NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.
|
|
- Antonina Szczepaniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo otrzymania iloczynu oczek równego 12. 1
2 ZADANIE 3 W pudełku zmieszano 30 ziaren fasoli, 20 ziaren ciecierzycy i 50 ziaren grochu. a) Losujemy jedno ziarenko. Jakie jest prawdopodobieństwo wylosowania ziarenka ciecierzycy? b) Jako pierwsze wylosowano ziarenko fasoli. Jakie jest prawdopodobieństwo, że drugim wylosowanym ziarenkiem nie będzie ziarenko fasoli? c) Z pudełka usunięto po 10% ziarenek każdego rodzaju. Jakie jest prawdopodobieństwo wylosowania ziarenka fasoli? ZADANIE 4 W urnie znajduje się 5 kul białych, 3 kule czerwone i 1 zielona. Losujemy 1 kulę. Oblicz prawdopodobieństwo wylosowania kuli białej. 2
3 ZADANIE 5 Rzucamy dwa razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo każdego z następujacych zdarzeń: a) A w każdym rzucie wypadnie nieparzysta liczba oczek. b) B - suma oczek otrzymanych w obu rzutach jest liczba większa od 9. c) C - suma oczek otrzymanych w obu rzutach jest liczba nieparzysta i większa od 9. ZADANIE 6 Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia A na każdej kostce wypadła nieparzysta liczba oczek, B suma wyrzuconych oczek jest nie mniejsza niż 8. Oblicz prawdopodobieństwo zdarzenia A B. 3
4 ZADANIE 7 Gracz rzuca dwa razy symetryczna sześcienna kostka do gry i oblicza sumę wyrzuconych oczek. Jeśli suma ta jest jedna z liczb: 6, 7 lub 8, to gracz wygrywa. W pozostałych przypadkach przegrywa. a) Uzupełnij tabelę, tak aby przedstawiała wszystkie możliwe wyniki tego doświadczenia losowego. b) Podaj liczbę wyników sprzyjajacych wygranej gracza i oblicz prawdopodobieństwo wygranej. I rzut II rzut
5 ZADANIE 8 Rzucamy dwiema sześciennymi kostkami. a) Jakie jest prawdopodobieństwo, że suma oczek będzie równa 4? b) Czy bardziej prawdopodobne jest, że suma wyrzuconych oczek będzie równa 5, czy że będzie równa 10? c) Jakie jest najbardziej prawdopodobna suma wyrzuconych oczek? ZADANIE 9 Rzucamy dwukrotnie kostka, które ze zdarzeń jest bardziej prawdopodobne: A w pierwszym rzucie otrzymamy liczbę oczek mniejsza niż w drugim; B suma oczek, jakie wypadna w obydwu rzutach, jest nie mniejsza od 8? 5
6 ZADANIE 10 Rzucamy dwiema sześciennymi kostkami. a) Jakie jest prawdopodobieństwo, że różnica między liczbami oczek wyrzuconych na kostkach (od większej odejmujemy mniejsza) będzie równa 2? b) Jaka jest najbardziej prawdopodobna różnica między wynikami na kostkach (od większego odejmujemy mniejszy)? ZADANIE 11 Gracz rzuca dwa razy symetryczna sześcienna kostka do gry i oblicza iloczyn wyrzucanych oczek. Jeśli iloczyn ten jest liczba podzielna przez 2 lub przez 3 to przegrywa. W pozostałych przypadkach wygrywa. a) Uzupełnij tabelkę tak, aby przedstawiała wszystkie wyniki tego doświadczenia. b) Podaj liczbę wynikow sprzyjajacych wygranej gracza i oblicz prawdopodobieństwo wygranej. I rzut II rzut
7 ZADANIE 12 Ze zbioru liczb {1, 2, 3, 4, 7, 9, 10} losujemy dwie liczby (moga się powtarzać). Oblicz prawdopodobieństwo, że suma wylosowanych liczb jest parzysta. 7
