2.2 Autokorelacja Wprowadzenie

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "2.2 Autokorelacja Wprowadzenie"

Transkrypt

1 2.2 Autokorelacja Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki losowe są homoscedastyczne i nieskorelowane. Jednak te założenia dla dużej liczby modeli nie są spełnione. W wielu zastosowaniach reszty modelu są skorelowane. Szczególnie dotyczy to modeli szacowanych na podstawie danych o wymiarze czasowym (dane pochodzące z szeregów czasowych). W ekonometrii skorelowanie zmiennej z tą samą zmienną z innego okresu (obiektu) nazywamy autokorelacją. Gdy wartość każda z wartości zmiennej jest skorelowana z poprzedzającą wartością mówimy o występowaniu autokorelacji pierwszego rzędu. Gdy autokorelacji podlegają obserwacje oddalone o s okresów mówimy o występowaniu autokorelacji rzędu s. W przypadku występowania zjawiska autokorelacji składnika losowego macierz wariancji-kowariancji nie jest macierzą diagonalną. Dzieje się tak, ponieważ składniki losowe dla obserwacji pochodzących z różnych okresów nie są niezależne, one są skorelowane. Podobnie jak w przypadku autokorelacji analizę zaczynamy od Klasycznego Modelu Regresji Liniowej. Postać funkcyjną modelu możemy zapisać jako: y = Xβ + ε (1) Ale uchylamy założenie o nieskorelowaniu składnika losowego, czyli przyjmujemy, że E(ε t, ε s ) 0 dla t s. Macierz wariancji-kowariancji dla modelu z autokorelacją ma taką samą diagonalę jak macierz wariancji-kowariancji w KMRL. Różnica polega na tym, że poza diagonalą są elementy różne od zera, należące do przedziału [ 1, 1] obrazujące wartość współczynnika korelacji między składnikami losowymi pochodzącymi od różnych obserwacji. Autokorelacja, czyli skorelowanie składników losowych, jest naruszeniem założeń modelu które odnosi się wyłącznie do danych o charakterze szeregów czasowych. Macierz wariancji-kowariancji, podobnie jak dla modelu z heteroscedastycznością oznaczamy przez: var(ε) = σ 2 Ω (2) gdzie Ω jest macierzą której elementy znajdujące się na diagonali są równe 1. Ale poza diagonalą znajdują się elementy różne od zera, będące współczynnikami korelacji składników losowych z odpowiednich okresów. Traktując model regresji liniowej bardzo ogólnie można powiedzieć, że składnik losowy ε t zawiera wpływ zmiennych nieuwzględnionych w równaniu regresji na zmienną objaśnianą. Wobec tego brak uwzględnienia zmiennej 88

2 istotnej lub błędna specyfikacja formy funkcyjnej modelu jest częstą przyczyną występowania dodatniej autokorelacji w modelu. Jeżeli wartości takiej zmiennej są obserwowane i mogą zostać włączone do modelu, możemy interpretować występowanie autokorelacji jako wskazanie błędnej specyfikacji modelu. Biały szum Jeżeli spełnione są założenia KMRL, w szczególności założenie o normalności rozkładu reszt, reszty z modelu powinny być niezależne od siebie i pochodzić z rozkładu o średniej 0 i stałej wariancji równej σ 2. ε iid (0, σ 2 ) Jeżeli reszt są niezależne od siebie, to zachowują się w sposób czysto losowy. Znają wartość reszty z okresu t nie jesteśmy w stanie nic powiedzieć o wartości reszty w okresie t + 1. Co więcej, nawet nie można określić czy będzie dodatnia, czy też ujemna. W całkowicie odmienny sposób zachowują się resz- Rysunek 1: Biały szum y x ty, które są skorelowane. Dodatnia korelacja składnika losowego sprawia, że jeżeli błąd w okresie t jest dodatni to będzie większe prawdopodobieństwo, że w okresie t + 1 będzie dodatni, niż ujemny. Natomiast jeżeli w okresie t błąd był ujemny, to będzie wyższe prawdopodobieństwo otrzymania w okresie t + 1 błędu ujemnego niż błędu dodatniego. Jeżeli porównamy rysunki białego szumu i reszt z dodatnią autokorelacją to zauważymy, że na rysunku z dodatnią autokorelacją wykres reszt przecina oś zerową znacznie rzadziej niż wykres białego szumu. 89

