne operatory temporalne Kolejność operatorów i spójników 8

9 Składnia i semantyka Struktura czasowa (struktura Kripkego) M = (S,x,L) S zbiór stanów (stany reprezentują momenty): s 0,s 1,s 2, S x nieskończona ścieżka (sekwencja) stanów: x = (s 0,s 1,s 2, ) L etykietowanie każdego stanu zbiorem wyrażeń atomowych WA które są prawdziwe w tym stanie: L:SxWA {prawda, fałsz} M,x p znaczy, że wyrażenie p jest prawdziwe w M na ścieżce x. M,s i p znaczy, że wyrażenie p jest prawdziwe w M w stanie s i. 9

10 Składnia i semantyka Struktura czasowa (struktura Kripkego) Niech WA będzie zbiorem wyrażeń atomowych; niech i {0,1,...}. Formułę generuje się wg reguł S1, S2 i S3: S1: każde wyrażenie p WA jest formułą: s i p jeśli L(s i,p) = prawda S2: jeśli p i q są formułami, to p q i p też są formułami: s i p q jeśli s i p i s i q s i p jeśli nie s i p S3: jeśli p i q są formułami, to puq i Xp też są formułami: s i (puq) jeśli ( k i) ((s k q) ( j, i j < k)(s j p)) s i Xp jeśli s i+1 p 10

11 Składnia i semantyka Operatory temporalne pozwalają przypisywać wyrażeniom wartość prawda / fałsz w strukturze czasowej. Podstawowe operatory temporalne U ( dopóki ) puq znaczy, że q jest prawdziwe w pewnym momencie; jeśli to przyszły moment, to w każdym wcześniejszym momencie p jest prawdziwe. X ( następnie ) Xp znaczy,że p jest prawdziwe w następnym momencie. s 0 puq s 0 Xp niebieski punkt: s i p, pomarańczowy punkt: s i q, czarny punkt: s i prawda (brak informacji o prawdziwości p i q) 11

12 Składnia i semantyka Pochodne operatory temporalne G ( zawsze ) Gp znaczy, że p jest prawdziwe w każdym momencie: Gp p U fałsz F ( kiedyś ) Fp znaczy, że p jest prawdziwe w pewnym momencie: s 0 Gp s 0 Fp Fp prawda U p niebieski punkt: s i p, czarny punkt: s i prawda Zamiast symboli X, G i F następujące symbole są często używane:, i. 12

13 Składnia i semantyka Kolejność operatorów i spójników Operatory temporalne i spójniki logiczne wg siły sklejania: (im niżej, tym większa siła) U XGF 13

14 Składnia i semantyka Kolejność operatorów i spójników Przykład: Gp Fq Gp q FGr to: (Gp Fq Gp q) (FGr) Gp Fq Gp q to: (Gp Fq) (Gp q) Gp Fq to: (Gp) ( Fq) Fq to: (Fq) Gp q to: (Gp) (q) Fq to: F(q) Gp to: G(p) (((G(p)) ( (F(q)))) ((G(p)) (q))) (F(G(r))) 14

15 Przykładowe prawa Dualność operatorów Dualność par operatorów Przestawność operatora X Idempotencja (duplikacja/redukcja) operatorów Rozdzielność operatorów temporalnych względem spójników logicznych Charakterystyka stałego punktu Pewne istotne implikacje 15

16 Przykładowe prawa Dualność operatorów Gp F p (w każdym momencie p) (nie prawda, że w pewnym momencie p) Fp G p (w pewnym momencie p) (nie prawda, że w każdym momencie p) X p Xp (w następnym momencie p) (nie prawda, że w następnym momencie p) 16

17 Przykładowe prawa Dualność par operatorów GF p FGp (od każdego momentu: w pewnym momencie p) (nie prawda, że od pewnego momentu: w każdym momencie p) FG p GFp (od pewnego momentu: w każdym momencie p) (nie prawda, że od każdego momentu: w pewnym momencie p) 17

18 Przykładowe prawa Przestawność operatora X GXp XGp (od każdego momentu: w następnym momencie p) (od następnego momentu: w każdym momencie p) FXp XFp (od pewnego momentu: w następnym momencie p) (od następnego momentu: w pewnym momencie p) 18

