Algorytm 2.1. Rys Czy zupa jest słona? Przygotuj. Gotowe danie START. Przepis... STOP NIE TAK
|
|
- Agnieszka Filipiak
- 9 lat temu
- Przeglądów:
Transkrypt
1 2 Algorytmy decyzyjne Algorytmy decyzyjne charakteryzują się tym, że w pewnym momencie w sytuacji problemowej następuje ich zatrzymanie i wybór właściwej drogi. Algorytmy rozgałęziające się dają ogromne możliwości podczas rozwiązywania zadań, w których muszą zachodzić lub zostać wykluczone określone warunki. Poniższe przykłady reprezentujące grupę algorytmów decyzyjnych obrazują sytuacje spotykane w życiu codziennym, jak również podczas rozwiązywania zadań matematycznych. W takich algorytmach można już całkowicie wykluczać sytuacje wadliwe, co najczęściej będzie się kończyć odpowiednią informacją i zatrzymaniem programu. Zadania wraz z rozwiązaniami prezentowane są w następującej kolejności: przepis na gotowanie zupy, odpowiedzialność za sprzedaż towaru z wadami, wyznaczanie większej z podanych dwóch liczb, wyznaczanie wartości bezwzględnej, dzielenie dwóch liczb rzeczywistych, obliczanie procentów, obliczanie pola powierzchni wycinka koła, wyznaczanie rozwiązania równania liniowego, wyznaczanie pierwiastków równania kwadratowego, obliczanie pola trójkąta wg wzoru Herona. Dwa ostatnie zadania wykraczają poza program nauczania w gimnazjum, ale nie powinny one stanowić problemu w zrozumieniu działania ich algorytmu.
2 Algorytm 2.1 Przepis na gotowanie zupy. Dane: Zupa w proszku Woda Sól Lista kroków: 1. Przygotować litr wody w garnku. 2. Odlać ½ szklanki z 1 litra wody i wsypać zawartość torebki. 3. Zagotować pozostałą wodę w garnku. 4. Do gotującej się wody wlać rozpuszczoną zupę w szklance i dosypać soli. 5. Gotować około 5 minut. 6. Jeżeli zupa jest słona to przelej ją do talerza, w przeciwnym razie dosyp ½ łyżeczki soli i przelej do talerza. 7. Zjedz zupę i zakończ algorytm. Przygotuj Przepis... Czy zupa jest słona? Gotowe danie Rys
3 Algorytm 2.2 Odpowiedzialność za sprzedaż towaru z wadami (według prawa cywilnego: odpowiedzialność z tytułu rękojmii za wady)[6]. Lista kroków: 1. W momencie, w którym sprzedano Ci towar z wadami, powstaje odpowiedzialność sprzedawcy za wady. 2. Jeżeli kupujący powiadomił sprzedawcę w ciągu miesiąca o pojawieniu się wady, wówczas idź do punktu (5), w przeciwnym razie idź do (3). 3. Jeżeli sprzedawca podstępnie zataił wadę, idź do punktu (5), w przeciwnym razie idź do (4). 4. Wygasa odpowiedzialność sprzedawcy za wady zakończ algorytm. 5. Domagaj się przysługujących Ci uprawnień (wymiany towaru na towar wolny od wad lub naprawy towaru, obniżenia ceny i zwrotu nadpłaty itp.) zakończ algorytm. Zakupiony towar Czy towar jest wadliwy? Czy powiadomiłeś o tym sprzedawcę w ciągu miesiąca? Czy sprzedawca podstępnie zataił wadę? Odpowiedzialność za wady wygasa Domagaj się swoich praw Rys
4 Algorytm 2.3 Wyznaczanie większej z podanych dwóch liczb x i y [8]. Dane: x, y Szukane: liczba większa CZYTAJ (x,y) x>y ( y jest większe od x ) ( x jest większe od y ) Rys Pseudokod: czytaj(x,y) jeżeli x>y wykonaj pisz( x jest większe od y ) inaczej pisz( y jest większe od x ) Pascal: Program algortym; var x,y:integer; read(x,y); if x>y then write( x jest większe od y ) else write( y jest większe od x ); END.
