RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią."

Transkrypt

1 Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana w ten sposób formuła również będzie tautologią. Semantyczne twierdzenie o zastępowaniu Jeżeli w danej formule zastąpimy pewną jej podformułę zdaniem logicznie równoważnym tej podformule, to otrzymana w ten sposób formuła będzie logicznie równoważna danej formule. W szczególności, jeśli dana formuła jest tautologią, to formuła wynikowa również będzie tautologią. Semantyczne twierdzenie o odrywaniu Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią. Jak widać, stosując trzy w.w. reguły, zarówno osobno jak i łącznie, będziemy zawsze przechodzić od tautologii do tautologii. Sformalizowany aksjomatyczny system rachunku zdań składa się z: 1. zbioru symboli zwanego alfabetem, 2. zbioru słów nad tym alfabetem, które nazywamy formułami, 3. wyróżnionego podzbioru formuł, które nazywamy aksjomatami, 4. zbioru reguł wnioskowania. Jako reguły wnioskowania przyjmuje się zwykle regułę podstawiania i regułę odrywania, ewentualnie regułę zastępowania. Pojęcie dowodu definiuje się analogicznie jak w systemach założeniowych: Dowodem formuły jest kończący się tą formułą ciąg formuł, w którym występują jedynie aksjomaty, wcześniej udowodnione twierdzenia oraz formuły otrzymane z formuł poprzedzających je w tym ciągu przez zastosowanie do nich reguł wnioskowania. Twierdzenia danego systemu to te formuły, dla których istnieje ich dowód; przy czym aksjomaty nazywa się też twierdzeniami pierwotnymi, zaś pozostałe dowodliwe formuły twierdzeniami pochodnymi (albo wtórnymi). Pierwszą aksjomatyką logiki klasycznej był układ aksjomatów zaproponowany przez Gottloba Fregego: (1) p (q p) (2) (p (q r)) ((p q) (p r)) (3) (p (q r)) (q (p r)) (4) (p q) ( q p) (5) p p (6) p p 1

2 Jan Łukasiewicz zaproponował układ trzech aksjomatów: (A1) (p q) ((q r) (p r)) (A2) ( p p) p (A3) p ( p q) Natomiast system A. N. Whiteheada i B. Russella ze słynnej Principia mathematica nie jest implikacyjno-negacyjny (jak powyższe), lecz alternatywno-negacyjny: (1) (p p) p (2) p (p q) (3) (p q) (q p) (4) ( p q) ( (r p) (r q)) Terminy stałe występujące w aksjomatach (np. w systemie Łukasiewicza symbole implikacji i negacji) zwane są terminami pierwotnymi. Za ich pomocą możemy definiować nowe, zwane terminami pochodnymi lub wtórnymi. Definicje tworzymy w oparciu o prawa zastępowania (eliminacji), np.: (D1) (A B) = ( A B) (D2) (A B) = (A B) (D3) (A B) = [(A B) (B A)] Stosując wówczas regułę zastępowania, która pozwala zastąpić podformułę jej równoważnikiem definicyjnym, zyskujemy możliwość dowodzenia twierdzeń ze spójnikami, które nie występują w aksjomatach. Można to też uzyskać budując bogatszy system: przyjmując obszerniejszy alfabet oraz aksjomaty zawierające wszystkie interesujące nas terminy stałe. Rozbudowując aksjomatykę, unikniemy definicji i reguły zastępowania, upraszczając zarazem dowody. Oto przykład takiej aksjomatyki: (1) (p q) ((q r) (p r)) (2) (p (p q)) (p q) (3) p (q p) (4) p q p (5) p q q (6) (p q) ((p r) (p (q r))) (7) p (p q) (8) q (p q) (9) (p r) ((q r) ((p q) r))) (10) (p q) (p q) (11) (p q) (q p) (12) (p q) ((q p) (p q)) (13) ( q p) (p q) Metalogika, metamatematyka działy nauki, w ramach których bada się własności systemów dedukcyjnych, odpowiednio logicznych i matematycznych (bywa jednak, że określeń tych używa się wymiennie). 2