19 Przykładowe prawa Idempotencja (duplikacja/redukcja) operatorów GGp Gp FFp Fp pu(puq) puq (puq)uq puq GFGFp GFp FGFGp FGp 19

20 Przykładowe prawa Rozdzielność operatorów temporalnych względem spójników logicznych F(p q) Fp Fq F(p q) Fp Fq G(p q) Gp Gq Gp Gq G(p q) 20

21 Przykładowe prawa Rozdzielność operatorów temporalnych względem spójników logicznych X(p q) Xp Xq X(p q) Xp Xq X(p q) Xp Xq X(p q) (Xp Xq) 21

22 Przykładowe prawa Rozdzielność operatorów temporalnych względem spójników logicznych (p q)ur (pur) (qur) (w pewnym momencie r, a wcześniej stale p q jest prawdziwe) (w pewnym momencie r, a wcześniej stale: p jest prawdziwe; i w pewnym momencie r, a wcześniej stale: q jest prawdziwe) pu(q r) (puq) (pur) (w pewnym momencie q r, a wcześniej stale p jest prawdziwe) (w pewnym momencie q, a wcześniej stale p jest prawdziwe; lub w pewnym momencie r,a wcześniej stale p jest prawdziwe) 22

23 Przykładowe prawa Charakterystyka stałego punktu Wyodrębnienie początkowego stanu. Fp p XFp Gp p XGp puq q p X(pUq)) 23

24 Przykładowe prawa Pewne istotne implikacje p Fp (teraz p) (w pewnym momencie p) Xp Fp (w następnym momencie p) (w pewnym momencie p) Gp Fp (w każdym momencie p) (w pewnym momencie p) Gp p (w każdym momencie p) (teraz p) FGp GFp (od pewnego momentu: w każdym momencie p) (od każdego momentu: w pewnym momencie p) puq Fq (w pewnym momencie q, a wcześniej stale jest p) (w pewnym momencie q) 24

25 Przykładowe formuły Przykłady Ćwiczenia 25

26 Przykładowe formuły Przykłady s0 FGp od pewnego momentu: w każdym momencie p. s0 p (p Fq) teraz p i, jeśli teraz p, to w pewnym momencie q. s0 Xp G(p Gp) następnie p i w każdym momencie: jeśli jest p, to p jest w każdym kolejnym momencie. niebieski punkt: s i p, pomarańczowy punkt: s i q, czarny punkt: s i prawda 26

27 Przykładowe formuły Ćwiczenie 1. Które formuły są równoważne formule p G(p Xp)? Gp p XGp p GXp pup 27

28 Przykładowe formuły Ćwiczenie 1. Które formuły są równoważne formule p G(p Xp)? Gp jest p XGp p GXp pup 28

29 Przykładowe formuły Ćwiczenie 1. Które formuły są równoważne formule p G(p Xp)? Gp jest p XGp jest p GXp pup 29

30 Przykładowe formuły Ćwiczenie 1. Które formuły są równoważne formule p G(p Xp)? Gp jest p XGp jest p GXp jest pup 30

31 Przykładowe formuły Ćwiczenie 1. Które formuły są równoważne formule p G(p Xp)? Gp jest p XGp jest p GXp jest pup nie jest 31

32 Przykładowe formuły Ćwiczenie 2. Które formuły są równoważne formule q (p X(pUq))? p X(p q)) Gp Fq puq 32

33 Przykładowe formuły Ćwiczenie 2. Które formuły są równoważne formule q (p X(pUq))? p X(p q)) nie jest Gp Fq puq 33

34 Przykładowe formuły Ćwiczenie 2. Które formuły są równoważne formule q (p X(pUq))? p X(p q)) nie jest Gp Fq nie jest puq 34

35 Przykładowe formuły Ćwiczenie 2. Które formuły są równoważne formule q (p X(pUq))? p X(p q)) nie jest Gp Fq nie jest puq jest 35