5 ELI 2.0: Rys Rys
6 Algorytm 2.4 Wyznaczanie wartości bezwzględnej liczby x [5]. Dane: x Szukane: x CZYTAJ (x) x>=0 (-x) (x) Pseudokod: Rys Czytaj(x) jeżeli x>=0 wykonaj pisz(x)inaczej pisz(-x) Pascal: Program algortym; var x:integer; read(x); if x>=0 then write(x)else write(-x); END.
7 Algorytm 2.5 Dzielenie dwóch liczb rzeczywistych; Dane: x, y Szukane: iloraz Lista kroków: iloraz x y, gdzie y<>o. CZYTAJ (x,y) ( Nie można dzielić przez zero ) y=0 iloraz := x/y (iloraz) Pseudokod: Rys czytaj(x,y) jeżeli y=0 wykonaj pisz( Nie można dzielić przez zero ) inaczej iloraz=x/y pisz (iloraz) Pascal: Program algortym; var x,y:integer; iloraz:real; read(x,y); if y=0 then write( Nie można dzielić przez zero ) else begin iloraz:=x/y; write(iloraz); end; END.
8 Algorytm 2.6 x Obliczanie x % z liczby y; p 100 y Dane: x, y Szukane: p CZYTAJ (x,y) ( Nie można dzielić przez zero ) y=0 p := (x/y)*100 (p) Pseudokod: Rys czytaj(x,y) jeżeli y=0 wykonaj pisz( Nie można dzielić przez zero ) inaczej Pascal: p=x/y)*100 pisz (p) Program algortym; var x,y,p:real; read(x,y); if y=0 then write( Nie można dzielić przez zero ) else begin p:=(x/y)*100; write(p); end; END.
9 Algorytm 2.7 Obliczanie pola powierzchni wycinka koła Pwyc 360 S, gdzie 2 S r dla r>0. Pwyc Rys Dane: alfa, r Szukane: Pwyc CZYTAJ (alfa,r) r<=0 ( Zły promień ) pi := 3.14 S := pi*r*r Pwyc := (alfa/360)*s (Pwyc) Rys
10 Pseudokod: czytaj(alfa,r) jeżeli r<=0 wykonaj pisz('zły promień')inaczej pi:=3.14; S:=pi*r*r; Pwyc=(alfa/360)*S; pisz(pwyc); Pascal: Program algortym; var alfa,r:integer; Pwyc,pi,s:real; read(alfa,r); if r<=0 then write('zły promień')else begin pi:=3.14; S:=pi*r*r; Pwyc:=(alfa/360)*S; write(pwyc); end; END.
11 Algorytm 2.8 Wyznaczanie rozwiązania równania liniowego ax b 0, gdy dane są liczby rzeczywiste a i b [7]. Dane: a, b Szukane: x CZYTAJ (a, b) a=0 x:=-b/a b=0 (X) ( Równanie nie ma rozwiązania ) ( Rozwiązaniem jest każda liczba rzeczywista x ) Rys
12 Pseudokod: czytaj(a,b) jeżeli (a=0) i (b=0) wykonaj pisz ('Rozwiązaniem jest każde x') jeżeli (a=0) i nie(b=0) wykonaj pisz ('Równanie nie ma rozwiązania') jeżeli a<>0 wykonaj x=-b/a pisz (x) Pascal: Program algortym; var a,b:integer; x:real; read(a,b); if (a=0) and (b=0) then write ('Rozwiązaniem jest każde x'); if (a=0) and not (b=0) then write ('Równanie nie ma rozwiązania'); if a<>0 then begin x:=-b/a; write(x); end; END. ELI 2.0: Rys