3 Mówimy, że formuła A jest wyprowadzalna (dowodliwa) ze zbioru formuł X, co oznaczamy symbolicznie: X A, witw, gdy istnieje skończony ciąg formuł, w którym ostatnią formułą jest formuła A, zaś wszystkie pozostałe są albo formułami ze zbioru X, albo aksjomatami, albo powstały z poprzedzających je formuł przez zastosowanie dopuszczalnych reguł wnioskowania. Zbiór X nazywamy zbiorem założeń. WNIOSEK Formuła A systemu aksjomatycznego rachunku zdań jest wyprowadzalna ze zbioru pustego witw, gdy jest twierdzeniem tego systemu: A A Załóżmy, że X jest dowolnym zbiorem formuł KRZ, zaś A i B to dowolne formuły KRZ. Zachodzi wówczas następujące metatwierdzenie, opisujące ważną własność relacji wyprowadzalności: Syntaktyczne twierdzenie o dedukcji Formuła B jest wyprowadzalna ze zbioru X i formuły A witw, gdy implikacja A B jest wyprowadzalna ze zbioru X: X {A} B witw, gdy X A B. Zauważmy pełną analogię tego syntaktycznego twierdzenia o dedukcji do semantycznego twierdzenia o dedukcji, opisującego własności relacji wynikania logicznego. Podstawowe własności (metalogiczne) systemów dedukcyjnych: System dedukcyjny nazywamy trafnym, jeśli wszystkie twierdzenia danego systemu są tautologiami, tj. gdy dla dowolnej formuły A zachodzi: A A System dedukcyjny nazywamy semantycznie pełnym, gdy można w nim udowodnić każdą tautologię, tj., gdy dla dowolnej formuły A zachodzi: A A Dla każdego (z osobna) z omawianych przez nas wcześniej systemów można udowodnić (metalogiczne) tzw. twierdzenie o pełności: Formuła A (z tego danego systemu dedukcyjnego rachunku zdań) jest twierdzeniem tego systemu witw, gdy jest tautologią: A A Zatem wszystkie te systemy są trafne i semantycznie pełne. 3

4 Jak widać, w przypadku rachunku zdań tautologiczność (jako własność semantyczna) i dedukowalność (jako własność syntaktyczna) pokrywają się. System dedukcyjny nazywamy systemem syntaktycznie niesprzecznym witw, gdy nie istnieje żadna formuła taka, że zarówno ją, jak i jej negację można udowodnić w ramach tego systemu czyli gdy dla żadnej formuły A nie może jednocześnie zachodzić, że: X A oraz X A. Łatwo jest udowodnić następujące metatwierdzenie: Każdy semantycznie pełny system rachunku zdań jest systemem niesprzecznym. WNIOSEK: omówione przez nas systemy, jako semantycznie pełne, są również niesprzeczne. Zbiór formuł X nazywamy zbiorem syntaktycznie sprzecznym witw, gdy istnieje taka formuła A, że zarówno ją, jak i jej negację można wyprowadzić z tego zbioru, czyli X A oraz X A Syntaktyczne twierdzenie o dedukcji nie wprost 1. Zbiór X {A} jest syntaktycznie sprzeczny witw, gdy X A. 2. Zbiór X { A} jest syntaktycznie sprzeczny witw, gdy X A. I znów można zauważyć pełną analogię tego twierdzenia do semantycznego twierdzenia o dedukcji nie wprost. System dedukcyjny nazywamy syntaktycznie zupełnym, gdy każda formuła niedowodliwa w tym systemie dołączona do niego jako aksjomat czyni go systemem sprzecznym. Własność ta, zwana też mocną zupełnością, albo zupełnością w sensie Posta, oznacza, że w pewnym sensie system jest maksymalny. Udowadnia się następujące twierdzenie: Każdy semantycznie pełny system rachunku zdań z regułą odrywania i regułą podstawiania jest zupełny. Wniosek: omówione przez nas systemy dedukcyjne są zupełne. Dwa systemy dedukcyjne nazywamy równoważnymi, gdy mają identyczne zbiory formuł i twierdzeń oraz dowolna reguła pierwotna każdego z systemów jest regułą (pierwotną lub wtórną) drugiego systemu. Systemy równoważne mają identyczne własności (pełność, niesprzeczność itd.). Można pokazać, że poznane przez nas systemy są równoważne. 4