36 Przykładowe formuły Ćwiczenie 3. Zapisz następującą własność jako formułę LTL: p jest prawdziwe dokładnie w jednym momencie, czyli ( i) (s i p) oznacza istnieje dokładnie jeden. 36

37 Przykładowe formuły Ćwiczenie 3. Zapisz następującą własność jako formułę LTL: p jest prawdziwe dokładnie w jednym momencie, czyli ( i) (s i p) oznacza istnieje dokładnie jeden. Fp G(p XG p) 37

38 Przykładowe formuły Ćwiczenie 4. Zapisz następującą własność jako formułę LTL: p jest prawdziwe przynajmniej w trzech momentach, czyli ( i,j,k) (i j i k j k (s i p) (s j p) (s k p)) 38

39 Przykładowe formuły Ćwiczenie 4. Zapisz następującą własność jako formułę LTL: p jest prawdziwe przynajmniej w trzech momentach, czyli ( i,j,k) (i j i k j k (s i p) (s j p) (s k p)) F(p XF(p XFp)) 39

40 Przykładowe formuły Ćwiczenie 5. Zapisz następującą własność jako formułę LTL: p jest prawdziwe nieskończenie wiele razy, ale nigdy w dwóch kolejnych momentach, czyli ( i) (s i p) ( j, k>j) ((s j p) (s k p)) ( m) ((s m p) (s m+1 p)) 40

41 Przykładowe formuły Ćwiczenie 5. Zapisz następującą własność jako formułę LTL: p jest prawdziwe nieskończenie wiele razy, ale nigdy w dwóch kolejnych momentach, czyli ( i) (s i p) ( j, k>j) ((s j p) (s k p)) ( m) ((s m p) (s m+1 p)) G(Fp (p X p)) 41

42 Koniec Literatura: E.A. Emerson Temporal and modal logic, 1995 R. Klimek Zastosowanie logiki temporalnej w specyfikacji i weryfikacji oprogramowania w stronę czasu rzeczywistego, w: Wykłady zaproszone. Systemy Czasu Rzeczywistego 2000, 2001

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (3) Logika CTL Paweł Głuchowski, Politechnika Wrocławska wersja 2.2 Treść wykładu Charakterystyka logiki CTL Czas w Computation

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (1) Wprowadzenie do logiki temporalnej Paweł Głuchowski, Politechnika Wrocławska wersja 2.2 Program wykładów 1. Wprowadzenie

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (4) Modelowa weryfikacja systemu Paweł Głuchowski, Politechnika Wrocławska wersja 2.1 Treść wykładu Własności współbieżnych

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (10) Logika temporalna i temporalne bazy danych Paweł Głuchowski, Politechnika Wrocławska wersja 2.2 Treść wykładu Temporalna

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (10) Logika temporalna i temporalne bazy danych Paweł Głuchowski, Politechnika Wrocławska wersja 2.3 Treść wykładu Temporalna

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (7) Automaty czasowe NuSMV Paweł Głuchowski, Politechnika Wrocławska wersja 2.3 Treść wykładu NuSMV NuSMV symboliczny

Bardziej szczegółowo

Modelowanie i Analiza Systemów Informatycznych

Modelowanie i Analiza Systemów Informatycznych Paweł Głuchowski Modelowanie i Analiza Systemów Informatycznych Logika Temporalna w Analizie Systemu (wersja poprawiona, 2013) Materiały są tłumaczeniem instrukcji laboratoryjnych p.t. Paweł Głuchowski

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (7) Automaty czasowe NuSMV Paweł Głuchowski, Politechnika Wrocławska wersja 2.4 Treść wykładu NuSMV NuSMV symboliczny

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

Wprowadzenie Logiki temporalne Przykłady użycia Bibliografia. Logiki temporalne. Andrzej Oszer. Seminarium Protokoły Komunikacyjne

Wprowadzenie Logiki temporalne Przykłady użycia Bibliografia. Logiki temporalne. Andrzej Oszer. Seminarium Protokoły Komunikacyjne Seminarium Protokoły Komunikacyjne Spis treści 1 2 PLTL - Propositional Linear Temporal Logic CTL - Computation Tree Logic CTL* - uogólnienie 3 4 rozszerzaja logikę pierwszego rzędu o symbole określajace