3 Rysunek 2: Dodatnia autokorelacja y x Dodatnia autokorelacja jest znacznie częściej występującą formą autokorelacji, niż autokorelacja ujemna. Jest ona powszechnym zjawiskiem w przypadku modeli szacowanych na szeregach czasowych. Występuje w przypadku, gdy zjawisko losowe zaburzające przeciętny poziom zmiennych ma wpływ na ich wartości w więcej niż jednym okresie. Ujemna autokorelacja składnika losowego powoduje, że większe jest prawdopodobieństwo zmiany znaku przez składnik losowy. Jeżeli w okresie t jest on dodatni, to w okresie t + 1 ze znacznie większym prawdopodobieństwem będzie on ujemny niż dodatni. Natomiast jeżeli w okresie t składnik losowy jest ujemny, to ze znacznie większym prawdopodobieństwem będzie on w okresie t + 1 dodatni. Jeżeli porównamy wykres reszt z ujemną autokorelacją z wykresem białego szumu, to zauważymy, że znacznie częściej przecina on poziom 0. Proces AR Istnieje wiele form autokorelacji. Każda z nich prowadzi do innej postaci macierzy wariancji-kowariancji składnika losowego σ 2 Ω. Najbardziej rozpowszechnioną formą autokorelacji jest proces autoregresyjny pierwszego rzędu. W takim przypadku przyjmuje on postać: ε t = ρε t 1 + φ t (3) gdzie φ iid (0, σ 2 ) jest wektorem zmiennych losowych o niezależnym rozkładzie ze średnią zero i stałą wariancją wynoszącą σ 2. Zakładamy, że wartość składnika losowego jest równa ρ razy wartość składnika z poprzedniego okresu plus innowacja φ t. Nowy komponent φ t ma średnią zero, stałą wariancję 90

4 Rysunek 3: Ujemna autokorelacja y x i jest niezależny w wymiarze czasu. Dla porcesu AR(1) macierz wariancjikowariancji ma następująca postać 1 ρ ρ 1 ρ ρ 1 ρ ρ. ρ ρ 1 Wzór na proces autoregresyjny można uogólnić. Proces autoregresyjny rzędu p ma następującą postać analityczną. ε t = ρ 1 ε t 1 + ρ 2 ε t ρ t p ε t p + φ t (4) Proces MA Inną często spotykaną formą autokorelacji jest proces średniej ruchomej Moving Average. Wartość w okresie t jest średnią wartości pochodzących z pewnej ilości okresów. Ilość okresów determinuje rząd procesu. y t = µ + ε t θε t 1 (5) Podobnie jak w przypadku procesu AR możemy wzór uogólnić. Proces średniej ruchomej rzędu q dany jest przez y t = µ + ε t θ 1 ε t 1 θ 2 ε t 2... θ q ε t q (6) 91