5 Mówimy, że system dedukcyjny rachunku zdań jest funkcjonalnie zupełny (albo definicyjnie pełny), gdy za pomocą jego terminów pierwotnych może być zdefiniowany każdy funktor prawdziwościowy rachunku zdań (o dowolnej liczbie argumentów). Można udowodnić np., że system z koniunkcją i negacją jest funkcjonalnie zupełny, a system z koniunkcją i alternatywą (jako jedynymi terminami pierwotnymi) nie jest funkcjonalnie zupełny. Co więcej, z takich dowodów widać, że własność funkcjonalnej zupełności nie zależy wcale od aksjomatyki czy reguł wnioskowania, a jedynie od samych terminów pierwotnych. System dedukcyjny jest rozstrzygalny, jeżeli istnieje efektywna metoda pozwalająca w skończonej liczbie kroków rozstrzygnąć dla dowolnej formuły pytanie, czy ta formuła jest czy też nie jest twierdzeniem tego systemu. Systemy dedukcyjne rachunku zdań są rozstrzygalne, gdyż dysponujemy np. metodą zerojedynkową (a także innymi, jak sprowadzanie formuły do postaci normalnej czy metoda drzew semantycznych). Zbiór aksjomatów jest niezależny, jeżeli żaden z nich nie da się wywieść z pozostałych (według przyjętych w systemie reguł wnioskowania). Zbiór terminów pierwotnych jest niezależny, gdy żaden z tych terminów nie może być zdefiniowany przez pozostałe. Np. aksjomatyki systemów Łukasiewicza czy Whiteheada są niezależne. Systemy implikacyjno-negacyjne czy alternatywno-negacyjne mają terminy pierwotne niezależne. Dualność formuł rachunku zdań. Niech formuła F zawiera jedynie spójniki negacji, koniunkcji i alternatywy. Niech F d oznacza formułę powstającą z F przez zastąpienie w niej wszędzie symbolu koniunkcji przez symbol alternatywy i odwrotnie. Formułę F d nazywamy dualną względem formuły F. Niech F oznacza formułę otrzymaną z formuły F przez zastąpienie w niej każdej zmiennej przez jej negację. Prawo dualności mówi, że: Formuły F i F d są logicznie równoważne (tzn. formuła F d F jest tautologią). Inne użyteczne twierdzenia dotyczące formuł dualnych mówią, że: Jeżeli formuła F Q jest tautologią, to formuła Q d F d też jest tautologią. Jeżeli formuła F Q jest tautologią, to formuła F d Q d też jest tautologią. 5

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 15 stycznia 2011 Michał Lipnicki () Logika 15 stycznia 2011 1 / 37 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Instytut Informatyki Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 1. Rachunek zdań 1 Systemy

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność

Bardziej szczegółowo

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

1.2.3 Funkcjonalna pełność

1.2.3 Funkcjonalna pełność 1.2.3 Funkcjonalna pełność Przedstawione przykłady sprawdzania tautologiczności formuł zamknietych metodą niewprost dobrze ilustrują, Ŝe załoŝenie niewrost o przypisaniu formule wartości fałszu, a następnie

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji

Wprowadzenie do Sztucznej Inteligencji Wprowadzenie do Sztucznej Inteligencji Wykład 2 Informatyka Studia Inżynierskie Automatyczne dowodzenie twierdzeń O teoriach formalnie na przykładzie rachunku zdań Zastosowanie dedukcji: system Logic Theorist

Bardziej szczegółowo

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie

Bardziej szczegółowo

Drobinka semantyki KRP

Drobinka semantyki KRP Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

WSTĘP ZAGADNIENIA WSTĘPNE

WSTĘP ZAGADNIENIA WSTĘPNE 27.09.2012 WSTĘP Logos (gr.) słowo, myśl ZAGADNIENIA WSTĘPNE Logika bada proces myślenia; jest to nauka o formach poprawnego myślenia a zarazem o języku (nie mylić z teorią komunikacji czy językoznawstwem).