Bardziej szczegółowo

Logika 2 Logiki temporalne

Logika 2 Logiki temporalne Logika 2 Logiki temporalne Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Dzisiejsze zajęcia wiele zawdzięczają wykładom A. Indrzejczaka z logik nieklasycznych Czym jest czas? św. Augustyn

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Kultura logiczna Klasyczny rachunek zdań 2/2

Kultura logiczna Klasyczny rachunek zdań 2/2 Kultura logiczna Klasyczny rachunek zdań 2/2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 29 III 2 Plan wykładu: Wartościowanie w KRZ Tautologie KRZ Wartościowanie v, to funkcja, która posyła zbiór

Bardziej szczegółowo

Kultura logiczna Klasyczny rachunek zdań 1/2

Kultura logiczna Klasyczny rachunek zdań 1/2 Kultura logiczna Klasyczny rachunek zdań /2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 22 III 2 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe

Bardziej szczegółowo

Klasyczny rachunek zdań 1/2

Klasyczny rachunek zdań 1/2 Klasyczny rachunek zdań /2 Elementy logiki i metodologii nauk spotkanie VI Bartosz Gostkowski Poznań, 7 XI 9 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe

Bardziej szczegółowo

Schematy Piramid Logicznych

Schematy Piramid Logicznych Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:

Bardziej szczegółowo

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź

Bardziej szczegółowo

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty

Bardziej szczegółowo

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika

Bardziej szczegółowo

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie: Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na

Bardziej szczegółowo

Podstawowe Pojęcia. Semantyczne KRZ

Podstawowe Pojęcia. Semantyczne KRZ Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Jak wnioskują maszyny?

Jak wnioskują maszyny? Jak wnioskują maszyny? Andrzej Szałas informatyka + 1 Plan wykładu Plan wykładu Modelowanie wnioskowania Wyszukiwanie, a wnioskowanie Klasyczny rachunek zdań Diagramy Venna Wprowadzenie do automatycznego

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Logika pragmatyczna dla inżynierów

Logika pragmatyczna dla inżynierów Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny

Bardziej szczegółowo

Wykład nr 3 Techniki Mikroprocesorowe. dr inż. Artur Cichowski

Wykład nr 3 Techniki Mikroprocesorowe. dr inż. Artur Cichowski Wykład nr 3 Techniki Mikroprocesorowe dr inż. Artur Cichowski Automat skończony jest przetwornikiem ciągu symboli wejściowych na ciąg symboli wyjściowych. Zbiory symboli wejściowych x X i wyjściowych y

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

Weryfikacja modelowa. Protokoły komunikacyjne 2006/2007. Paweł Kaczan

Weryfikacja modelowa. Protokoły komunikacyjne 2006/2007. Paweł Kaczan Weryfikacja modelowa Protokoły komunikacyjne 2006/2007 Paweł Kaczan pk209469@students.mimuw.edu.pl Plan Wstęp Trzy kroki do weryfikacji modelowej Problemy Podsumowanie Dziedziny zastosowań Weryfikacja

Bardziej szczegółowo

Michał Lipnicki (UAM) Logika 11 stycznia / 20

Michał Lipnicki (UAM) Logika 11 stycznia / 20 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 11 stycznia 2013 Michał Lipnicki (UAM) Logika 11 stycznia 2013 1 / 20 KRP wstęp Wstęp Rozważmy wnioskowanie: Każdy człowiek jest śmiertelny. Sokrates

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 1. Marcin Szczuka. Instytut Matematyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 1. Marcin Szczuka. Instytut Matematyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 1 Marcin Szczuka Instytut Matematyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 28 Plan wykładu 1

Bardziej szczegółowo

Składnia rachunku predykatów pierwszego rzędu

Składnia rachunku predykatów pierwszego rzędu Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

Wyrażenia regularne.