13 Algorytm Wyznaczanie pierwiastków równania kwadratowego ax bx c 0, gdzie a<>0 [7, 9]. Dane: a, b, c Szukane: x1, x2 CZYTAJ (a,b,c ) a=0 (To nie jest równanie kwadratowe) delta:=b -4*a*c delta<0 (Równanie kwadratowe nie ma pierwiastków rzeczywistych) delta=0 x1:=-b/2a x2:=x1 x1:=(-b-sqr(delta))/2*a x2:=(-b+sqr(delta))/2*a (x1,x2 ) Rys
14 Pseudokod: czytaj(a,b,c) jeżeli a=0 wykonaj pisz('to nie jest równanie kwadratowe') jeżeli a<>0 wykonaj delta=sqr(b)-4*a*c jeżeli delta<0 wykonaj pisz ('Równanie kwadratowe nie ma pierwiastków rzeczywistych') jeżeli delta=0 wykonaj jeżeli delta>0 wykonaj x1=(-b)/(2*a) x2=x1 x1=(-b-sqr(delta))/(2*a) x2=(-b+sqr(delta))/(2*a) pisz(x1,x2) Pascal: Program algortym; var a,b,c,delta,x1,x2:real; read(a,b,c); if a=0 then write('to nie jest równanie kwadratowe'); if a<>0 then begin delta:=sqr(b)-4*a*c; if delta<0 then write('równanie kwadratowe nie ma pierwiastków rzeczywistych'); if delta=0 then begin x1:=(-b)/(2*a);x2:=x1;end; if delta>0 then begin x1:=(-b-sqr(delta))/(2*a); x2:=(-b+sqr(delta))/(2*a);end; write(x1,x2); end; END. ELI 2.0: Rys
15 Algorytm 2.10 Obliczanie pola trójkąta wg wzoru Herona S p( p a)( p b)( p c), gdzie a b c p. Aby istniał trójkąt o długości boków a, b, c muszą być spełnione 2 następujące warunki: a+b>c, b+c>a, c+a>b[5]. Dane: a, b, c Szukane: S CZYTAJ (a, b, c) a+b>c b+c>a c+a>b p:=(a+b+c)/2 ( Trójkąt nie istnieje ) S:=SQRT(p*(p-a)*(p-b)*(p-c)) (S) Rys
16 Pseudokod: czytaj(a,b,c) p=a+b+c)/2 jeżeli nie(a+b>c)lub nie(b+c>a)lub nie(c+a>b) wykonaj pisz( Trójkąt nie istnieje ) inaczej P=(a+b+c)/2 S=SQRT(p*(p-a)*(p-b)*(p-c)) pisz(s) Pascal: Program algortym; var a,b,c,p,s:real; read(a,b,c); if not(a+b>c)or not(b+c>a)or not(c+a>b) then write('trójkąt nie istnieje')else begin p:=(a+b+c)/2; S:= sqrt (p*(p-a)*(p-b)*(p-c)); write(s); end; END.
W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku.
W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. Nie wolno dzielić przez zero i należy sprawdzić, czy dzielna nie jest równa zeru. W dziedzinie liczb
PASCAL. Etapy pisania programu. Analiza potrzeb i wymagań (treści zadania) Opracowanie algorytmu Kodowanie Kompilacja Testowanie Stosowanie
PASCAL Język programowania wysokiego poziomu Opracowany przez Mikołaja Wirtha na początku lat 70 XX wieku Prosty, z silną kontrolą poprawności Stosowany prawie wyłącznie na uczelniach do nauki programowania
Wykład IV Algorytmy metody prezentacji i zapisu Rzut oka na język PASCAL
Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład IV Algorytmy metody prezentacji i zapisu Rzut oka na język PASCAL 1 Część 1 Pojęcie algorytmu 2 I. Pojęcie algorytmu Trochę historii Pierwsze
TEMAT: Podejmowanie decyzji w programie instrukcja warunkowa (IF).
INFORMATYKA kl. II gimnazjum Krzysztof Gładkowski TEMAT: Podejmowanie decyzji w programie instrukcja warunkowa (IF). Czas: 2godz. Przygotowanie środowiska. Pomoce dydaktyczne. Oprogramowanie środowisko
Zagadnienia - równania nieliniowe
Zagadnienia - równania nieliniowe Sformułowanie zadania poszukiwania pierwiastków. Przedział izolacji. Twierdzenia o istnieniu pierwiastków. Warunki zatrzymywania algorytmów. Metoda połowienia: założenia,
Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4
Zad. 1 Liczba jest równa A B C D Zad. Liczba log16 jest równa A 3log + log8 B log4 + log3 C 3log4 log4 D log0 log4 Zad. 3 Rozwiązaniem równania jest liczba A B 18 C 1, D 6 Zad. 4 Większą z dwóch liczb
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
if (wyrażenie ) instrukcja
if (wyrażenie ) instrukcja Jeśli wartość wyrażenia jest różna od zera, to jest wykonywana instrukcja, jeśli wartość wyrażenia jest równa 0, to dana instrukcja nie jest wykonywana Wyrażenie testowe podajemy
LXIII Olimpiada Matematyczna
1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a
KONKURS MATEMATYCZNY
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W CHEŁMIE INSTYTUT MATEMATYKI i INFORMATYKI 22-100 Chełm, ul. Pocztowa 54 tel./fax. (082) 562 11 24 KONKURS MATEMATYCZNY im. Samuela Chróścikowskiego 10 kwiecień 2015r.
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
Miejsce na identyfikację szkoły PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ZGODNY Z WYMOGAMI NA 015 ROK POZIOM PODSTAWOWY CZERWIEC 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 49988 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Odległość punktu A =
Utworzenie funkcji użytkownika w Visual Basic
Utworzenie funkcji użytkownika w Visual Basic Po co? Potrzebna jest nam funkcja, która nie występuje w Excelu. Zadanie 1. Utwórz funkcję użytkownika kotek, która będzie funkcją dwóch zmiennych b i h i
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2
Klasa POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 8 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od. do 5.
MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby.
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
Definicja algorytmu brzmi:
1.1. Definicja algorytmu Często w życiu stajesz przed koniecznością rozwiązania jakiegoś zadania. Na lekcji matematyki musisz na przykład rozwiązać równanie i w tym celu wykonujesz szereg czynności: od
Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15
Spis treści Od autorów........................................... 7 Zamiast wstępu zrozumieć symbolikę................... 9 Zdania............................................... 10 1. Liczby rzeczywiste
I Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw
x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:
RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
2.8. Algorytmy, schematy, programy
https://app.wsipnet.pl/podreczniki/strona/38766 2.8. Algorytmy, schematy, programy DOWIESZ SIĘ co oznaczają pojęcia: algorytm, schemat blokowy, język programowania, jakie są sposoby obliczania największego
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
METODY OPISU ALGORYTMÓW KOMPUTEROWYCH
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: TS1C 100 003 Ćwiczenie pt. METODY OPISU ALGORYTMÓW KOMPUTEROWYCH