Bardziej szczegółowo

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Zapoznaj z poniŝszym tekstem reprezentującym wiedzę logiczną o wartościach logicznych będących interpretacjami formuł złoŝonych

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

Logika matematyczna wersja 0.94 (1 września 2005)

Logika matematyczna wersja 0.94 (1 września 2005) Witold Bołt Taduesz Andrzej Kadłubowski Logika matematyczna wersja 0.94 (1 września 2005) Spis treści Wstęp 2 1 Systemy relacyjne 2 2 Język, termy i formuły 3 2.1 Język........................................

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów 1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3.

Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3. 1 Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3. Funkcje pierwotnie rekurencyjne. Problemy: Zapoznaj się z teorią funkcji pierwotnie rekurencyjnych. Ważne są definicje klasy

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

Kultura logicznego myślenia

Kultura logicznego myślenia Kultura logicznego myślenia rok akademicki 2015/2016 semestr zimowy Temat 6: Rachunek predykatów jako logika pierwszego rzędu logika elementarna = logika pierwszego rzędu KRZ logika zerowego rzędu Język

Bardziej szczegółowo

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1 Elementy rachunku lambda λ 1 Notacja λ x 3x + 7 3x + 7 jest różniczkowalna 3x + 7 jest mniejsze od 2 (2,3) 5 f(2, 3) = 2 + 3 g(2) = 2 + 3 λx(3x + 7) 3x + 7 λx λy(x + y) = λxy(x + y) λx(x + 3) 2 Rachunek

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek predykatów

Elementy logiki Klasyczny rachunek predykatów Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza

Bardziej szczegółowo

13. DOWODZENIE IV REGUŁY WPR, ELIM, ~WPR, ~ELIM

13. DOWODZENIE IV REGUŁY WPR, ELIM, ~WPR, ~ELIM 13. DOWODZENIE IV REGUŁY WPR, ELIM, ~WPR, ~ELIM Cele Umiejętność stosowania reguł pierwotnych Wpr, Elim, ~Wpr, ~Elim. Umiejętność przeprowadzania prostych dowodów z użyciem tych reguł. 13.1. Reguła Wpr

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

reguły ogólne, charakteryzujące operator konsekwencji ; reguły szczegółowe dotyczące spójników logicznych: wprowadzanie, eliminacja.

reguły ogólne, charakteryzujące operator konsekwencji ; reguły szczegółowe dotyczące spójników logicznych: wprowadzanie, eliminacja. System naturalnej dedukcji Gentzena Sąd postaci: Γ f (f formuła,γ zbiórformuł) czytamy: konsekwencją założeń Γ jest wniosek f Reguły systemu: reguły ogólne, charakteryzujące operator konsekwencji ; reguły

Bardziej szczegółowo

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy

Bardziej szczegółowo

Podstawy logiki i teorii mnogości w zadaniach

Podstawy logiki i teorii mnogości w zadaniach Uniwersytet Wrocławski Wydział Matematyki i Informatyki Piotr Koczenasz Podstawy logiki i teorii mnogości w zadaniach Praca magisterska napisana pod kierunkiem prof. dr. hab. Leszka Pacholskiego Wrocław,

Bardziej szczegółowo

Zdanie analityczne (prawda analityczna) to zdanie, które jest zawsze prawdziwe (na mocy znaczeń użytych w nim wyrażeń).