Wyrażenia regularne. Teoretyczne podstawy informatyki Wykład : Wyrażenia regularne. Prof. dr hab. Elżbieta Richter-Wąs.2.202 Wyrażenia regularne Wyrażenia regularne (ang. regular expressions) stanowią algebraiczny sposób definiowania

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 10: Opis wzorców - wyrażenia regularne. http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Wyrażenia regularne Wyrażenia

Bardziej szczegółowo

Klasyczny rachunek predykatów

Klasyczny rachunek predykatów Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu

Bardziej szczegółowo

Internet Semantyczny i Logika I

Internet Semantyczny i Logika I Internet Semantyczny i Logika I Warstwy Internetu Semantycznego Dowód Zaufanie Logika OWL, Ontologie Podpis cyfrowy RDF, schematy RDF XML, schematy XML przestrzenie nazw URI Po co nam logika? Potrzebujemy

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018 Logika Stosowana Wykład 2 - Logika modalna Część 3 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2017/2018 Marcin Szczuka (MIMUW) Logika Stosowana 2018 1 / 36 Plan wykładu

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

4 Klasyczny rachunek zdań

4 Klasyczny rachunek zdań 4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

Lekcja 3: Elementy logiki - Rachunek zdań

Lekcja 3: Elementy logiki - Rachunek zdań Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie

Bardziej szczegółowo

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią. Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań II

Wstęp do logiki. Klasyczny Rachunek Zdań II Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Lista 1 (elementy logiki)

Lista 1 (elementy logiki) Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu

Bardziej szczegółowo

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)]; Logika 1. Czy następujące sformułowania są zdaniami: (a) Wszystkie koty w Polsce są czarne. (b) Jak to udowodnić? (c) x + y = 7. (d) Jeśli x 2 = y 2, to x = y. (e) Jeśli x = y, to x 2 = y 2. (f) 2 n +

Bardziej szczegółowo

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ KONWERSATORIUM 6: REZOLUCJA V rok kognitywistyki UAM 1 Kilka uwag terminologicznych Słuchacze zapewne pamiętają z zajęć dotyczących PROLOGu poniższą

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS

Bardziej szczegółowo

Rozstrzygalność logiki modalnej

Rozstrzygalność logiki modalnej , a FO, a Guarded fragment Rozstrzygalność logiki modalnej, a logika pierwszego rzędu 13.05.2009 / , a FO, a Guarded fragment Spis treści 1 Definicja Model Checking Spełnialność 2, a FO Zamiana na FO Złożoność

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A

Bardziej szczegółowo

Podstawy Informatyki i algorytmizacji

Podstawy Informatyki i algorytmizacji Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji dr inż. Maria Lachowicz Zagadnienia poruszane w ramach wykładu

Bardziej szczegółowo

Metoda Tablic Semantycznych

Metoda Tablic Semantycznych Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Logika Matematyczna 16 17

Logika Matematyczna 16 17 Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24

Bardziej szczegółowo

Semantyka rachunku predykatów

Semantyka rachunku predykatów Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie

Bardziej szczegółowo

APIO. W4 ZDARZENIA BIZNESOWE. ZALEŻNOŚCI MIĘDZY FUNKCJAMI. ELEMENTY DEFINICJI PROCESU. DIAGRAM ZALEŻNOŚCI FUNKCJI.

APIO. W4 ZDARZENIA BIZNESOWE. ZALEŻNOŚCI MIĘDZY FUNKCJAMI. ELEMENTY DEFINICJI PROCESU. DIAGRAM ZALEŻNOŚCI FUNKCJI. APIO. W4 ZDARZENIA BIZNESOWE. ZALEŻNOŚCI MIĘDZY FUNKCJAMI. ELEMENTY DEFINICJI PROCESU. DIAGRAM ZALEŻNOŚCI FUNKCJI. dr inż. Grażyna Hołodnik-Janczura W8/K4 ZDARZENIA BIZNESOWE W otoczeniu badanego zakresu

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji

Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 3 dr inż. Maria Lachowicz Wykład 3 1. Programowanie

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14 Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10

Bardziej szczegółowo

Programowanie deklaratywne i logika obliczeniowa

Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Wykład logika 12 godzin Dr hab. inż. Joanna Józefowska, prof. PP dyżur: poniedziałek 9.30-11.00 p. 10,