5 2.2.2 Własności estymatorów MNK Estymator MNK dla modelu regresji jest dany przez: Jest on nadal nieobciążony, ponieważ b = (X X) 1 X y (7) E(b) = E[(X X) 1 X y] = E[(X X) 1 X (Xβ + ε)] = E[(X X) 1 X X β] = β }{{} I czyli wartość oczekiwana estymatora MNK nie zależy od postaci składnika losowego, ani jego wariancji. Tak się dzieje w przypadku braku skorelowania zmiennych objaśniających z błędem losowym. Jeżeli macierz X nie zawiera regresorów skorelowanych z błędem losowym ε, to wariancję estymatora b możemy zapisać jako: var(b) = E[b E(b)][b E(b)] = E[(X X) 1 X εε X(X X) 1 ] var(b) = E[(X X) 1 X σ 2 ΩX(X X) 1 ] = σ 2 (X X) 1 X ΩX(X X) 1 (8) Jak widać, wariancja estymatora w przypadku gdy składnik losowy podlega autokorelacji jest różna od σ 2 (X X) 1. Wobec tego statystyka S 2 będzie obciążonym estymatorem wariancji składnika losowego. Jeżeli w modelu występuje autokorelacja to zazwyczaj estymator MNK niedoszacowuje prawdziwą wielkość wariancji. Ponadto testy statystyczne oparte na statystykach t, F oraz χ 2 bardzo często będą dawać mylne wyniki. Statystyki t częściej niż powinny, będą wskazywać na istotność statystyczną regresorów Estymator Praisa-Winstena Podobnie jak w przypadku heteroscedastyczności efektywnym estymatorem dla modelu z autokorelacją jest estymator otrzymany z wykorzystaniem Uogólnionej Metody Najmniejszych Kwadratów b = (X Ω 1 X) 1 X Ωy Jednak w ogólnym przypadku nie znamy postaci macierzy wariancji-kowariancji Ω. Jeżeli błąd losowy zawiera proces autoregresyjny pierwszego rzędu, to model regresji możemy przedstawić jako: y t = X t β + ε t (9) w którym składnik losowy zależy od wartości składnika losowego w poprzednim okresie ε t = ρε t 1 + φ t (10) 92

6 o składniku losowym φ t iid (0, σ 2 ) zakładamy, że jest nieskorelowany i ma taki sam rozkład niezależny od czasu. Jeżeli równanie (9) poddamy transformacjom ε t ρε t 1, y t ρy t 1, oraz x t ρx t 1 otrzymamy model, którego składnik losowy będzie homoscedastyczny i nieskorelowany.ta procedura uzyskiwania estymatora w przypadku autokorelacji została nazwana od nazwisk autorów estymacją Cochrana-Orcutta. y t ρy t 1 = (x t ρx t 1 ) β + φ t (11) Model (11) spełnia założenia twierdzenia Gaussa-Markowa, wobec tego estymator metody najmniejszych kwadratów obliczony dla niego będzie równoważny estymatorowi UMNK, o ile znany jest współczynnik korelacji ρ. Jednakże w wyniku transformacji danych tracimy pierwszą obserwację. Wobec tego uzyskany estymator będzie jedynie przybliżeniem estymatora wartości UMNK. Uzyskane przybliżenie będzie tym lepsze, im więcej obserwacji zawiera próba. Oczywiście estymator Cochrana-Orcuta jest asymptotycznie równoważny estymatorowi UMNK. Prais i Winten zmodyfikowali procedurę i zaproponowali obliczenie wartości estymatora na podstawie całej próby. Dzięki temu estymator Praisa- Winstena jest nieobciażony. Problematyczne jest, że jako estymator SUMNK jest on tylko asymptotycznie efektywny, wobec tego w małych próbach może być obciążony. Ponadto, poza podstawowymi przypadkami nie sa znane właściwości statystyk testowych. W zastosowaniach praktycznych wartość współczynnika korelacji ρ nie jest znana. Uzyskiwana jest dzięki przeprowadzaniu regresji reszt na reszty opóźnione o jeden okres (10). Otrzymanym estymatorem współczynnika korelacji jest: ( T ) 1 ( T ) ˆρ = e t e t 1 (12) t=1 e 2 t 1 Jednak ten estymator jest obciążony. ( T t=2 E(ρ ˆρ) = E e ) T te t 1 t=1 e te t 1 = T t=1 e2 t 1 t=2 T t=1 e2 t 1 e 2 1 T t=1 e2 t 1 (13) Pomimo tego, że ten estymator jest obciążony, jest on zgodny, gdyż dla dużej wartości t obciążenie dąży do zera, wobec tego plim(ˆρ) = ρ. Oznacza to że w dużych próbach jego obciążenie dąży do zera. W praktyce zamiast prawdziwej wartości ρ stosowany jest estymator ˆρ. W rezultacie uzyskany estymator Stosowalnej UMNK nie będzie najlepszym liniowym nieobciążonym estymatorem. Ale będzie on asymptotycznie równoważny estymatorowi UMNK, wobec tego w dużych próbach obciążenie będzie pomijalnie małe. 93