Zdanie analityczne (prawda analityczna) to zdanie, które jest zawsze prawdziwe (na mocy znaczeń użytych w nim wyrażeń). Tautologia to schemat zdań wyłącznie prawdziwych. Kontrtautologia to schemat zdań wyłącznie fałszywych. Zdanie analityczne (prawda analityczna) to zdanie, które jest zawsze prawdziwe (na mocy znaczeń użytych

Bardziej szczegółowo

Jak wnioskują maszyny?

Jak wnioskują maszyny? Jak wnioskują maszyny? Andrzej Szałas informatyka + 1 Plan wykładu Plan wykładu Modelowanie wnioskowania Wyszukiwanie, a wnioskowanie Klasyczny rachunek zdań Diagramy Venna Wprowadzenie do automatycznego

Bardziej szczegółowo

Lista 1 (elementy logiki)

Lista 1 (elementy logiki) Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły

Bardziej szczegółowo

Klasyczny Rachunek Zdań: Tablice Analityczne. (Logika Matematyczna: Wykłady 11,12) Semestr Zimowy Jerzy Pogonowski

Klasyczny Rachunek Zdań: Tablice Analityczne. (Logika Matematyczna: Wykłady 11,12) Semestr Zimowy Jerzy Pogonowski Klasyczny Rachunek Zdań: Tablice Analityczne (Logika Matematyczna: Wykłady 11,12) Semestr Zimowy 2007 2008 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl 11.0. Wprowadzenie Omówimy

Bardziej szczegółowo

14. Grupy, pierścienie i ciała.

14. Grupy, pierścienie i ciała. 4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.

Bardziej szczegółowo

Semiotyka logiczna. Jerzy Pogonowski. Dodatek 4. Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl

Semiotyka logiczna. Jerzy Pogonowski. Dodatek 4. Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semiotyka logiczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Dodatek 4 Jerzy Pogonowski (MEG) Semiotyka logiczna Dodatek 4 1 / 17 Wprowadzenie Plan na dziś Plan

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Ćwiczenie. Przeanalizuj moŝliwości opisu algorytmów zapisywania zdań lub odczytywania zdań. Uwzględnij moŝliwości stosowania skrótów takich jak:

Ćwiczenie. Przeanalizuj moŝliwości opisu algorytmów zapisywania zdań lub odczytywania zdań. Uwzględnij moŝliwości stosowania skrótów takich jak: (VI) Klasyczny rachunek zdań: prawda oraz niesprzeczność na przykładzie KRZ [Początki KRZ] Dostosujmy nasze rozwaŝania o prawdzie do potrzeb dokładniejszej analizy pojęć niesprzeczności oraz prawdy. Tym

Bardziej szczegółowo

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0 Wykład I Literatura Podręczniki 1. G. M. Fitherholz Rachunek różniczkowy i całkowy 2. W. Żakowski Matematyka tom I Zbiory zadań 1. W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach tom I i II

Bardziej szczegółowo

Logika. Michał Lipnicki. 8 października 2011. Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 8 października 2011 1 / 44

Logika. Michał Lipnicki. 8 października 2011. Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 8 października 2011 1 / 44 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 8 października 2011 Michał Lipnicki () Logika 8 października 2011 1 / 44 Zdania KRZ wprowadzenie Przedmiotem logiki klasycznej są tylko zdania oznajmujące,

Bardziej szczegółowo

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni

Bardziej szczegółowo

Logika rachunek zdań

Logika rachunek zdań Wprowadzenie do Wykładu 1 Logika Logika rachunek zdań Materiały pomocnicze do wykładu dla Studentów Informatyki Stosowanej Wydział EAIiIB AGH Antoni Ligęza Materiały pomocnicze: http://home.agh.edu.pl/~ligeza

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Logika stosowana. Ćwiczenia Wnioskowanie przez abdukcję. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski

Logika stosowana. Ćwiczenia Wnioskowanie przez abdukcję. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski Logika stosowana Ćwiczenia Wnioskowanie przez abdukcję Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2013/2014 Marcin Szczuka (MIMUW) Logika stosowana

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Temat: Algorytm kompresji plików metodą Huffmana

Temat: Algorytm kompresji plików metodą Huffmana Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik

Bardziej szczegółowo

Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna

Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna dr inż. Grzegorz ilcek & dr inż. Maciej Hojda Zakład Inteligentnych Systemów Wspomagania Decyzji, Instytut Informatyki, Politechnika Wrocławska

Bardziej szczegółowo

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10 System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

ROZDZIAŁ 5 TEORIODOWODOWE KRYTERIA LOGICZNOŚCI

ROZDZIAŁ 5 TEORIODOWODOWE KRYTERIA LOGICZNOŚCI 92 ROZDZIAŁ 5 TEORIODOWODOWE KRYTERIA LOGICZNOŚCI RACHUNEK SEKWENTÓW W rozdziale drugim omówiona została klasyczna definicja konsekwencji logicznej Alfreda Tarskiego. Definicja ta, jak pamiętamy, odwoływała

Bardziej szczegółowo

Dedukcyjne bazy danych i rekursja

Dedukcyjne bazy danych i rekursja Dedukcyjne bazy danych i rekursja Wykład z baz danych dla studentów matematyki 23 maja 2015 Bazy danych z perspektywy logiki Spojrzenie na bazy danych oczami logika pozwala jednolicie opisać szereg pojęć.

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

TESTY LOGIKA. redakcja naukowa ZBIGNIEW PINKALSKI

TESTY LOGIKA. redakcja naukowa ZBIGNIEW PINKALSKI TESTY LOGIKA redakcja naukowa ZBIGNIEW PINKALSKI Warszawa 2012 Spis treści Wykaz skrótów i symboli... 7 Wprowadzenie... 9 Rozdział I Nazwy... 11 Rozdział II Kategorie syntaktyczne... 17 Rozdział III Pytania...

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:

Bardziej szczegółowo

LOGIKA WNIOSKOWAŃ EMPIRYCZNYCH. Krystyna Misiuna Uniwersytet Warszawski I. WNIOSKOWANIA EMPIRYCZNE JAKO WNIOSKOWANIA SUPRAKLASYCZNE

LOGIKA WNIOSKOWAŃ EMPIRYCZNYCH. Krystyna Misiuna Uniwersytet Warszawski I. WNIOSKOWANIA EMPIRYCZNE JAKO WNIOSKOWANIA SUPRAKLASYCZNE LOGIKA WNIOSKOWAŃ EMPIRYCZNYCH Krystyna Misiuna Uniwersytet Warszawski I. WNIOSKOWANIA EMPIRYCZNE JAKO WNIOSKOWANIA SUPRAKLASYCZNE Działania, jakie podejmujemy w życiu codziennym, poprzedzone są z reguły

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego MATEMATYKA Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego Internetowy kurs dla kandydatów na Politechnikę Łódzką Repetytorium dla studentów I roku Politechniki Łódzkiej Skrypt niniejszy zawiera wiadomości

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Teorioinformacyjne twierdzenie Gödla,

Teorioinformacyjne twierdzenie Gödla, Teorioinformacyjne twierdzenie Gödla, czyli co ma logika do statystyki? Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN Temat referatu Twierdzenie, o którym opowiem, jest pomysłem

Bardziej szczegółowo

LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE

LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE ZDANIA W LOGICE Zdaniem nazywamy w logice wypowiedź twierdzącą, której można przypisać jedną z dwóch ocen: prawdę lub fałsz. Zdanie zaczynające się np.

Bardziej szczegółowo

Reprezentowanie wiedzy Logika a reprezentacji wiedzy Rachunek zdań Literatura. Systemy ekspertowe. Wykład 2 Reprezentacja wiedzy Rachunek zdań

Reprezentowanie wiedzy Logika a reprezentacji wiedzy Rachunek zdań Literatura. Systemy ekspertowe. Wykład 2 Reprezentacja wiedzy Rachunek zdań Systemy ekspertowe Wykład 2 Reprezentacja wiedzy Rachunek zdań Joanna Kołodziejczyk 18 marca 2014 Plan wykładu 1 Reprezentowanie wiedzy 2 Logika a reprezentacji wiedzy 3 Rachunek zdań 4 Literatura Kodowanie