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Teoria układów logicznych

Teoria układów logicznych Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę ( Q, X,,, ) gdzie Q jest skończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, X jest skończonym zbiorem niepustym, nazwanym alfabetem

Bardziej szczegółowo

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę

Bardziej szczegółowo

Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe

Bardziej szczegółowo

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit

Bardziej szczegółowo

Excel formuły i funkcje

Excel formuły i funkcje Excel formuły i funkcje Tworzenie prostych formuł w Excelu Aby przeprowadzić obliczenia w Excelu, tworzymy formuły. Każda formuła rozpoczyna się znakiem równości =, a w formułach zwykle używamy odwołania

Bardziej szczegółowo

Logika intuicjonistyczna

Logika intuicjonistyczna Logika intuicjonistyczna Logika klasyczna oparta jest na pojęciu wartości logicznej zdania. Poprawnie zbudowane i jednoznaczne stwierdzenie jest w tej logice klasyfikowane jako prawdziwe lub fałszywe.

Bardziej szczegółowo

Technologie i systemy oparte na logice rozmytej

Technologie i systemy oparte na logice rozmytej Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie

Bardziej szczegółowo

Języki i metody programowania

Języki i metody programowania Języki i metody programowania Wykład 3 dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie hab. Andrzeja Zbrzezngo Wartości boolowskie

Bardziej szczegółowo

Teoria automatów i języków formalnych. Określenie relacji

Teoria automatów i języków formalnych. Określenie relacji Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego

Bardziej szczegółowo

Automatyczne dowodzenie twierdzeń metodą rezolucji

Automatyczne dowodzenie twierdzeń metodą rezolucji Automatyczne dowodzenie twierdzeń metodą rezolucji 16 kwietnia 2010 Rezolucja zdaniowa Formuły rachunku zdań: zbudowane ze zmiennych zdaniowych za pomocą spójników logicznych,,,, i nawiasów Wartości logiczne:

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji

Wprowadzenie do Sztucznej Inteligencji Wprowadzenie do Sztucznej Inteligencji Wykład 2 Informatyka Studia Inżynierskie Automatyczne dowodzenie twierdzeń O teoriach formalnie na przykładzie rachunku zdań Zastosowanie dedukcji: system Logic Theorist

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Wprowadzenie do logiki epistemicznej. Przekonania i wiedza

Wprowadzenie do logiki epistemicznej. Przekonania i wiedza Logika w zastosowaniach kognitywistycznych Wprowadzenie do logiki epistemicznej. Przekonania i wiedza (notatki do wykładów) Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl wersja beta 1.1 (na podstawie:

Bardziej szczegółowo

Kumulowanie się defektów jest możliwe - analiza i potwierdzenie tezy

Kumulowanie się defektów jest możliwe - analiza i potwierdzenie tezy Kumulowanie się defektów jest możliwe - analiza i potwierdzenie tezy Marek Żukowicz 14 marca 2018 Streszczenie Celem napisania artykułu jest próba podania konstruktywnego dowodu, który wyjaśnia, że niewielka

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera wykładu z Metod dowodzenia...

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

SID Wykład 7 Zbiory rozmyte

SID Wykład 7 Zbiory rozmyte SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent

Bardziej szczegółowo

Logika Matematyczna (2,3)

Logika Matematyczna (2,3) Logika Matematyczna (2,3) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 11, 18 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (2,3) 11, 18 X 2007 1 / 34 Język KRZ

Bardziej szczegółowo

Systemy zdarzeniowe - opis przedmiotu

Systemy zdarzeniowe - opis przedmiotu Systemy zdarzeniowe - opis przedmiotu Informacje ogólne Nazwa przedmiotu Systemy zdarzeniowe Kod przedmiotu 11.9-WE-AiRD-SD Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Automatyka

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium

Bardziej szczegółowo

Internet Semantyczny. Logika opisowa

Internet Semantyczny. Logika opisowa Internet Semantyczny Logika opisowa Ontologie Definicja Grubera: Ontologia to formalna specyfikacja konceptualizacji pewnego obszaru wiedzy czy opisu elementów rzeczywistości. W Internecie Semantycznym

Bardziej szczegółowo