7 Pakiety statystyczne do estymacji używają iterowanej metody Praisa- Winstena. Polega ona na tym, że najpierw estymuje się parametr ρ, a następnie wektor β za pomocą stosowalnej UMNK. Po uzyskaniu estymatora, generuje się wektor reszt i ponownie oblicza estymator współczynnika korelacji, i ponownie estymuje się wektor β. Procedurę powtarza się do osiągnięcia zbieżności, czyli do osiągnięcia takich wartości estymatorów dla których zastosowana kolejna iteracja już ich nie zmienia. W dużych próbach nie ma dużego znaczenia ile wykonamy iteracji, bowiem estymatory są asymptotycznie równoważne. W małych próbach procedura iterowana daje lepsze rezultaty Estymator Newey a-westa Innym problemem jest uzyskanie zgodnego oszacowania macierzy wariancjikowariancji. Macierz wariancji-kowariancji składnika losowego otrzymywana metodą MNK jest obciążonym estymatorem prawdziwej macierzy wariancjikowariancji. Macierz wariancji-kowariancji estymatora możemy zapisać jako: var(β MNK ) = X σ 2 ΩX W modelach o wymiarze czasowym zakłada się, że wielkość korelacji pomiędzy obserwacjami jest stała w czasie, a formalnie wynika to z założenia o stacjonarności szeregu. Dzięki temu zmniejsza się liczba parametrów macierzy wariancji-kowariancji wymagających oszacowania, a parametry szacuje się na podstawie reszt z modelu. Możemy obliczyć jej zgodny estymator wykorzystując wyrażenie Ŝ = 1 T T e 2 t x t x t + 1 T t=1 L T w l e t e t l (x t x t l + x t l x t) l=1 t=l+1 gdzie w l = 1 l jest wagą kolejnej obserwacji, a L liczbą opóźnień. Dla L+1 procesu średniej ruchomej liczba opóźnień jest z reguły mała. Z kolei dla procesu autoregresyjnego autokorelacja nigdy nie jest równa zero. W praktyce przyjęło się u używać L = T 1 4. Ten estymator jest obciążony. Estymator Newey a-westa dany jest wzorem var(β) = (X X) 1 Ŝ(X X) 1 (14) Jest to estymator zgodny zarówno w przypadku występowania heteroscedastyczności, jak i w przy autokorelacji składnika losowego. Co więcej do jego obliczenia nie jest wymagana znajomość formy macierzy Ω. Rozkłady statystyk testowych t, F oraz χ 2 są tylko asymptotycznie poprawne, ponieważ estymator jest zgodny ale obciążony. 94

8 2.2.5 Testowanie występowania autokorelacji Jeżeli w modelu ekonometrycznym występuje autokorelacja, a tworząc model problem ten pominiemy, to doprowadzi to do sytuacji w której będziemy wyciągać wnioski na podstawie błędnego modelu. Wobec tego sprawdzenie czy składniki losowe są skorelowane jest bardzo ważnym elementem poprzedzającym wnioskowanie statystyczne. Testy na występowanie autokorelacji bazują na fakcie, że jeżeli prawdziwe zaburzenia losowe zawierają autokorelację, to reszty z metody najmniejszych kwadratów też będą skorelowane. Test Durbina-Watsona Test Durbina-Watsona jest najpopularniejszym testem wykrywającym autokorelację. Testuje ona hipotezę: przeciwko alternatywie: H 0 : brak autokorelacji H 1 : występuje autokorelacja pierwszego rzędu Podstawową zaletą testu jest to, że rozkład statystyki testowej DW jest znany zarówno dla małych jak i dla dużych prób. Statystyka dana jest wzorem: DW = T i=2 (e i e i 1 ) 2 T i=1 e2 i = 2(1 ρ) e2 1 + e 2 T n i=1 e2 i (15) gdzie ρ jest współczynnikiem korelacji pierwszego rzędu. Jeżeli dysponujemy dużą próbą to czynnik po prawej stronie równania (15) jest pomijalnie mały. Formalnie można wykazać, że DW p 2(1 ρ εtε t 1 ) Sposób testowania zależy od tego czy sprawdzamy obecność dodatniej czy ujemnej autokorelacji. Tablice rozkładu zawierają wartości krytyczne w zależności od liczby zmiennych w modelu k i ilości obserwacji T. Dla każdej pary k, T dane są dwie wartości krytyczne d L, d U. Wnioskowanie przebiega według następującego schematu: 1. jeżeli zakładamy występowanie dodatniej autokorelacji, wtedy DW < 2, oraz a) DW < d L, odrzucamy hipotezę zerową o braku autokorelacji i przyjmujemy, że w modelu jest dodatnia autokorelacja, 95

9 b) d L < DW < d U brak konkluzji, c) DW > d U nie ma podstaw do odrzucenia H 0 o braku autokorelacji. 2. jeżeli zakładamy występowanie ujemnej autokorelacji, wtedy DW > 2, oraz a) DW > 4 d L, odrzucamy hipotezę zerową o braku autokorelacji i przyjmujemy, że w modelu jest ujemna autokorelacja, b) 4 d U < DW < 4 d L brak konkluzji, c) DW < 4 d U nie ma podstaw do odrzucenia H 0 o braku autokorelacji 3. jeżeli DW = 2 to brak jest autokorelacji. Test DW ma trzy wady. Po pierwsze, wykrywa jedynie występowanie autokorelacji pierwszego rzędu. Po drugie, rozkład statystyki testowej jest nietypowy i zazwyczaj jego wartość krytyczna musi być odczytana z tablic. Po trzecie istnieje obszar braku konkluzji, ponieważ rozkład statystyki DW zależy od postaci nielosowej macierzy obserwacji X. Wartości krytyczne sa obliczone dla takich postaci macierzy X, dla których rozkład statystyki testowej dla prawdziwej hipotezy zerowej jest przesunięty najbardziej w lewą (prawą) stronę. Z tego powodu, pomiędzy wartościami krytycznymi istnieje obszar w którym odpowiedź jest niejednoznaczna. Część ekonometryków praktyków uważa, że w przypadku znalezienia się w obszarze niekonkluzywnym powinniśmy przyjąć, że składniki losowe nie są skorelowane. Test Breuscha-Godfrey a Test Breuscha-Godfrey a jest testem wykorzystującym metodę mnożników Lagrange a. Ma on przewagę nad testem Durbina-Watsona, ponieważ jest w stanie wykrywać obecność autokorelacji wyższych rzędów. Weryfikujemy hipotezę przeciwko alternatywie: H 0 : brak autokorelacji H 1 : ε i = AR(p) ε i = MA(p) W obu przypadkach używamy takiej samej statystyki testowej: Możemy ją uzyskać dwoma metodami: LM = T R 2 0 (16) 96

10 1. bierzemy wektor reszt i przeprowadzamy regresję e t = γ 0 + γ 1 e t 1 + γ 2 e t γ p e t p następnie obliczamy współczynnik R 2 0. Statystyka testowa LM = T R 2 0 ma rozkład χ 2 (p) 2. do oryginalnego równania regresji dodajemy p kolumn, zawierających opóźnione reszty y t = x t γ 0 + γ 1 e t 1 + γ 2 e t γ p e t p a następnie sprawdzamy łączną istotność statystyczną opóźnionych reszt za pomocą statystyki LM = T R 2 0. Ma ona rozkład χ 2 (p) W obu przypadkach, jeżeli wartość statystyki jest większa od wartości z rozkładu to należy do obszaru krytycznego testu i odrzucamy hipotezę zerową o braku autokorelacji. Przykład 1. Badając występowanie procesu AR(1) w pewnym modelu, znaleziono następujące wartości krytyczne testu Durbina-Watsona: d L = 1, 00 oraz d U = 1, 31. Dla jakich wartości statystyki DW z próby możemy uznać, że: a) 1. jest autokorelacja dodatnia, 2. jest autokorelacja ujemna, 3. nie ma autokorelacji, 4. nie da się roztrzygnąć czy jest autokorelacja. b) Czy i jak wpływa na wartość statystyki DW z próby fakt, że szacując model uporządkujemy obserwacje, a więc i reszty, nie od 1 do n, a od n do 1. A jaki wpływ będzie miało uporządkowanie reszt od najmniejszej do największej? Odpowiedź. a) 1. autokorelacja dodatnia jest dla DW (0; 1), 2. autokorelacja ujemna jest dla DW (3; 4), 3. nie ma autokorelacji dla DW (1, 31; 2, 69), 4. nie da się roztrzygnąć czy jest autokorelacja DW ((1; 1, 31) (2, 69; 3)). 97

11 b) Statystyka DW dana jest wzorem: DW = n i=2 (e i e i 1 ) 2 n i=1 e2 i = 2(1 r) e2 1 + e 2 T n i=1 e2 i wobec tego odwrotne uporządkowanie obserwacji nie wpłynie na kwadrat sumy w liczniku statystyki, wobec tego wartość statystyki się nie zmieni. Natomiast uporządkowanie próby według wielkości reszt zmniejszy sumę kwadratów w liczniku statystyki DW, a więc zwiększy prawdopodobieństwo, że stwierdzimy brak autokorelacji w modelu. Przykład 2. Szacując metodą MNK model liniowy o postaci y i = β 0 + β 1 x 1t + β 2 x 2t + ε t otrzymano następujący wektor reszt: e = [1, 2, 1, 2, 3, 1, 3, 0, 4, 3] Zweryfikuj hipotezę dotyczącą występowania autokorelacji składnika losowego w tym modelu na poziomie istotności α = 0, 05. Korzystając ze wzoru na statystykę Durbina-Watsona oblicza- Odpowiedź. my: DW = (2 1)2 + ( 1 2) 2 + ( 2 + 1) 2 + (3 + 2) 2 + ( 1 3) 2 + ( 3 + 1) 2 + (2 1) 2 + (0 + 3) 2 + (4 0) 2 + ( 3 4) ( 1) 2 + ( 2) ( 1) 2 + ( 3) ( 3) 2 DW = = 2, 5 Z tablicy rozkładu Durbina-Watsona odczytujemy wartości krytyczne dla dwóch zmiennych i dziesięciu obserwacji. Ponieważ dla dwóch zmiennych i 15 obserwacji wynoszą one odpowiednio d L = 0, 7, oraz d U = 1, 64, to dla dziesięciu obserwacji d L będzie niższe, a d U wyższe. Ponieważ, wartość statystyki DW jest większa od 2, to modyfikujemy wartości krytyczne przyjmując 4 d U = 2, 36 oraz 4 d L = 3, 3. Ponieważ 4 d U < DW < 4 d L wynik testu jest niekonkluzywny. Przykład 3. Popyt na lody w USA Dane do przykładu pochodzą z artykułu Hildretha i Lu (1960). Są to szeregi czasowe zawierające po 30 comiesięcznych obserwacji od marca 1951 do lipca Obejmują one następujące zmienne: cons wielkość konsumpcji lodów na głowę w pintach. (1 pinta ok 0,54 litra), income przeciętny tygodniowy dochód rodziny, 98