8 ZADANIE 13 Paulina ma w szafie 20 bluzek w kilku kolorach. W tabelce przedstawiono, jaki procent bluzek stanowia bluzki w danym kolorach Kolor bluzki % czerwony 15 niebieski 70 czarny 5 biały 10 Oblicz prawdopodobieństwo, że wybrana losowo bluzka jest niebieska. ZADANIE 14 Poniższy diagram przedstawia wyniki ankiety znajomości języków obcych wśród uczniów pewnej szkoły. 20 Liczba osób nieznających języków obcych Liczba osób znających tylko język angielski Liczba osób znających tylko język niemiecki Liczba osób znających język angielski i język niemiecki Oblicz prawdopodobieństwo, że losowo wybrana osoba z ankietowanych zna a) język angielski, b) co najmniej jeden język obcy. 8
9 ZADANIE 15 Każdej karcie bankomatowej jest przypisany numer identyfikacyjny zwany kodem PIN. Kod ten składa się z czterech cyfr (cyfry moga się powtarzać, ale kodem PIN nie może być 0000). Oblicz prawdopodobieństwo, że w losowo utworzonym kodzie PIN żadna cyfra się nie powtórzy. Wynik podaj w postaci ułamka nieskracalnego. 9
10 ZADANIE 16 Oblicz prawdopodobieństwo wylosowania spośród wszystkich liczb trzycyfrowych liczby, której suma cyfr jest równa 2? ZADANIE 17 Spośród cyfr 1, 2, 3, 4, 5, 6 losujemy kolejno dwa razy po jednej cyfrze ze zwracaniem. Tworzymy liczbę dwucyfrowa w ten sposób, że pierwsza z wylosowanych cyfr jest cyfra dziesiatek, a druga cyfra jedności tej liczby. Oblicz prawdopodobieństwo utworzenia liczby większej od
11 ZADANIE 18 Przeprowadzono badania, dotyczace liczby osób jadacych w samochodach osobowych w godzinach rannych, w kierunku centrum pewnego miasta. Wyniki badań przedstawione sa na digramie kołowym. 22% 25% 3 osoby 2 osoby 15% 4 osoby 8% 5 osób 1 osoba 30% a) Oblicz średnia liczbę osób jadacych w samochodzie osobowym w godzinach rannych w kierunku centrum. b) Oblicz prawdopodobieństwo, że w losowo wybranym samochodzie osobowym, w godzinach rannych, w kierunku centrum, były więcej niż 3 osoby. c) Wiedzac, że samochodów osobowych, w których były 4 osoby, zaobserwowano o 350 więcej, niż samochodów w których było 5 osób, oblicz, ile wszystkich samochodów obserwowano w trakcie badań. 11
12 ZADANIE 19 Przedstawiono informacje dotyczace znajomości języka angielskiego oraz języka niemieckiego w pewnej 200 osobowej grupie studentów: 25% studentów zna język angielski i język niemiecki, 50% studentów zna język niemiecki, 60% zna język angielski. Oblicz prawdopodobieństwo zdarzenia polegajacego na tym, że losowo wybrany z tej grupy student a) zna język angielski i nie zna języka niemieckiego, b) nie zna języka angielskiego i nie zna języka niemieckiego. ZADANIE 20 Z talii 52 kart wyciagamy losowo jedna. Oblicz prawdopodobieństwo, że wyciagnięta karta będzie dama lub treflem. 12
13 ZADANIE 21 Z talii 52 kart losujemy jedna kartę. a) Oblicz prawdopodobieństwo zdarzeń: A losowo wybrana karta jest pikiem. B losowo wybrana karta jest asem. b) Oblicz prawdopodobieństwo zdarzeń A B oraz A B. ZADANIE 22 Losujemy jedna z 52 kart. Jakie jest prawdopodobieństwo wyciagnięcia asa lub króla? 13
14 ZADANIE 23 Z talii 52 kart losujemy bez zwracania dwie karty. Jakie jest prawdopodobieństwo wylosowania dwóch asów? ZADANIE 24 O zdarzeniach losowych A i B wiemy, że: P(A) = 1 2, P(B) = 2 3, P(A B) = 4 5. Oblicz: a) P(A B) b) P(A \ B) 14
15 ZADANIE 25 Dla zdarzeń A, B Ω spełnione sa warunki P(A ) = 2 3, P(B ) = 2 9, P(A B) = 4 5. Oblicz P(A B). ZADANIE 26 Wiadomo, że P(A B) = 3 4, P(A B) = 1 2, P(A ) = 1 3. Oblicz prawdopodobieństwa zdarzeń A i B. 15
16 ZADANIE 27 Zdarzenia losowe A i B sa zawarte w przestrzeni Ω. Wiedzac, że A B oraz P(A B) = 0, 9, oblicz P(B ). ZADANIE 28 W garderobie pani Joanny wisza 3 żakiety: biały, zielony i granatowy oraz 4 spódnice: czarna, biała, granatowa i szara. Oblicz prawdopodobieństwo zdarzenia, że wybierajac losowo jeden żakiet i jedna spódnicę, pani Joanna skompletuje strój w jednym kolorze. 16
17 ZADANIE 29 W koszu znajduja się owoce: 12 jabłek i 8 pomarańczy. Wyjmujemy kolejno trzy owoce, nie odkładajac ich do kosza. Jakie jest prawdopodobieństwo, że wylosujemy dokładnie dwie pomarańcze. ZADANIE 30 W każdym z dwóch koszyków znajduje się 5 klocków czerwonych, 10 zielonych i 6 białych. Wyjmujemy losowo po jednym klocku z każdego koszyka. Oblicz prawdopodobieństwo, że: a) wylosujemy dwa klocki białe; b) wylosujemy klocki tego samego koloru. 17
18 ZADANIE 31 Losujemy jedna kartę spośród wszystkich króli z talii oraz jedna kartę spośród wszystkich dam. Jakie jest prawdopodobieństwo otrzymania w ten sposób dwóch kart tego samego koloru np. dwóch treflii lub dwóch kar? ZADANIE 32 W jednej urnie sa 3 kule: czerwona, biała i zielona, a w drugiej urnie sa 2 kule: czerwona i biała. Losujemy po jednej kuli z każdej urny. Jakie jest prawdopodobieństwo wyciagnięcia dwóch kul w tym samym kolorze? 18
19 ZADANIE 33 W jednej szufladzie znajduje się 6 czapek: 3 zielone, 2 czerwone i 1 niebieska, a w drugiej szufladzie jest 7 szalików: 2 zielone, 1 czerwony i 4 niebieskie. Wyjęto losowo jedna czapkę i jeden szalik. Oblicz prawdopodobieństwo zdarzenia A wylosowana czapka i wylosowany szalik sa tego samego koloru. ZADANIE 34 Dane sa dwa pojemniki. W pierwszym z nich znajduje się 9 kul: 4 białe, 3 czarne i 2 zielone. W drugim pojemniku jest 6 kul: 2 białe, 3 czarne i 1 zielona. Z każdego pojemnika losujemy po jednej kuli. Oblicz prawdopodobieństwo wylosowania dwóch kul tego samego koloru. 19
20 ZADANIE 35 W dwóch pudełkach sa cukierki. W pierwszym pudełku jest 15 cukierków czekoladowych i 5 owocowych, a w drugim pudełku jest 20 cukierków czekoladowych i 30 cukierków owocowych. Losujemy cukierek najpierw z pierwszego, a potem z drugiego pudełka. Jakie jest prawdopodobieństwo, że w wyniku losowania otrzymamy dwa cukierki czekoladowe? 20
Prawdopodobieństwo
Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia
BAZA ZADAŃ KLASA 3 Ha 2014/2015
BAZA ZADAŃ KLASA 3 Ha 2014/2015 GEOMETRIA 1 W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu opisanego ma długość 19 cm Oblicz pole tego trójkąta
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,
Zdarzenie losowe (zdarzenie)
Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano
c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;
Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo
Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka
Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
BAZA ZADAŃ KLASA 3 Ga
BAZA ZADAŃ KLASA 3 Ga CIĄGI LICZBOWE 1. Ile wyrazów dodatnich ma ciąg? Podaj największy z nich. 2. Które wyrazy ciągu są równe zeru? 3. Które wyrazy ciągu są mniejsze od liczby m? 4. Zbadaj, czy poniższe
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT) NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI
IMIE I NAZWISKO PRAWDOPODOBIEŃSTWO PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia A na każdej kostce wypadła
15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda
1. Każdej karcie bankomatowej jest przypisany numer identyfikacyjny zwany kodem PIN. Kod ten składa się z czterech cyfr(cyfry mogą się powtarzać, ale kodem PIN nie może być 0000). Oblicz prawdopodobieństwo,
Skrypt 30. Prawdopodobieństwo
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Prawdopodobieństwo 5.
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka
1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:
Statystyka matematyczna
Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych
c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)
ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające
p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi
RACHUNEK PRAWDOPODOBIEŃSTWA
RACHUNEK PRAWDOPODOBIEŃSTWA Zadanie 1. W urnie jest 1000 kartoników będących losami loterii pieniężnej. Cztery z kartoników wygrywają po 100 zł i szesnaście po 10 zł. Reszta kartoników to losy puste. Pierwszy
{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)
.. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem
Statystyka podstawowe wzory i definicje
1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią
Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.
Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa
KOMBINATORYKA I P-WO CZ.1 PODSTAWA
KOMBINATORYKA I P-WO CZ.1 PODSTAWA ZADANIE 1 (1 PKT) Pan Jakub ma marynarki, 7 par różnych spodni i 10 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i
c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.
Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska
ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad. 1. (1 pkt) Ile jest wszystkich liczb naturalnych dwucyfrowych, w których
04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite,
04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite, wzór Bayesa Definicja. 1. Prawdopodobieństwem warunkowym zajścia zdarzenia A pod warunkiem zajścia zdarzenia B, gdzie P(B > 0, nazywamy
= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.
Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne
Doświadczenie i zdarzenie losowe
Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.
12. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania
2. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania Zad.2.. Oblicz ile moŝna utworzyć z cyfr 0,, 2, liczb: a) dwucyfrowych, których cyfry mogą się powtarzać; b) trzycyfrowych o niepowtarzających się cyfrach;
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Zadanie PP RP 1. Z pojemnika, w którym znajdują się cztery losy z numerami 112, 121, 211, 212 losujemy trzy razy po jednym losie, po każdym losowaniu zwracając wylosowany los do pojemnika. Oblicz prawdopodobieństwo,
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych
Podstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
rachunek prawdopodobieństwa - zadania
rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 6.10.2012 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0,1] oraz
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b
DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez
Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:
Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat
I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie:
Strona 1 z 9 I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zapisz za pomocą potęgi o podanej podstawie: 5 4 ( 27) ( ) a), podstawa : ( ) b) 6 ( 9) c), podstawa: (5) d) Oblicz: a) 1 6 4 2 1 1 1 2 (0,25)
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko
Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie)
Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) (1) Ile liczb czterocyfrowych można utworzyć używając jedynie cyfr 1,2,3,4,5,6,7,8? (2) Ile liczb czterocyfrowych o różnych cyfrach można utworzyć
Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów.
PERMUTACJE Z1. Oblicz: Z2. Doprowadź do najprostszej postaci wyrażenia: Z3. Sprawdź czy prawdziwa jest równość: Dana równość jest prawdziwa. Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile
Rzucamy 10 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 10 razy orzeł i B reszka wypadła dokładnie 10 razy są zależne?
Zad. Rzucamy 0 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 0 razy orzeł i B reszka wypadła dokładnie 0 razy są zależne? Zad. Badania statystyczne przeprowadzone wśród studentów wykazały,
Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3.
Zadanie 1. O zdarzeniach A, B, C z pewnej przestrzeni uzyskaliśmy informacje, iż P (A B C) = 0.6, P (B A C) = 0.3 oraz P (C A B) = 0.9. Obliczyć P [A B C (A B) (A C) (B C)]. Odp. 9/37 Zadanie 2. Wiadomo,
PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B
KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA P A = A Ω PRAWDOPOD OBIEŃSTW O W A RUNKOWE P(A B) P A B =, P B 0 PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B P A B = P A B = P
Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki
Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki Pochodne funkcji i jej zastosowania 1. Oblicz pochodną funkcji f, gdy: a) f(x) = 3x 8 + 2 x + 3 7, b) f(x) = x 11 6x 5 + 2 x + 3 x, c)
Kombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru
01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Temat: Statystyka i prawdopodobieństwo w naszym życiu.
Dla nauczyciela Spotkanie 9 Temat: Statystyka i prawdopodobieństwo w naszym życiu. Na zajęcia potrzebne będą pomoce tzn. kostki do gry, talia kart, monety lub inne. Przy omawianiu doświadczeń losowych
Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym
Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród
Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.
Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;
Temat 18: Statystyka i prawdopodobieństwo w naszym życiu.
Temat 8: Statystyka i prawdopodobieństwo w naszym życiu. Jakie są miary statystyczne? Średnia arytmetyczna. Średnia arytmetyczna dwóch liczb a i b to połowa ich sumy Średnia arytmetyczna trzech liczb a,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B
KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA ( ) PRAWDOPOD OBIEŃSTW O W A RUNKOWE PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B ( ) WIĘC CO OZNACZA, ŻE ZDARZENIE B NIE MA WPŁYWU
01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.
Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska Przykład 1 Alicja wylosowała jedną kartę z
Kombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru
Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 1.
Zestaw 1. Zadanie. 1. Wyobraźnia jest ważniejsza od wiedzy A.Einstein Czy zdarzenia polegające na wyciągnięciu z talii liczącej 52 karty dowolnej karty pik (zdarzenie A) i wyciągnięciu asa (zdarzenie B)
Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń
Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:
Prawdopodobieństwo zadania na sprawdzian
Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych
SPRAWDZIAN KOMBINATORYKA
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI SPRAWDZIAN KOMBINATORYKA 12 GRUDNIA 2011 CZAS PRACY: 45 MIN. ZADANIE 1 Spośród liczb {1, 2, 3,..., 1000} losujemy jednocześnie dwie, które
Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń
Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Zadanie 1 Po potasowaniu sześciu kart: asa, dwójki, trójki, czwórki, piątki i szóstki wyłożono na stół w rzędzie
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
ZADANIE 1. ZADANIE 2 Wyznacz współrzędne punktu P, który dzieli odcinek o końcach A = (29, 15) i B = (45, 13) w stosunku AP : PB = 1 : 3.
ZNIE 1 Podstawa ostrosłupa jest trójkat. Krawędź jest wysokościa ostrosłupa (zobacz rysunek). Oblicz objętość ostrosłupa, jeśli wiadomo, że = 12, = 6, = = 13. ZNIE 2 Wyznacz współrzędne punktu P, który
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie
Laboratorium nr 1. Kombinatoryka
Laboratorium nr 1. Kombinatoryka 1. Spośród n różnych elementów wybieramy k elementów. Na ile sposobów możemy to uczynić? Wypisać wszystkie możliwe wybory w przypadku gdy n=3 i k=2. Wykonać obliczenia
Zdarzenia losowe Zmienne losowe Prawdopodobieństwo Niezależność
Zdarzenia losowe Zmienne losowe Prawdopodobieństwo Niezależność przypomnienie pojęć ĆWICZENIA Piotr Ciskowski zdarzenie losowe ćwiczenie 1. zbiory Stanisz zilustruj następujące pojęcia: o A B o A B o A
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Matematyka. Podręcznik inspirowany postacią Pitagorasa twórcy podstaw matematyki
Matematyka P O D R Ę C Z N I K D L S Z K O ŁY P O D S T W O W E J 8 Podręcznik inspirowany postacią Pitagorasa twórcy podstaw matematyki R E F O R M 2 0 1 7 SPIS TREŚCI 1. Liczby i wyrażenia algebraiczne
Lista 1. Prawdopodobieństwo klasyczne i geometryczne
Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej
Matematyka dyskretna zestaw II ( )
Matematyka dyskretna zestaw II (17-18.10.2016) Uwaga: Część z zadań z tego zestawu opiera się na zasadzie szufladkowej Dirichleta. Zadanie 1. Na ile sposobów można umieścić w 7 szufladach 3 koszule tak,
Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6
Wariacje bez powtórzeń Jeśli w doświadczeniu losowym ze zbioru n-elementowego wybieramy k elementów w ten sposób, że: wybrane elementy nie mogą się powtarzać kolejność wybranych elementów jest istotna
Wersja testu A 18 czerwca 2012 r. x 2 +x dx
1. Funkcja f : R R jest różniczkowalna na całej prostej, a ponadto dla każdej liczby rzeczywistej x zachodzi nierówność f x
RACHUNEK PRAWDOPODOBIEŃSTWA
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ RACHUNEK PRAWDOPODOBIEŃSTWA Co powinienem umieć Umiejętności znam pojęcie zdarzenia elementarnego znam pojęcie doświadczenia losowego i potrafię
ćwiczenia z rachunku prawdopodobieństwa
ćwiczenia z rachunku prawdopodobieństwa 9.10.2010 ogólna definicja prawdopodobieństwa, własności 1. Niech Ω = [0, 1] oraz niech Σ będzie pewną σ-algebrą podzbiorów odcinka [0, 1]. Udowodnić, że funkcja
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie
Rachunek prawdopodobieństwa w grach losowych.
Rachunek prawdopodobieństwa w grach losowych. Lista zawiera kilkadziesiąt zadań dotyczących różnych gier z użyciem kart i kości, w tym tych najbardziej popularnych jak brydż, tysiąc itp. Kolejne zadania
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,
dr Jarosław Kotowicz 14 października Zadania z wykładu 1
Rachunek prawdopodobieństwa - ćwiczenia drugie Prawdopodobieństwo warunkowe i całkowite. Wzór Bayesa. Zdarzenia niezależne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 14 października 2011
Podstawy Teorii Prawdopodobieństwa
Statystyka Opisowa z Demografią oraz Biostatystyka Podstawy Teorii Prawdopodobieństwa Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a)
ZADANIA - ZESTAW 1 Zadanie 11 Rzucamy trzy razy monetą A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie Oreślić zbiór zdarzeń elementarnych Wypisać zdarzenia elementarne sprzyjające
Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer
Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa. Losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć
Zestawy zadań z Metod Probabilistyki i Statystyki. dr Hanna Podsędkowska dr Katarzyna Lubnauer mgr Małgorzata Grzyb mgr Rafał Wieczorek
Zestawy zadań z Metod Probabilistyki i Statystyki dr Hanna Podsędkowska dr Katarzyna Lubnauer mgr Małgorzata Grzyb mgr Rafał Wieczorek 21 lutego 2014 1 MODEL KLASYCZNY PRAWDOPODOBIEŃSTWA 1 Model klasyczny
W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule.
W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. Jeśli obie wylosowane kule są tego samego koloru to zwycięża G
Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer
Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa.losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o
ZADANIE 1 ZADANIE 2. NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI A) 5,5 B) 8 C) 5,75 D) 4. nie wygramy nagrody jest równe A)
ZADANIE 1 Średnia arytmetyczna licz 5,5,7,3,9,9,4,4 jest liczba A) 5,5 B) 8 C) 5,75 D) 4 ZADANIE 2 Na loterii jest 10 losów, z których 4 sa wygrywajace. Kupujemy jeden los. Prawdopodobieństwo zdarzenia,
Rachunek prawdopodobieństwa lista zadań nr 6
1) Klasa zorganizowała loterię fantową. Do sprzedaży przeznaczono 50 losów ponumerowanych od 1 do 50. Organizatorzy przyjęli zasadę, że każdy los, którego numer jest liczbą podzielną przez 3, wygrywa fant.