Cyfrowe przetwarzanie i kompresja danych
|
|
- Renata Skrzypczak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa
2 Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja Kontrolowane straty Zakłócenia
3 Obliczanie jednowymiarowej transformaty DCT Przekształcenie proste X DCT = Y ? * = y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8
4 Obliczanie jednowymiarowej transformaty DCT Przekształcenie proste X DCT = Y f1 f2 f3 f4 f5 * = f6 f7 f8 y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8
5 Obliczanie jednowymiarowej transformaty DCT Przekształcenie proste X DCT = Y f1 f2 f3 f4 f5 * = f6 f7 f8 y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 Przekształcenie odwrotne Y DCT = X y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 f1 f2 f3 f4 f5 * = f6 f7 f8 ' 1 ' 2 ' 3 ' 4 ' 5 ' 6 ' 7 ' 8
6 DCT jako analiza sub-pasmowa
7 Podział widma sygnału w analizie subpasmowej DCT 1 _ 0 π 2 _ π 3 _ π 4 _ π 5 _ π 6 _ π 7 _ π π f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8
8 Rozkład energii w obrazie Histogram wartości współczynnik czynników w DCT obraz LENA
9 Rozkład energii w obrazie Histogram wartości współczynnik czynników w DCT obraz BABOON
10 Szczególna postać analizy subpasmowej X(z) H (z) 0 G (z) 0 + Y(z) H (z) 1 G (z) 1 0 π _ 2 π X l X h
11 Podział widma sygnału w analizie falkowej H 0 (z) l H 1 (z) h 0 π _ 2 π X l X h
12 Podział widma sygnału w analizie falkowej l H 0 (z) ll H 0 (z) H 1 (z) lh H 1 (z) h 0 π _ 4 π _ 2 π X ll X lh X h
13 Podział widma sygnału w analizie falkowej l H 0 (z) ll H 0 (z) lll H 0 (z) H 1 (z) llh H 1 (z) lh H 1 (z) h 0 π _ 8 π _ 4 π _ 2 π X lll X llh X lh X h
14 Analiza falkowa W przeciwieństwie do analizy fourierowskiej i kosinusowej, analiza falkowa nie wyraża a badanych funkcji poprzez wielomiany, ale poprzez pewne specjalne funkcje - falki, które sąs tworzone ze stałej funkcji zwanej falką macierzystą,, poddanej wielokrotnym translacjom. Uzyskane w ten sposób b falki mają szereg interesujących skalowalnych właściwości. ci. Można je odnosić zarówno do czasu jak i do częstotliwo stotliwości, dopuszczając c bliższe związki zki pomiędzy badaną funkcją (funkcją reprezentowaną), a jej współczynnikami. W ten sposób b uzyskano większ kszą numeryczna stabilność w procesie odtwarzania funkcji. Pokazano, że e każde zadanie posługuj ugujące się szybką transformatą Fouriera może zostać sformułowane owane za pomocą falek, dając c przy tym więcej informacji przestrzennej (o miejscu położenia) jak i częstotliwo stotliwościowej. W ten sposób zamiast tworzyć spektrum natęż ężenie-częstotliwość można otrzymać spektrum falkowe (wavelet( spectrum).
15 TRANSFORMATA FALKOWA Cechą charakterystyczną funkcji bazowych transformaty falkowej jest to, że e ich wartość średnia jest równa r zero i mają postać szybko gasnących oscylacji. Ciągła transformata falkowa sygnału u ciągłego (t), z zastosowaniem falki bazowej g(t) ) jest opisana równaniem: r Wf 1 t b = g dt a a ( a, b) ( t) gdzie a jest współczynnikiem skali (wpływa na czas trwania) falki, b współczynnikiem przesunięcia (zmienia położenie na osi czasu). Wartość współczynnik czynników a i b interpretuje się jako miarę podobieństwa do danego fragmentu analizowanego sygnału. Wynikiem ciągłego przekształcenia falkowego sąs współczynniki Wf(a,b a,b), które odwzorowują sygnał oryginalny (t) ) za pomocą falki bazowej g(t) ) w przestrzeni czas-cz częstotliwość.
16 Przekształcenie falkowe Przekształcenie falkowe opiera się na szablonie, który wykorzystuje pewną funkcję podstawową (falkę podstawową). Transformatę falkową oblicza się na podstawie wzoru, poprzez wyznaczanie iloczynu skalarnego z przeskalowanymi i przesuniętymi wersjami falki podstawowej. CWT f 1 = τ s s t τ s ( τ s) f ( t), Ψ ( t) = f ( t) Ψ dt,, gdzie: ( ) Ψ t s,τ falka podstawowa, odpowiednio argumenty skali i czasu, tworzące dziedzinę transformaty
17 Przekształcenie falkowe Teoria falkowej reprezentacji sygnału u nie definiuje konkretnej postaci falki, określa jedynie własnow asności jakie musi posiadać taka funkcja. Wymaga się,, by falka miała a skończon czoną energię, wartość średnią równą zero oraz by posiadała a niezerowe wartości tylko w skończonym przedziale. Spełnienie tych warunków w powoduje, że e falka posiada postać krótkotrwa tkotrwałej oscylacji, skąd d wywodzi się jej nazwa.
18 Przekształcenie falkowe W wyniku jednowymiarowego przekształcenia falkowego otrzymuje się dwuwymiarową półpłaszczyznę, której argumentami sąs skala i czas. Zmienna skali wywodzi się ze skalowania falki podczas wyznaczania transformaty i posiada znaczenie odwrotności chwilowej częstotliwo stotliwości. Teoretyczne badania naukowe doprowadziły y do opracowania różnych r odmian przekształcenia falkowego, przeznaczonych do cyfrowego przetwarzania sygnałów. Największe znaczenie posiada tu dyskretne przekształcenie falkowe, które dostarcza najbardziej zwartą reprezentację falkową sygnału dyskretnego. W wyniku tej transformacji otrzymuje się zbiór współczynnik czynników w pogrupowanych odpowiednimi poziomami skali, zdyskretyzowanej wykładniczo. Na każdym poziomie skali, odpowiadającym analizowaniu sygnału u z różnąr rozdzielczości cią, otrzymuje się współczynniki, których gęstog stość rozmieszczenia w czasie jest zależna od bieżą żącej wartości skali. Dzięki temu, uzyskuje się własność wielorozdzielczości ci,, pozwalającą na dopasowanie się rozdzielczości ci czasowej analizy sygnału u do aktualnej skali analizy.
19 Jednowymiarowa analiza falkowa l H 0 (z) ll H 0 (z) lll H 0 (z) H 1 (z) llh H 1 (z) lh H 1 (z) h lll 2 HG 00 (z) + ^ ll 2 GH 0 (z) 0 (z) ^ l llh 2 HG 1 (z) lh 2 HG 1 (z) + h 2 2 HG 0 (z) HG 1 (z) + ^ 0 π_ 8 π_ 4 π_ 2 π X lll X llh X lh X h
20 Dwuwymiarowa analiza falkowa Blok A ll-ll-ll Blok A H 0 vert vert l vert H 0 hor hor ll Blok A ll-ll ll-lh ll-hl ll-ll-lh ll-ll-hl ll-ll-hh H 1 hor hor lh ll-hh h vert H 0 hor hor hl H 1 vert vert H 1 hor hor hh
21 Dwuwymiarowa analiza falkowa c.d. 0 π_ 2 π_ 0 2 π ll-ll-ll ll-ll-hl ll-ll-lh ll-ll-hh ll-hl ll-lh ll-hh lh hl hh π
22 Realizacja - filtry LeGalla G H ( ) ( z = z + 2z z z ) 0 2 H ( ) ( z = z + 2 z) ( ) ( z = z + 2 z) G = z 2z ( ) ( 2 z z z ) 1 2 (1) (2) (3) (4)
23 Jakość przetwarzania (1) PSNR [db] Wavelet DCT BER [%]
24 Jakość przetwarzania (2) DCT,, BER=0.1% WAVELET,, BER=0.1%
25 Jakość przetwarzania (3) DCT,, BER=1% WAVELET,, BER=1%
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Analiza czas - częstotliwość analiza częstotliwościowa: problem dla sygnału niestacjonarnego zwykła transformata
Bardziej szczegółowoTransformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Bardziej szczegółowoLABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy
Bardziej szczegółowoPrzekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
Bardziej szczegółowoLaboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii
Bardziej szczegółowoTransformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Bardziej szczegółowoPrzetwarzanie Sygnałów. Zastosowanie Transformaty Falkowej w nadzorowaniu
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Zastosowanie Transformaty Falkowej
Bardziej szczegółowo2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Bardziej szczegółowoPrzetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS
Bardziej szczegółowoZastosowanie falek w przetwarzaniu obrazów
Informatyka, S2 sem. Letni, 2013/2014, wykład#1 Zastosowanie falek w przetwarzaniu obrazów dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Alfréd Haar Alfréd
Bardziej szczegółowo4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...
Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe
Bardziej szczegółowoPrzedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego
Bardziej szczegółowouzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t
4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem
Bardziej szczegółowoPOSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ
Krystian Pyka POSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ Streszczenie. W pracy przedstawiono wyniki badań nad wykorzystaniem falek do analizy
Bardziej szczegółowoEKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ
Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ
Bardziej szczegółowoPrzekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
Bardziej szczegółowoAdaptive wavelet synthesis for improving digital image processing
for improving digital image processing Politechnika Łódzka Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej 4 listopada 2010 Plan prezentacji 1 Wstęp 2 Dyskretne przekształcenie falkowe
Bardziej szczegółowoCyfrowe przetwarzanie sygnałów. Wykład 10. Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała
Cyfrowe przetwarzanie sygnałów Wykład 10 Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała 1 Transformata cosinusowa Dyskretna transformacja kosinusowa, (DCT ang. discrete cosine
Bardziej szczegółowoTRANSFORMATA FALKOWA 2D. Oprogramowanie Systemów Obrazowania 2016/2017
TRANSFORMATA FALKOWA 2D Oprogramowanie Systemów Obrazowania 2016/2017 Wielorozdzielczość - dekompozycja sygnału w ciąg sygnałów o coraz mniejszej rozdzielczości na wielu poziomach gdzie: s l+1 - aproksymata
Bardziej szczegółowoAkustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH
Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Dźwięk muzyczny Dźwięk muzyczny sygnał wytwarzany przez instrument muzyczny. Najważniejsze parametry: wysokość związana z częstotliwością podstawową, barwa
Bardziej szczegółowoKompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.
1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci
Bardziej szczegółowoDefinicja. x(u)h (u t)e i2πuf du. F x (t,f ;h) = Krótko czasowa transformata Fouriera Ciągłą transformata falkowa
Definicja Krótko czasowa transformata Fouriera(STFT) może być rozumiana jako seria transformat Fouriera wykonanych na sygnale okienkowanym, przy czym położenie okienka w czasie jest w ramach takiej serii
Bardziej szczegółowoFFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Bardziej szczegółowoPolitechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 6. Transformata cosinusowa. Krótkookresowa transformata Fouriera.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 6 Transformata cosinusowa. Krótkookresowa transformata Fouriera. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów
Bardziej szczegółowo9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Bardziej szczegółowoDYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.
CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego
Bardziej szczegółowoAnaliza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
Bardziej szczegółowoBIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Bardziej szczegółowoMetody Przetwarzania Danych Meteorologicznych Ćwiczenia 14
Danych Meteorologicznych Sylwester Arabas (ćwiczenia do wykładu dra Krzysztofa Markowicza) Instytut Geofizyki, Wydział Fizyki Uniwersytetu Warszawskiego 18. stycznia 2010 r. Zadanie 14.1 : polecenie znalezienie
Bardziej szczegółowoPrzetwarzanie obrazów wykład 6. Adam Wojciechowski
Przetwarzanie obrazów wykład 6 Adam Wojciechowski Przykłady obrazów cyfrowych i ich F-obrazów Parzysta liczba powtarzalnych wzorców Transformata Fouriera może być przydatna przy wykrywaniu określonych
Bardziej szczegółowoCyfrowe przetwarzanie i kompresja danych. dr inż.. Wojciech Zając
Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 7. Standardy kompresji obrazów nieruchomych Obraz cyfrowy co to takiego? OBRAZ ANALOGOWY OBRAZ CYFROWY PRÓBKOWANY 8x8 Kompresja danych
Bardziej szczegółowoZygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
Bardziej szczegółowoFalki, transformacje falkowe i ich wykorzystanie
Falki, transformacje falkowe i ich wykorzystanie Wstęp Praca próbuje opisać czym jest falka oraz podać zastosowania falek w praktyce. Na wstępie w Postaci matematycznej falki zaprezentujemy czym jest problem
Bardziej szczegółowoKodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Bardziej szczegółowoKompresja video (MPEG)
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 8, strona 1. Kompresja video (MEG) Zasadniczy schemat kompresora video Typy ramek przy kompresji czasowej Analiza ramek przez syntezę Sposób detekcji
Bardziej szczegółowoTeoria Sygnałów. Inżynieria Obliczeniowa II rok 2018/19. Wykład 10. ( t) Wykorzystanie transformacji Fouriera w analizie korelacyjnej
Teoria Synałów Inżynieria Obliczeniowa II rok 208/9 Wykład 0 Wykorzystanie transformacji Fouriera w analizie korelacyjnej Na początek krótkie przypomnienie podstawowych definicji: Funkcja autokorelacji
Bardziej szczegółowoKompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
Bardziej szczegółowoAnaliza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
Bardziej szczegółowoZmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2
Bardziej szczegółowoZmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 27 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko Wiesław Kosek Waldemar Popiński Seminarium Sekcji Dynamiki Ziemi Komitetu Geodezji PAN
Bardziej szczegółowoTeoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Bardziej szczegółowoTRANSFORMATA FALKOWA. Joanna Świebocka-Więk
TRANSFORMATA FALKOWA Joanna Świebocka-Więk Plan prezentacji 1. Fala a falka czyli porównanie transformaty Fouriera i falkowej 2. Funkcja falkowa a funkcja skalująca 3. Ciągła transformata falkowa 1. Skala
Bardziej szczegółowoZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Bardziej szczegółowoTRANSFORMATA FALKOWA WYBRANYCH SYGNAŁÓW SYMULACYJNYCH
1-2013 PROBLEMY EKSPLOATACJI 27 Izabela JÓZEFCZYK, Romuald MAŁECKI Politechnika Warszawska, Płock TRANSFORMATA FALKOWA WYBRANYCH SYGNAŁÓW SYMULACYJNYCH Słowa kluczowe Sygnał, dyskretna transformacja falkowa,
Bardziej szczegółowoPrzekształcenie Z. Krzysztof Patan
Przekształcenie Z Krzysztof Patan Wprowadzenie Przekształcenie Laplace a można stosować do sygnałów i systemów czasu ciągłego W przypadku sygnałów czy systemów czasu dyskretnego do wyznaczenia transmitancji
Bardziej szczegółowoPrzedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały
Bardziej szczegółowoKodowanie transformujace. Kompresja danych. Tomasz Jurdziński. Wykład 11: Transformaty i JPEG
Tomasz Wykład 11: Transformaty i JPEG Idea kodowania transformujacego Etapy kodowania 1 Wektor danych x 0,...,x N 1 przekształcamy (odwracalnie!) na wektor c 0,...,c N 1, tak aby: energia była skoncentrowana
Bardziej szczegółowoWłaściwości sygnałów i splot. Krzysztof Patan
Właściwości sygnałów i splot Krzysztof Patan Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ
Bardziej szczegółowoAnaliza i modelowanie przepływów w sieci Internet. Andrzej Andrijew
Analiza i modelowanie przepływów w sieci Internet Andrzej Andrijew Plan referatu Samopodobieostwo w sieci Internet Samopodobne procesy stochastyczne Metody sprawdzania samopodobieostwa Modelowanie przepływów
Bardziej szczegółowoAkwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Czasowo-częstotliwościowa analiza sygnałów Metody analizy sygnału Do tej pory - analiza sygnału jako funkcji
Bardziej szczegółowoANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera
Bardziej szczegółowoZASTOSOWANIA PRZEKSZTAŁCENIA ZET
CPS - - ZASTOSOWANIA PRZEKSZTAŁCENIA ZET Rozwiązywanie równań różnicowych Dyskretny system liniowy-stacjonarny można opisać równaniem różnicowym w postaci ogólnej N M aky[ n k] bkx[ n k] k k Przekształcenie
Bardziej szczegółowoO sygnałach cyfrowych
O sygnałach cyfrowych Informacja Informacja - wielkość abstrakcyjna, która moŝe być: przechowywana w pewnych obiektach przesyłana pomiędzy pewnymi obiektami przetwarzana w pewnych obiektach stosowana do
Bardziej szczegółowoSzybka transformacja Fouriera (FFT Fast Fourier Transform)
Szybka transformacja Fouriera (FFT Fast Fourier Transform) Plan wykładu: 1. Transformacja Fouriera, iloczyn skalarny 2. DFT - dyskretna transformacja Fouriera 3. FFT szybka transformacja Fouriera a) algorytm
Bardziej szczegółowoModele kp Studnia kwantowa
Modele kp Studnia kwantowa Przegląd modeli pozwalających obliczyć strukturę pasmową materiałów półprzewodnikowych. Metoda Fal płaskich Transformata Fouriera Przykładowe wyniki Model Kaine Hamiltonian z
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Bardziej szczegółowoTransformacja Fouriera i biblioteka CUFFT 3.0
Transformacja Fouriera i biblioteka CUFFT 3.0 Procesory Graficzne w Zastosowaniach Obliczeniowych Karol Opara Warszawa, 14 kwietnia 2010 Transformacja Fouriera Definicje i Intuicje Transformacja z dziedziny
Bardziej szczegółowoAnaliza obrazu. wykład 1. Marek Jan Kasprowicz Uniwersytet Rolniczy Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
Analiza obrazu komputerowego wykład 1 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Plan wykładu Wprowadzenie pojęcie obrazu cyfrowego i analogowego Geometryczne przekształcenia obrazu Przekształcenia
Bardziej szczegółowoNieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
Bardziej szczegółowoNIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU
II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU Wojciech Zając Instytut Informatyki
Bardziej szczegółowo0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi
Bardziej szczegółowoLaboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 4. Badanie optycznej transformaty Fouriera Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk
Bardziej szczegółowoPodstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Bardziej szczegółowoTechnika audio część 2
Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji
Bardziej szczegółowoMetody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
Bardziej szczegółowoDyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
Bardziej szczegółowoROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Bardziej szczegółowo8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych
Bardziej szczegółowoWYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ
WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ Hybrid Images Imię i nazwisko: Anna Konieczna Kierunek studiów: Informatyka Stosowana Rok studiów: 4 Przedmiot: Analiza i Przetwarzanie Obrazów Prowadzący przedmiot:
Bardziej szczegółowoPL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 232305 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 425576 (22) Data zgłoszenia: 17.05.2018 (51) Int.Cl. G01R 21/00 (2006.01)
Bardziej szczegółowoWykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Bardziej szczegółowoXI Konferencja Sieci i Systemy Informatyczne Łódź, październik 2003 APLIKACJA DO TESTOWANIA ALGORYTMÓW PRZETWARZANIA SYGNAŁÓW
Łódź, październik 003 Marcin Cegielski Instytut Informatyki Politechniki Łódzkiej APLIKACJA DO TESTOWANIA ALGORYTMÓW PRZETWARZANIA SYGNAŁÓW Streszczenie Celem pracy jest prezentacja aplikacji służącej
Bardziej szczegółowoTransformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
Bardziej szczegółowoInformatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoĆwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Bardziej szczegółowoEgzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów
Bardziej szczegółowoAkwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Czasowo-częstotliwościowa analiza sygnałów Metody analizy sygnału Do tej pory - analiza sygnału jako funkcji
Bardziej szczegółowo1.5. Sygnały. Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego
Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego Za pomocąsygnałów przekazywana jest informacja. Sygnałjest nośnikiem informacji. Za pomocą sygnału moŝna: badać
Bardziej szczegółowoWYMAGANIA DOTYCZĄCE ZALICZENIA ZAJĘĆ
Nazwa przedmiotu: Techniki symulacji Kod przedmiotu: ES1C300 015 Forma zajęć: pracownia specjalistyczna Kierunek: elektrotechnika Rodzaj studiów: stacjonarne, I stopnia (inŝynierskie) Semestr studiów:
Bardziej szczegółowoRozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE
1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie
Bardziej szczegółowoDystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
Bardziej szczegółowoKARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Analiza i przetwarzanie sygnałów 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut,
Bardziej szczegółowoZakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji
Bardziej szczegółowoTERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych
TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych
Bardziej szczegółowoprzetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
Bardziej szczegółowoFILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI
FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI ( frequency domain filters) Każdy człon F(u,v) zawiera wszystkie wartości f(x,y) modyfikowane przez wartości członów wykładniczych Za wyjątkiem trywialnych przypadków
Bardziej szczegółowoWymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego
Bardziej szczegółowoMetody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Bardziej szczegółowoWażne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Bardziej szczegółowoZałożenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
Bardziej szczegółowoGrafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
Bardziej szczegółowoSpis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Bardziej szczegółowo2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
Bardziej szczegółowoJoint Photographic Experts Group
Joint Photographic Experts Group Artur Drozd Uniwersytet Jagielloński 14 maja 2010 1 Co to jest JPEG? Dlaczego powstał? 2 Transformata Fouriera 3 Dyskretna transformata kosinusowa (DCT-II) 4 Kodowanie
Bardziej szczegółowoPrzeksztacenie Laplace a. Krzysztof Patan
Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Bardziej szczegółowoGRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.
GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW
Bardziej szczegółowoLaboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 2 Analiza sygnału EKG przy użyciu transformacji falkowej Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - inż. Tomasz Kubik Politechnika
Bardziej szczegółowo