Bardziej szczegółowo

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

Rachunek zdań. 2.1 Podstawowe pojęcia

Rachunek zdań. 2.1 Podstawowe pojęcia Rachunek zdań 2.1 Podstawowe pojęcia 2.1.1. Rachunek zdań to teoria zajmująca się formami wnioskowania zbudowanymi wyłącznie ze zmiennych zdaniowych oraz funktorów prawdziwościowych, będących pewnego rodzaju

Bardziej szczegółowo

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN

Bardziej szczegółowo

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 7. zdanie wynikanie wynikanie logiczne

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 7. zdanie wynikanie wynikanie logiczne WYKŁAD 7 zdanie wynikanie wynikanie logiczne 1 lukowski@filozof.uni.lodz.pl Katedra Logiki i Metodologii Nauk Instytut Filozofii Uniwersytet Łódzki ul. Kopcińskiego 16/18, I piętro, pok. 13 tel. 635-61-34

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

Wprowadzenie do programowania języki i gramatyki formalne. dr hab. inż. Mikołaj Morzy

Wprowadzenie do programowania języki i gramatyki formalne. dr hab. inż. Mikołaj Morzy Wprowadzenie do programowania języki i gramatyki formalne dr hab. inż. Mikołaj Morzy plan wykładu wprowadzenie gramatyki podstawowe definicje produkcje i drzewa wywodu niejednoznaczność gramatyk hierarchia

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów i układy sekwencyjne

Wstęp do Techniki Cyfrowej... Teoria automatów i układy sekwencyjne Wstęp do Techniki Cyfrowej... Teoria automatów i układy sekwencyjne Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych.

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

Paradygmaty programowania

Paradygmaty programowania Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów

Bardziej szczegółowo

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji.

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji. Algebra Boole a Algebrą Boole a nazywamy zbiór B, wyróżnione jego podzbiory O i I oraz operacje dwuargumentowe +;, które dla dowolnych elementów X, Y, Z zbioru B spełniają następujące aksjomaty: X+Y B;

Bardziej szczegółowo

Logika dla archeologów Część 5: Zaprzeczenie i negacja

Logika dla archeologów Część 5: Zaprzeczenie i negacja Logika dla archeologów Część 5: Zaprzeczenie i negacja Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zaprzeczenie 2 Negacja 3 Negacja w logice Sprzeczne grupy

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Oxfordzka implementacja metody dowodzenia Tableaux

Oxfordzka implementacja metody dowodzenia Tableaux LISTA ZADAŃ WYKŁAD Oxfordzka implementacja metody dowodzenia Tableaux http://logic.philosophy.ox.ac.uk/main.htm Klikając na View installation istruction otrzymujemy nastepujace uwagi o instalacji programu

Bardziej szczegółowo

Klasyczny rachunek zdań Funkcje prawdziwościowe i algorytm zerojedynkowy

Klasyczny rachunek zdań Funkcje prawdziwościowe i algorytm zerojedynkowy Witold Marciszewski LOGIKA Rozdział 2 2002/2003 Klasyczny rachunek zdań Funkcje prawdziwościowe i algorytm zerojedynkowy Tło historyczne. Myśl, że wnioskowanie, podstawowy przedmiot logiki, można ująć

Bardziej szczegółowo

Logika Radosna 1.5. Jerzy Pogonowski. Semantyka KRZ. Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl

Logika Radosna 1.5. Jerzy Pogonowski. Semantyka KRZ. Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Logika Radosna 1.5 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRZ Jerzy Pogonowski (MEG) Logika Radosna 1.5 Semantyka KRZ 1 / 40 Wprowadzenie Plan na

Bardziej szczegółowo

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Analiza matematyczna - 4. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Wstęp: zmienne ciągłe i zmienne dyskretne Podczas dotychczasowych wykładów rozważaliśmy przede wszystkim zależności funkcyjne

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo