n p 2 i = R 2 (8.1) i=1
|
|
- Dagmara Świderska
- 7 lat temu
- Przeglądów:
Transkrypt
1 8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem mikrokanonicznym dla gazu doskonałego polega na tym, że funkcja rozkładu mikrokanonicznego dotyczy stanu wszystkich cząstek na raz. Natomiast rozkład Maxwella podaje z jakim prawdopodobieństwem losowo przez nas wybrana cząstka będzie miała akurat pęd p. Rozkład Maxwella wynika z klasycznego rozkładu mikrokanonicznego w przestrzeni pędów dla gazu doskonałego. Liczba stopni swobody wynosi n = 3N. Jest ona równa wymiarowi hipersfery stałej energii V n (R) w przestrzeni pędów, o równaniu n p i = R (8.1) i=1 W rozkładzie mikrokanonicznym wszystkie punkty na hipersferze stałej energii V n (R) w przestrzeni pędów są jednakowo prawdopodobne. Załóżmy teraz, że na przykład ostatnia składowa pędu p n=3n ma ustaloną wartość p, z dokładnością d p. Temu warunkowi odpowiada pasek na hipersferze o promieniu R p i grubości dl równej niewielkiemu łukowi sfery. Ważne jest aby za grubość paska przyjąć długość łuku, a nie wielkość d p. Ponieważ dl = Rdφ (8.) oraz p = R cos φ, d p = sin φ dφ (8.3) wobec czego związek pomiędzy łukiem dl i dokładnością określenia pędu d p jest następujący dl = d p R R p (8.4) 1
2 V n 1( R p ) p φ R V n 1 ( R) Pomieważ wielkość p rośnie, gdy kąt φ maleje w wyrażeniu na d p można było opuścić znak. Szukana gęstość prawdopodobieństwa dla pojedynczej składowej pędu będzie równa stosunkowi objętości paska do objętości całej hipersfery: f 1 (p) d p = V n 1( R p ) V n (R) R R p d p (8.5) Zastosujemy teraz przybliżony wzór na objętość hipersfery dla dużych n obliczony na poprzednich ćwiczeniach: gdzie e,71 jest stałą Eulera. Stąd V n (R) ( πr e) n/ (8.6) n [ ] π(r p (n 1)/ )e f 1 (p) / n 1 [ ] πr n/ e n R R p = = (π)n/ (π) n/ (π) 1/ (R p ) n/ R (R ) n/ (R p ) en/ e n/ n n/ (8.7) e 1/ (n 1) (n 1)/ Promień hipersfery w przestrzeni pędów wynosił gdzie U jest energią wewnętrzna gazu doskonałego: R = mu (8.8) Stąd: U = 3 NkT = 1 nkt (8.9)
3 R = nmkt = α n (8.1) gdzie oznaczyliśmy α = mkt (8.11) Przy tych oznaczeniach wyrażenie (8.7) można zapisać w postaci: f 1 (p) = ( ) n/ 1 ( 1 p (α n p ) 1 n ) n/ (n 1) 1/ αn (8.1) πe α n n 1 Aby znaleźć przybliżone wartości czynników występujących w powyższym wzorze dla dużych n należy skorzystać z następującego wzoru na funkcję wykładniczą: lim n ( x ) n 1 + = e x n Odpowiednie składniki wzoru (8.1) wynoszą wówczas (8.13) ( p ) n/ ( p ) 1 exp α n mkt gdzie we wzorze (8.13) należy przyjąć x = p /α. (8.14) ( ( n n/ = 1 n 1) 1 ) n e (8.15) n α n(n 1) α n p 1 α (8.16) Wykorzystując granice tych trzech wyrażeń dostajemy rozkład Maxwella dla pojedynczego stopnia swobody: f 1 (p) = ) 1 exp ( p πmkt mkt (8.17) Pojedyncza cząstka gazu posiada trzy niezależne stopnie swobody. Wobec czego gęstość prawdopodobieństwa znalezienia cząstki z określonym wektorem pędu p wynosi: 3
4 ) f ( p) = f (p x, p y, p z ) = f 1 (p x ) f 1 (p y ) f 1 (p z ) = (πmkt) 3/ exp ( p mkt (8.18) gdzie tutaj p = p x + p y + p z (8.19) Nie interesuje nas kierunek wektora pędu p cząstki, ponieważ w stanie równowagi termodynamicznej wszystkie kierunki są jednakowo prawdopodobne. Należy dodatkowo obliczyć średnią po kierunkach, czyli całkę po powierzchni sfery p = const: f (p) = f ( p) d p x d p y d p z = π π p sin θ dφ dθ f ( p) (8.) p=const φ=θ= Ponieważ oraz π π dφ = π, (8.1) sin θdθ = cos θ π/ = (8.) dostajemy w końcu rozkład Maxwella dla wartości pędu cząstki gazu: f (p) = 4πp f ( p) (8.3) Zadanie Sprawdzić warunek unormowania rozkładu Maxwella f (p)d p = 1 (8.4) Zgodnie ze wzorami (8.18) i (8.3) ) f (p) = 4π (πmkt) 3/ p exp ( p mkt (8.5) 4
5 Oznaczając: ponieważ 4π π 3/ = 4/ π dostajemy: β = (πmkt) 1/ (8.6) f (p) = 4 π β 3 p e β p (8.7) Unormowanie wynosi: f (p)d p = u = βp du = βd p 4 β 3 u du π β e u β = u= 4 π u e u du = 1 (8.8) Ponieważ ostatnia całka równa się π/4 zgodnie ze wzorem (3.5) z książki: B. Piłat i M. Wasilewski, Tablice całek Zadanie Znaleźć pęd najbardziej prawdopodobny i pęd oczekiwany w rozkładzie Maxwella. Pęd najbardziej prawdopodobny odpowiada maksimum funkcji f (p): f( p)= p e -p p max Warunek na maksimum funkcji zadanej wzorem (8.7) jest następujący d f d p = 4 π β 3 (p p 3 β ) exp( β p ) = (8.9) 5
6 stąd: p max = 1/β = mkt (8.3) Pęd oczekiwany to wartość średnia pędu dla gęstości prawdopodobieństwa f (p): p = p f (p) = 4 π β 3 p 3 exp( β p ) (8.31) Stosując podstawienie u = βp, du = βd p otrzymujemy p = 4 β 3 u 3 du π β 3 e u β = 4 β π u 3 e u du (8.3) Stosując jeszcz raz podstawienie v = u, dv = udu = β π ve v dv = przez części = β π e v dv = β π (8.33) Ostatecznie: p = 8 mkt (8.34) π 6
7 unormowanie rozkladu Maxwella In[]:= In[5]:= f p_ 4 Π Β 3 p Exp p Β ; Integrate f p, p,,, GenerateConditions False PowerExpand Out[5]= 1 ped najbardziej prawdopodobny In[8]:= Out[8]= p. Solve Simplify D f p, p, p Last 1 Β ped oczekiwany In[1]:= Out[1]= Integrate p f p, p,,, GenerateConditions False ΠΒ 8.1 Ujemne temperatury bezwzględne Rozważmy prosty układ statystyczny złożony z N nieoddziałujących cząstek, z których każda może przebywać tylko w jednym z dwóch stanów ψ i ψ 1 o energiach odpowiednio ɛ i ɛ. Może to być model materiału magnetycznego składający się z N nieoddziałujących ze sobą atomów wykazujących magnetyczny moment dipolowy. Rozpatrujemy przypadek kwantowy, w którym rzut wektora momentu magnetycznego na oś kwantyzacji (kierunek pola) może przyjmować tylko pewne określone wartości. Zakładamy dla, że atom w polu magnetycznym może mieć tylko dwie wartości rzutu momentu magnetycznego na kierunek pola ±µ przypadek spinu 1. Energia momentu dipolowego µ w polu magnetycznym o indukcji B wynosi: E = µ B = µb (8.35) Energia każdego atomu może przyjmować dwie wartości. Stany kwantowe ψ i ψ 1 odpowiadając przeciwnym kierunkom spinu. Jeśli przez n oznaczymy liczbę cząstek o niższej energii ɛ to energia wewnętrzna układu będzie równa: U(n) = (N n)ɛ nɛ = ɛ(n n) (8.36) 7
8 Możemy powiedzieć, że wiedza o tym ile cząstek znajduje się na niższym poziomie energetycznym, czyli znajomość n, określa makrostan układu. Natomiast konkretny rozkład cząstek na obu poziomach, czyli znajomość energii każdej cząstki z osobna to mikrostan układu. Liczba mikrostanów odpowiadających danemu makrostanowi, czyli degeneracja poziomu energetycznego U(n) układu wynosi W(N, n) = N n = N! n! (N n)! (8.37) Jest ona znana z kombinatoryki jako liczba podzbiorów n-elementowych zbioru N- elementowego. Zadanie Na podstawie wzoru (8.37) wyznaczyć entropię i temperaturę układu w stanie rówowagi. Wygodniej jest wprowadzić tak zwany parametr uprządkowania układu, czyli różnicę między liczbą cząstek na obu poziomach energetycznych: stąd x = n (N n) = n N (8.38) n = N + x, N n = N x (8.39) Maksymalna wartość parametru uporządkowania x = N oznacza, że wszystkie cząstki mają energię ɛ. Minimalna wartość x = N odpowiada stanomi układu, gdy wszystkie cząstki zgromadzone są na górnym poziomie energetycznym. W końcu wartość x = opisuje przypadek, gdy cząstki rozłożone są na obu poziomach po połowie. Energia wewnętrzna układu jest proporcjonalna do x: Liczba mikrostanów dla danego x (makrostanu): U = xɛ (8.4) 8
9 N! W(N, x) = ( ) ( ) x + N N x!! (8.41) Zastosujemy wzór Stirlinga na logarytm silni ln n! n ln n n (8.4) Parametr uporządkowania nie może być zbyt bliski skrajnym wartościom ±N, bo wtedy zastosowanie wzoru Strilinga do silni w mianowniku wzoru (8.41) przestaje mieć sens.wzór Stirlinga już dla n = 1 daje błąd poniżej 1%. In[8]:= n 1; 1 Log n n Log n 1 Log n N Out[8]= Co jest równoważne założeniu, że różnica pomiędzy wartością x i N nie może być mniejsza niż. Dla dużych N nie jest to zbyt istotne ograniczenie. Entropię układu w stanie równowagi obliczymy ze wzoru Boltzmanna właśnie jako logarytm liczby mikrostanów. Zgodnie ze wzorem (8.41) wynosi ona w przybliżeniu: = kn (ln N 1) k N + x S = k ln W(N, x) = [ ln ( ) N + x ] 1 k N x [ ln ( ) N x ] 1 (8.43) Temperaturę układu możemy zdefiniować w zgodzie z termodynamiką jako pochodną energii wewnętrznej po entropii. Można to zamienić na pochodną entropii po parametrze uporządkowania. Pochodne są zwyczajne bo nie wprowadziliśmy objętości układu i nasz układ nie wykonuje pracy: T = du ds = 1 / ds du = ɛ / ds dx (8.44) Zależność energii wewnętrznej od entropii obrazuje poniższy rysunek. Linia ciągła odpowiada przybliżonemu wzorowi (8.43), a punkty odpowiadają logarytmowi ścisłej zależności (8.41). Temperatura to pochodna poniższego wykresu. 9
10 In[1]:= n 1; S x_ : Log n n x n x In[3]:= In[4]:= In[5]:= In[6]:= S1 x_ : n Log n 1 n x Log n x 1 n x Log n x 1 rys1 ListPlot Table S x, x, x, n, n, n, PlotStyle PointSize., DisplayFunction Identity ; rys ParametricPlot S1 x, x, x, n, n, DisplayFunction Identity ; Show rys1, rys, DisplayFunction $DisplayFunction, Frame True, Ticks None, FrameTicks,, n Log, "N ln", n, " N Ε",,, n, "N Ε", None, None, FrameLabel "S", "U", RotateLabel False ; N Ε U N Ε N ln S Jak widać maksymalna wartość entropii układu N ln odpowiada najmniej uporządkowanemu stanowi układu dla x =. W bardziej mądry sposób temperaturę można wprowadzić przy użyciu energii swobodnej układu: F = U TS (8.45) żądając spełnienia warunku koniecznego na minimum energii swobodnej, przy zadanej temperaturze,względem wewnętrznego parametru uporządkowania x: Stąd: df dx = (8.46) du dx = T ds dx (8.47) czyli T = du dx / ds dx = ɛ / ds dx (8.48) 1
11 Jak widać dostajemy w ten sposób ten sam wzór co (8.44). Różniczkując po x wzór (8.43) dostajemy: [ ds dx = k ln ( ) N + x ] 1 k + k [ ln ( ) N x ] 1 + k ( ) N x = ln N + x (8.49) Stąd temperatura układu wynosi: T = ɛ / ln ( ) N x N + x (8.5) Jak widać z powyższego wzoru dla x > temperatura jest ujemna! In[17]:= Plot 1 Log 1 x 1 x, x, 1, 1, Frame True, FrameTicks 1, " N",, "", 1, "N", 3, " ",, "", 3, " ", None, None, Ticks None, FrameLabel "x", "T", RotateLabel False, PlotStyle RGBColor,, 1 ; T N N x h Ujemne temperatury bezwględne odpowiadają stanom o tak zwanej inwersji obsadzeń, dla których liczbą cząstek na górnym poziomie energetycznym jest większa niż liczba cząstek na dolnym poziomie. Pamiętamy o tym, że cały czas mamy do czynienia ze stanami równowagi termodynamicznej. Aby zrealizować stan inwersji obsadzeń w realnej sytuacji, na przykład atomów w polu magnetycznym, należało by całkowicie odizolować układ od otoczenia. Wtedy cząstki na górnym poziomie energetycznym nie będą mogły przejść spontanicznie na dolny poziom oddając różnicę energii ɛ do otoczenia. W praktyce stan inwersji obsadzeń dla x > jest metastabliny, to znaczy stabilny w czasie na tyle długim że da się go zaobserwować, a oddziaływanie układu z otoczeniem jest na tyle słabe, że prawdopodobieństwo spontanicznego przejścia cząstki układu do stanu podstawowego jest małe. 11
16 Jednowymiarowy model Isinga
16 Jednowymiarowy model Isinga Jest to liniowy łańcuch N spinów mogących przyjmować wartości ± 1. Mikrostanem układu jest zbiór zmiennych σ i = ±1, gdzie i = 1,,..., N (16.1) Określają one czy i-ty spin
Bardziej szczegółowoS ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Bardziej szczegółowo8 Rozkład mikrokanoniczny
8 Rozkład mikrokanoniczny 8.1 Funkcja rozkładu Literatura: D. Morse, Thermal Physics, rozdz. III Statistical Mechanics. Rozpatrujemy klasyczny układ mechaniczny (zbiór cząstek) q oznacza w skrócie wszystkie
Bardziej szczegółowoFIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Bardziej szczegółowoWykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna
Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)
Bardziej szczegółowoPole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Bardziej szczegółowoWielki rozkład kanoniczny
Ćwiczenia nr 0 Wielki rozkład kanoniczny Jest to rozkład prawdopodobieństwa dla układu o zmiennej liczbie cząstek N. Liczbę cząstek możemy potraktować jako dodatkową liczbą kwantową układu. ψ jest to stan
Bardziej szczegółowoZadania z Fizyki Statystycznej
Zadania z Fizyki Statystycznej 1. Wyznaczyć skok wartości pochodnej ciepła właściwego w temperaturze krytycznej dla gazu bozonów, w temperaturze w której pojawia się konensacja [1].. Wyznaczyć równanie
Bardziej szczegółowoWykład 12. Rozkład wielki kanoniczny i statystyki kwantowe
Wykład 12 Rozkład wielki kanoniczny i statystyki kwantowe dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy
Bardziej szczegółowo9.1 Rozkład kanoniczny dla układów kwantowych
9 Rozkład kanoniczny 9.1 Rozkład kanoniczny dla układów kwantowych Jest to funkcja rozkładu w stanie równowagi termodynamicznej, dla układu mogącego wymieniać ciepło z otoczeniem. Układ znajduje się w
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Bardziej szczegółowo= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Bardziej szczegółowoWykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Bardziej szczegółowoTermodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny
Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem
Bardziej szczegółowo1 Rachunek prawdopodobieństwa
1 Rachunek prawdopodobieństwa 1. Obliczyć średnią i wariancję rozkładu Bernouliego 2. Wykonać przejście graniczne p 0, N w rozkładzie Bernouliego przy zachowaniu stałej wartości średniej: λ = N p = const
Bardziej szczegółowoElementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron
Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak
Bardziej szczegółowomechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Bardziej szczegółowoStatystyki kwantowe. P. F. Góra
Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie
Bardziej szczegółowoFizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra
Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0
Bardziej szczegółowoWielki rozkład kanoniczny
, granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany
Bardziej szczegółowoWystępują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.
Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich
Bardziej szczegółowoWykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Bardziej szczegółowoRozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności
Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności Krotności hadronów a + b c 1 + c +...+ c i +...+ c N Reakcje ekskluzywne: wszystkie
Bardziej szczegółowor. akad. 2005/ 2006 Jan Królikowski Fizyka IBC
VIII.1 Pojęcia mikrostanu i makrostanu układu N punktów materialnych. Prawdopodobieństwo termodynamiczne. Entropia. VIII. Rozkład Boltzmanna VIII.3 Twierdzenie o wiriale Jan Królikowski Fizyka IBC 1 Uwagi
Bardziej szczegółowoFizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra
Fizyka statystyczna Fenomenologia przejść fazowych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Przejście fazowe transformacja układu termodynamicznego z jednej fazy (stanu materii) do innej, dokonywane
Bardziej szczegółowoTermodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):
Bardziej szczegółowoWykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Bardziej szczegółowoWykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Bardziej szczegółowoWykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA
Bardziej szczegółowoElementy fizyki statystycznej
5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną
Bardziej szczegółowoRównowaga w układach termodynamicznych. Katarzyna Sznajd-Weron
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia
Bardziej szczegółowoPrędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Bardziej szczegółowoWstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Bardziej szczegółowoELEMENTY FIZYKI STATYSTYCZNEJ
ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). 15.1. Termodynamiczny opis układu Opis
Bardziej szczegółowoFIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych
FIZYKA STATYSTYCZA Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych elementów takich jak atomy czy cząsteczki. Badanie ruchów pojedynczych cząstek byłoby bardzo trudnym
Bardziej szczegółowoObliczanie indukcyjności cewek
napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I
Bardziej szczegółowoTermodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej
Bardziej szczegółowoStara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Bardziej szczegółowoPodstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
Bardziej szczegółowoZadania kwalifikacyjne na warsztaty "Zjawiska krytyczne"
Zadania kwalifikacyjne na warsztaty "Zjawiska krytyczne" Maciej Kolanowski 1 maja 018 Lista zadań już jest zamknięta. Rozwiązania proszę wysyłać na maila (do znalezienia na moim WWW profilu) lub telepatycznie.
Bardziej szczegółowoRozwiązania zadań z podstaw fizyki kwantowej
Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze
Bardziej szczegółowoKlasyczna mechanika statystyczna Gibbsa I
Wykład III Mechanika statystyczna Klasyczna mechanika statystyczna Gibbsa I Wstępne uwagi Materia nas otaczająca, w szczególności gazy będące centralnym obiektem naszego zainteresowania, zbudowane są z
Bardziej szczegółowoIX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Bardziej szczegółowoElektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace
Bardziej szczegółowoUkłady statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
Bardziej szczegółowoAtom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Bardziej szczegółowoCałki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,
Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,
Bardziej szczegółowoTeoria kinetyczna gazów
Teoria kinetyczna gazów Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy ciepło właściwe przy
Bardziej szczegółowoVIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
Bardziej szczegółowoMechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Bardziej szczegółowoOtrzymali Państwo od Pani dr Cichockiej przykładowe zadania na egzamin. Na ostatnich zajęciach możemy je porozwiązywać, ale ze względu na
Otrzymali Państwo od Pani dr Cichockiej przykładowe zadania na egzamin. Na ostatnich zajęciach możemy je porozwiązywać, ale ze względu na ograniczenie czasowe chciałam już dziś dać pewne wskazówki i porady,
Bardziej szczegółowoIX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Bardziej szczegółowoProgram MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=
Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną
Bardziej szczegółowoRozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI 22.1 Wstęp Definiujemy dla gazu elektronowego operatory anihilacji ψ σ (r) i kreacji ψ σ(r) pola fermionowego ψ σ
Bardziej szczegółowoPrzegląd termodynamiki II
Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy
Bardziej szczegółowoPochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Bardziej szczegółowoPromieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Bardziej szczegółowoPodstawy fizyki sezon 1 X. Elementy termodynamiki
Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika
Bardziej szczegółowoKarta punktowania egzaminu do kursu Fizyka 1 dla studentów Wydziału Inż. Śr., kier. Inż. Śr. oraz WPPT IB. Zagadnienie 1.
Karta punktowania egzaminu do kursu Fizyka 1 dla studentów Wydziału Inż. Śr., kier. Inż. Śr. oraz WPPT IB. Zagadnienie 1. 3 PKT. Wzorcowa odpowiedź ad I zasada zaczerpnięta z podręcznika HRW lub równoważna
Bardziej szczegółowoWażne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Bardziej szczegółowoDetekcja rozkładów o ciężkich ogonach
Detekcja rozkładów o ciężkich ogonach J. Śmiarowska, P. Jamer Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska 24 kwietnia 2012 J. Śmiarowska, P. Jamer (Politechnika Warszawska) Detekcja
Bardziej szczegółowoVI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)
Bardziej szczegółowo17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
Bardziej szczegółowoWykład 3. Entropia i potencjały termodynamiczne
Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Bardziej szczegółowoRównanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Bardziej szczegółowoStatystyka nieoddziaływujących gazów Bosego i Fermiego
Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,
Bardziej szczegółowoZagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Bardziej szczegółowoZad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Bardziej szczegółowoPROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO
PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO wyprowadzenie bez mechaniki kwantowej. Opracował mgr inż. Herbert S. Mączko Celem jest wyznaczenie objętościowej gęstości energii ρ T promieniowania w równoległościennej,
Bardziej szczegółowo= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
Bardziej szczegółowoFizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne
Bardziej szczegółowoCząstki Maxwella-Boltzmanna (maxwellony)
TiFS, Ćwiczenia nr 4 Cząstki Maxwella-Boltzmanna (maxwellony) Jeśli do wielkiej sumy statystycznej zastosuje się klasyczną poprawkę na niezrozróżnialność cząstek to w wyniku otrzymuje się własności cząstek,
Bardziej szczegółowoMoment pędu fali elektromagnetycznej
napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0
Bardziej szczegółowoElementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości
Bardziej szczegółowoEGZAMIN Z ANALIZY II R
EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić
Bardziej szczegółowo1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
Bardziej szczegółowo3 Potencjały termodynamiczne i transformacja Legendre a
3 Potencjały termodynamiczne i transformacja Legendre a literatura: Ingarden, Jamiołkowski i Mrugała, Fizyka Statystyczna i ermodynamika, 9 W.I Arnold, Metody matematyczne mechaniki klasycznej, 14 3.1
Bardziej szczegółowoKomputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Bardziej szczegółowoRÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
Bardziej szczegółowoWażną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
Bardziej szczegółowoRównania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Bardziej szczegółowoKinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Bardziej szczegółowoZwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH
METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w
Bardziej szczegółowoJ. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Bardziej szczegółowoOpis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Bardziej szczegółowoRozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
WYKŁAD 13 DYNAMIKA MAŁYCH (AKUSTYCZNYCH) ZABURZEŃ W GAZIE Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Bardziej szczegółowoRozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Bardziej szczegółowoZamiana sumowania po stanach jednocząstkowych na całkowanie
TiFS, Ćwiczenia nr 11 Zamiana sumowania po stanach jednocząstkowych na całkowanie Gęstość stanów kwantowych na osi energii f (E) określa liczbę stanów N(E) w określonym przedziale energii de: f (E) de
Bardziej szczegółowoEstymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Bardziej szczegółowoPrzykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
Bardziej szczegółowo1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Bardziej szczegółowoWykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
Bardziej szczegółowoFizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe. P. F. Góra
Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Zespół kanoniczny Zespół mikrokanoniczny jest (przynajmniej w warstwie
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Bardziej szczegółowoZASTOSOWANIA CAŁEK OZNACZONYCH
YH JJ, MiF UP 13 D BL PÓL FGUR PYŹ e wszystkich wzorach zakładamy, że funkcje: f (x), g(x), r(ϕ), x(t), y(t) sa cia głe w odpowiednich przedziałach oraz że r(ϕ). D BL PÓL FGUR PYŹ Pole obszaru D = {(x,
Bardziej szczegółowoElektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Bardziej szczegółowoOPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Bardziej szczegółowo