1. Informatyka - dyscyplina naukowa i techniczna zajmująca się przetwarzaniem informacji.
Temat: Technologia informacyjna a informatyka 1. Informatyka - dyscyplina naukowa i techniczna zajmująca się przetwarzaniem informacji. Technologia informacyjna (ang.) Information Technology, IT jedna
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
Kod ucznia Nazwisko i imię M A T E M A T Y K A 14 MARCA 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu
Sposoby przedstawiania algorytmów
Temat 1. Sposoby przedstawiania algorytmów Realizacja podstawy programowej 5. 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych problemów; 2) formułuje ścisły
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Pendolinem z równaniami, nierównościami i układami
Pendolinem z równaniami, nierównościami i układami 1. Równaniem nazywamy równość dwóch wyrażeń algebraicznych. Równaniami z jedną niewiadomą są, np. równania: 2 x+3=5 x 2 =4 2x=4 9=17 x 3 2t +3=5t 7 Równaniami
Wstęp do Informatyki
Wstęp do Informatyki dr hab. Bożena Woźna-Szcześniak, prof. AJD bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 8 1 / 32 Instrukcje iteracyjne
Podstawy Informatyki. Inżynieria Ciepła, I rok. Iteracja warunkowadopóki(while) Blok instrukcji. Pascal: begin instrukcja1; C: { end;
Podstawy Informatyki Inżyria Ciepła, I rok Wykład 8 Algorytmy, cd Instrukcja decyzyjna wybierz Zda wybierz służy do wyboru jednej z kilku możliwości Ma ono postać: wybierz przełącznik z wartość_1: zda_1
ALGORYTMY Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
ALGORYMY Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu
Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi
Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
Wielomiany. dr Tadeusz Werbiński. Teoria
Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych
Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu
Programowanie strukturalne Opis ogólny programu w Turbo Pascalu STRUKTURA PROGRAMU W TURBO PASCALU Program nazwa; } nagłówek programu uses nazwy modułów; } blok deklaracji modułów const } blok deklaracji
Wprowadzenie do algorytmiki
Wprowadzenie do algorytmiki Pojecie algorytmu Powszechnie przyjmuje się, że algorytm jest opisem krok po kroku rozwiązania postawionego problemu lub sposób osiągnięcia jakiegoś celu. Wywodzi się z matematyki
Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki
Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Turbo Pascal jest językiem wysokiego poziomu, czyli nie jest rozumiany bezpośrednio dla komputera, ale jednocześnie jest wygodny dla programisty,
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2019 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj
Instrukcja warunkowa i wyboru
Instrukcja warunkowa i wyboru projektowanie algorytmów instrukcje sterujące języka Pascal instrukcja warunkowa operatory relacyjne i logiczne instrukcja wyboru echniki programowania I s.3-1 Projektowanie
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Wstęp do analizy matematycznej
Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w
VII POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI rok szkolny 2015/2016
3. Pierwszy piechur w ciągu minuty przebywa 1/a drogi, drugi 1/b drogi. Obaj piechurzy przebywają 1/a+1/b czyli (b+a)/ab b a ab Odp. Piechurzy spotkają się po 1 : minut ab b a 4. (5a+1) 4 (5b+4) 4 = (
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 40092 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM ROZSZERZONY CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Największa wartość
1 Wprowadzenie do algorytmiki
Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności
Koło Matematyczne klasy 2-3 GIM
Koło Matematyczne klasy 2-3 GIM Autor: M.Prażuch 01.09.2011. Zmieniony 06.10.2017. Gminny Zespół Szkół w Bielanach Wrocławskich "TO CO MUSIAŁEŚ ODKRYĆ SAMODZIELNIE, ZOSTANIE W TWYM UMYŚLE ŚCIEŻKĄ, KTÓRĄ
Elementy logiki. Zdania proste i złożone
Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
w najprostszych przypadkach, np. dla trójkątów równobocznych
MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu
MMC TALES Konkurs Matematyczny MERIDIAN
A MMC TALES Konkurs Matematyczny MERIDIAN Sobota, 26 stycznia 2008 Czas pracy: 75 minut Maksymalna liczba punktów do uzyskania: 120 W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych.
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2
Klasa POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 8 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od. do 5.
Algorytm. a programowanie -
Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik
Visual Basic for Application (VBA)
Visual Basic for Application (VBA) http://dzono4.w.interia.pl Książka Visual Basic dla aplikacji w Office XP PL, autorzy: Edward C. Willett i Steve Cummings, Wyd. Helion Typy zmiennych Różne dane różnie
EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
x+h=10 zatem h=10-x gdzie x>0 i h>0
Zadania optymalizacyjne. Jaka jest największa możliwa wartość iloczynu dwóch liczb, których suma jest równa 60? Rozwiązanie: KROK USTALENIE WZORU Liczby oznaczamy przez a i b więc x+y=60 Następnie wyznaczamy
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Podstawy programowania
Podstawy programowania Część trzecia sterujące wykonaniem programu wprowadzenie Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO ETAP II POWIATOWY (online) 25 stycznia 2017 roku godz. 10:00 Czas pracy: 60 minut Liczba punktów do uzyskania: 50
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
Opis problemu i przedstawienie sposobu jego rozwiązania w postaci graficznej. Gimnazjum nr 3 im. Jana Pawła II w Hrubieszowie 1
Opis problemu i przedstawienie sposobu jego rozwiązania w postaci graficznej Gimnazjum nr 3 im. Jana Pawła II w Hrubieszowie 1 Etapy rozwiązywania problemu PROBLEM wybór metody rozwiązania ALGORYTM 1.
EGZAMIN MATURALNY OD ROKU SZKOLNEGO
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla
a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76
. p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować
SCENARIUSZ LEKCJI Z MATEMATYKI. opracowała Hanna Szmyt
SCENARIUSZ LEKCJI Z MATEMATYKI opracowała Hanna Szmyt Temat: Zadania optymalizacyjne dotyczące funkcji kwadratowej. 1. Cele główne: pokazanie zastosowań własności funkcji kwadratowe w zadaniach optymalizacyjnych,
Suma ( ) 0,3 jest równa:
Liczby i działania Zadania zamknięte: Zadanie. (0-p.) Dane są liczby: 9 ; - 8,5 ; - 4, ; 6,5. Która z nich ma wartość bezwzględną mniejszą od 5? A) -9. B) 6,5 C) -8,5 D) 4, Zadanie. (0-p.) Ile liczb całkowitych
V Międzyszkolny Konkurs Matematyczny
V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie
Wstęp do Programowania, laboratorium 02
Wstęp do Programowania, laboratorium 02 Zadanie 1. Napisać program pobierający dwie liczby całkowite i wypisujący na ekran największą z nich. Zadanie 2. Napisać program pobierający trzy liczby całkowite
KURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA Wyrażenia algebraiczne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Wyrażenie 3 a 8 a +
Dwa równania kwadratowe z częścią całkowitą
Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to
EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 0 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
3. Podstawowe funkcje mamematyczne. ZAPOZNAĆ SIĘ!!!
Zajęcia 3 1. Instrukcja iteracyjna while while WARUNEK do Instrukcja; 2. Deklaracja funkcji function nazwa(x:real;i:integer;...): typ_funkcji; deklaracje zmiennych lokalnych; instrukcje (w tym podstawienie
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
napisać konstrukcję instrukcji decyzyjnej If wraz z jej rozwinięciem Else i ElseIf; podać definicję algorytmu z rozgałęzieniami;
1 TEMAT LEKCJI: Algorytmy z rozgałęzieniami. 2 CELE WYRAŻONE OPERACYJNIE: 2.1 Wiadomości: Uczeń potrafi: napisać konstrukcję instrukcji decyzyjnej If wraz z jej rozwinięciem Else i ElseIf; podać definicję
Podstawy programowania. Wykład 3 Konstrukcje sterujące. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład 3 Konstrukcje sterujące Krzysztof Banaś Podstawy programowania 1 Kod źródłowy i wykonanie programu Kod źródłowy w języku programowania zawiera przepis wykonania programu
4. Funkcje. Przykłady
4. Funkcje Przykłady 4.1. Napisz funkcję kwadrat, która przyjmuje jeden argument: długość boku kwadratu i zwraca pole jego powierzchni. Używając tej funkcji napisz program, który obliczy pole powierzchni
Suma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI CIAGI ARYTMETYCZNE ZADANIE 1 Suma drugiego, czwartego i szóstego wyrazu ciagu arytmetycznego jest równa 42, zaś suma kwadratów wyrazów drugiego
Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Przykładowe rozwiązania
Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Klucz odpowiedzi do zadań zamkniętych Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A Zadanie 14 15 16 17 18
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 08/09 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Numer zadania Poprawna odpowiedź...
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 018/019.10.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 6 lutego 208 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie. ( punkt) Odległość między miastami A i B na mapie wynosi