12 price cena lodów, temp przeciętna temperatura w skali Fahrenheita Jeżeli spojrzymy na wykresy danych to zauważymy, że temperatura jest istotnym czynnikiem wyjaśniającym poziom konsumpcji lodów. Przeprowadzona Rysunek 4: Konsumpcja lodów, cena, oraz temperatura/ time cons temp100 price regresja metodą MNK dała następujące wyniki:. reg cons price income temp Source SS df MS Number of obs = F( 3, 26) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = cons Coef. Std. Err. t P> t [95% Conf. Interval] price income temp _cons By obliczyć wartość statystyki Durbina-Watsona w pakiecie Stata, należy najpierw zdefiniować zmienną opisującą czas. Ta zmienna może przyjmować dowolne wartości. Czas powinien rosnąć z wartością zmiennej i wartość 99

13 zmiennej nie może się powtarzać, jeżeli nie zdefiniujemy zmiennej panelowej (zmiennej która będzie przyjmowała taką samą wartość dla każdej jednostki w panelu na przestrzeni czasu, ale różna dla różnych jednostek).. tsset time time variable: time, 1 to 30 Jeśli mamy zdefiniowaną zmienną opisującą czas, obliczenie statystyki Durbina- Watsona jest proste. estat dwstat Durbin-Watson d-statistic( 4, 30) = wartości krytyczne wynoszą odpowiednio d L = 1, 21 i d U = 1, 65. Wobec tego odrzucamy hipotezę zerową o braku autokorelacji pierwszego rzędu. Wyniki testu możemy potwierdzić patrząc na wykres dopasowanych wartości konsumpcji i reszt. Na rysunku wyraźnie widać, że po dodatniej reszcie Rysunek 5: Konsumpcja lodów i dopasowana konsumpcja lodów time Fitted values cons następuje dużo częściej reszta dodatnia niż ujemna, co potwierdza występowanie zjawiska dodatniej korelacji. Występowanie autokorelacji powoduje, że błędy standardowe estymatorów nie są poprawnie oszacowane. Możemy poprawić ich oszacowanie używając stosowalnej UMNK.. reg cons price income temp, robust Regression with robust standard errors Number of obs =

14 F( 3, 26) = Prob > F = R-squared = Root MSE = Robust cons Coef. Std. Err. t P> t [95% Conf. Interval] price income temp _cons lub estymatora Newey a-westa z jednym opóźnieniem, ponieważ jesteśmy pewni że składnik losowy zawiera proces AR(1).. newey cons price income temp, lag(1) Regression with Newey-West standard errors Number of obs = 30 maximum lag: 1 F( 3, 26) = Prob > F = Newey-West cons Coef. Std. Err. t P> t [95% Conf. Interval] price income temp _cons lub z sugerowaną przez teorię ekonometryczną liczbą opóźnień = 2, 34. Wobec tego używamy 3 opóźnień.. newey cons price income temp, lag(3) Regression with Newey-West standard errors Number of obs = 30 maximum lag: 3 F( 3, 26) = Prob > F = Newey-West cons Coef. Std. Err. t P> t [95% Conf. Interval] price income temp

15 _cons Jak widać estymatory parametrów wektora β są zawsze takie same, co wynika ze zgodności estymatora MNK, natomiast uzyskujemy różne wartości odchyleń standardowych estymatorów. Literatura [1] William H. Greene (2003) Econometric Analysis, 5th edition. [2] Jerzy Mycielski (2000), WNE. [3] Marno Verbbek (2000) A Guide to Modern Econometrics, John Wiley & Sons. 102

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie

Bardziej szczegółowo

Diagnostyka w Pakiecie Stata

Diagnostyka w Pakiecie Stata Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

1.8 Diagnostyka modelu

1.8 Diagnostyka modelu 1.8 Diagnostyka modelu Dotychczas zajmowaliśmy się własnościami estymatorów przy spełnionych założeniach KMRL. W praktyce nie zawsze spełnione są wszystkie założenia modelu. Jeżeli któreś z nich nie jest

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08

Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz

Bardziej szczegółowo

Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Własności składnika losowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 3 Własności składnika losowego 1 / 31 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4

Bardziej szczegółowo

1.9 Czasowy wymiar danych

1.9 Czasowy wymiar danych 1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

1.1 Klasyczny Model Regresji Liniowej

1.1 Klasyczny Model Regresji Liniowej 1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między

Bardziej szczegółowo

Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18

Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18 Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Egzamin z ekonometrii wersja ogolna

Egzamin z ekonometrii wersja ogolna Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

1.7 Ograniczenia nakładane na równanie regresji

1.7 Ograniczenia nakładane na równanie regresji 1.7 Ograniczenia nakładane na równanie regresji Często teoria ekonomiczna wskazuje dobór zmiennych do modelu. Jednak nie w każdym przypadku oceny wartości parametrów są statystycznie istotne. Zastanowimy

Bardziej szczegółowo

1.3 Własności statystyczne estymatorów MNK

1.3 Własności statystyczne estymatorów MNK 1.3 Własności statystyczne estymatorów MNK 1. Estymator nazywamy estymatorem nieobciążonym, jeżeli jego wartość oczekiwana jest równa wartości szacowanego parametru. Udowodnimy, że estymator MNK wektora

Bardziej szczegółowo

Ekonometria egzamin wersja ogólna 29/01/08

Ekonometria egzamin wersja ogólna 29/01/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis 12 maja 2007

Ekonometria. Weryfikacja modelu. Paweł Cibis 12 maja 2007 Weryfikacja modelu Paweł Cibis pawel@cibis.pl 12 maja 2007 1 Badanie normalności rozkładu elementu losowego Test Hellwiga dla małej próby Test Kołmogorowa dla dużej próby 2 Testy Pakiet Analiza Danych

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Modele warunkowej heteroscedastyczności

Modele warunkowej heteroscedastyczności Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty

Bardziej szczegółowo

Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe

Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe Część 1 to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych Czyli obserwujemy te

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

Heteroskedastyczość w szeregach czasowyh

Heteroskedastyczość w szeregach czasowyh Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Ekonometria egzamin wersja ogólna 17/06/08

Ekonometria egzamin wersja ogólna 17/06/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 17/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa.

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Paweł Strawiński Uniwersytet Warszawski Wydział Nauk Ekonomicznych 16 stycznia 2006 Streszczenie W artykule analizowane są właściwości

Bardziej szczegółowo

2 Rozszerzenia MNK. 2.1 Heteroscedastyczność

2 Rozszerzenia MNK. 2.1 Heteroscedastyczność 2 Rozszerzenia MNK 2.1 Heteroscedastyczność 2.1.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,

Bardziej szczegółowo

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL) 1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08

Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Egzamin z Ekonometrii

Egzamin z Ekonometrii Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Uogolnione modele liniowe

Uogolnione modele liniowe Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,

Bardziej szczegółowo

Ekonometria. Robert Pietrzykowski.

Ekonometria. Robert Pietrzykowski. Ekonometria Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Na dziś Sprawy bieżące Prowadzący Zasady zaliczenia Konsultacje Inne 2 Sprawy ogólne czyli co nas czeka Zaliczenie

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 13 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i Metoda Najmniejszych Kwadratów zakłada, że wszystkie zmienne

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006 Weryfikacja modelu Paweł Cibis pcibis@o2.pl 6 kwietnia 2006 1 Badanie istotności parametrów strukturalnych modelu Testy Pakiet Analiza Danych Uwagi 2 Test dla małej próby Test dla dużej próby 3 Test Durbina-Watsona

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Kilka uwag o testowaniu istotności współczynnika korelacji

Kilka uwag o testowaniu istotności współczynnika korelacji 341 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Piotr Peternek Uniwersytet Ekonomiczny we Wrocławiu Marek Kośny Uniwersytet Ekonomiczny we Wrocławiu Kilka uwag o testowaniu istotności

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Ekonometria dla IiE i MSEMat Z7

Ekonometria dla IiE i MSEMat Z7 Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo