Matematyka dyskretna zestaw II ( )

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka dyskretna zestaw II ( )"

Transkrypt

1 Matematyka dyskretna zestaw II ( ) Uwaga: Część z zadań z tego zestawu opiera się na zasadzie szufladkowej Dirichleta. Zadanie 1. Na ile sposobów można umieścić w 7 szufladach 3 koszule tak, aby każda była w innej szufladzie? Zadanie 2. Oblicz sumę wszystkich liczb trzycyfrowych zapisanych za pomocą cyfr {0,1,2,3}. Zadanie 3. Ile jest liczb naturalnych trzycyfrowych, w których cyfra dziesiątek jest o 2 większa od cyfry jedności? Zadanie 4. W Dużym Lotku jest losowanych numerów spośród 49. Ile różnych wyników można otrzymać w tym losowaniu? Zadanie 5. Na ile sposobów można posadzić 7 osób na 7-miu numerowanych miejscach? Zadanie 6. W turnieju szachowym, rozgrywanym systemem każdy z każdym, bez rewanżu, miało brać udział 8 zawodników. Jeden z nich zrezygnował. O ile zmniejszyła się liczba zaplanowanych rozgrywek? Zadanie 7. Na wyspie jest 2012 czerwonych, 2013 zielonych i 2014 niebieskich kameleonów. Jeśli spotkają się dwa kameleony różnych kolorów, każdy z nich zmienia swój kolor na trzeci kolor. Czy może dojść do sytuacji, w której na wyspie wszystkie kameleony będą miały ten sam kolor? 1

2 Zadanie 8. Udowodnij, że w dowolnej grupie osób zawsze znajdą się dwie takie, które mają tyle samo znajomych (przyjmujemy, że jeśli osoba math zna osobę math to także osoba math zna osobę math ). Zadanie 9. W zestawie zadań jest 15 zadań łatwych i 5 trudnych. Na ile sposobów można z tego zestawu wybrać 10 zadań tak aby wśród nich było 7 zadań łatwych i 3 trudne? Zadanie 10. Z tali 52 karty wybieramy 4 losowo karty. jakie jest prawdopodobieństwo tego że wśród wybranych kart nie bedzie ani jednego kiera? jakie jest prawdopodobieństwo tego że wśród wybranych kart bedzie co najmniej jeden as? Zadanie 11. Odtwórzmy w sposób przypadkowy 3 utwory z płyty zawierającej 12 utworów(utwory moga się powtarzać). Ile jest różnych możliwych zestawów? Zadanie 12. W przedziale kolejowym jest 8 miejsc. Na ile różnych sposobów może w nim zająć miejsca 8 pasażerów? Zadanie 13. Na ile sposobów można wybrać trzy gałki lodów o różnych smakach spośród 10 rodzajów lodów? Zadanie 14. Na obozie młodzieżowym jest 30 osób. Na ile róznych sposobów można wybrać spośród uczestników 3 osoby dyżurujące w kuchni? Zadanie 15. Wśród 10 mężczyzn jest 2 brunetów, 5 szatynów, a pozostali są łysi. Na ile sposobów można wybrać 5 osobwy zespół, w którym będzie 1 brunet, 2 szatynów i 2 łysych? 2

3 Zadanie 16. Ze wsi A do wsi B prowadzi 5 ścieżek przez las. Na ile sposobów można odbyć spacer A-B-A tak, aby spacer ze wsi B do wsi A odbyć inną ścieżką niż ze wsi A do wsi B? Zadanie 17. Ile jest wszystkich liczb naturalnych trzycyfrowych podzielnych przez 5? Zadanie 18. Dane są dwa pojemniki. W pierwszym z nich znajduje się 9 kul: 4 białe, 3 czarne i 2 zielone. W drugim pojemniku jest 6 kul: 2 białe, 3 czarne i 1 zielona. Z każdego pojemnika losujemy po jednej kuli. Oblicz prawdopodobieństwo wylosowania dwóch kul różnych kolorów. Zadanie 19. Udowodnij, że w grupie 2012 osób przynajmniej 2 osoby mają taką samą liczbę znajomych (osoba A zna osobę B wtedy i tylko wtedy, gdy osoba B zna osobę A). Zadanie 20. Udowodnij, że w gronie 6 osób albo pewne 3 osoby się znają, albo pewne 3 osoby się nie znają. Zadanie 21. Udowodnij, że wśród dowolnych 7 różnych liczb całkowitych musza być takie 2, których suma lub różnica dzieli się przez 10. Zadanie 22. Spośród liczb 1,2,3,...,9 wybrano sześć.udowodnij, że spośród wybranych liczb można wybrać dwie których suma wynosi 10. Zadanie 23. Dany jest pewien zbiór 2015 liczb naturalnych. Wykaż, że można z tego zbioru wybrać takie trzy liczby x, y, z, aby liczba (x?y)z była podzielna przez Zadanie 24. W sześciokącie foremnym o boku długości 1 umieszczono 7 punktów. Udowodnij, że istnieją 2 punkty, których odległość jest mniejsza lub równa 1. 3

4 Zadanie 25. W sześcianie o boku 1 umieszczono 217 punktów. Wykaż, że istnieją 2 punkty odległe o co najwyżej. Zadanie 26. Przy okrągłym stole ma usiąść n osób. Na stole postawiono karteczki z ich imionami (każdy ma inaczej na imię). Usiedli przy stole w taki sposób że żaden nie siedział na miejscu przy odpowiednim imieniu. Wykaz że można tak obrócić stół, aby przynajmniej dwoje ludzi siedziało na odpowiednim miejscu. Zadanie 27. Przy Okrągłym Stole siedzi 12 Rycerzy. W czasie obrad każdych dwóch siedzących obok siebie pokłóciło się. Król Artur musi posłać w misję 5 Rycerzy. Na ile sposobów może to zrobić jeśli nie chce, aby wśród wysłanych byli jacyś kłócący się Rycerze? Zadanie 28. Mnich benedyktyn wpisuje na oprawie każdej z ksiąg znajdujących się w bibliotece klasztornej kolejny numer. Ile razy napisze cyfrę 9, jeśli wiadomo, że księgozbiór liczy sobie woluminów, zaś mnich rozpoczyna numerowanie od 1? Zadanie 29. Towarzystwo złożone z 8 par małżeńskich dzieli się na 4 grupy po 4 osoby dla odbycia spaceru łódką. Na ile sposobów można to zrobić tak, aby w każdej łódce znalazły się 2 panie i 2 panów? W ilu przypadkach danych mężczyzna znajdzie się w łódce ze swoją żoną? Łódki nie są numerowane. Zadanie 30. W ilu permutacjach liczb 1,...,5 żadna z liczb nie stoi na swoim miejscu? Zadanie 31. Proszę wypisać wszystkie funkcje ze zbioru {1,2,3} na zbiór {a,b}. Proszę wskazać funkcje iniekcje oraz suriekcje. Zadania a j należy wykonać korzystając z odpowiednich wzorów na permutacje, kombinacje, itd. tłumacząc za każdym razem możliwość ich użycia. 4

5 Zadanie 32. Na ile sposobów k różnych tabliczek czekolady można rozdzielić pomiędzy n osób (każda z osób może otrzymać więcej niż jedną tabliczkę)? Zadanie 33. Na ile sposobów k różnych tabliczek czekolady można rozdzielić pomiędzy n osób (każda z osób może otrzymać najwyżej jedną tabliczkę)? Zadanie 34. Na ile sposobów k identycznych tabliczek czekolady można rozdzielić pomiędzy n osób (każda z osób może otrzymać więcej niż jedną tabliczkę)? Zadanie 35. Na ile sposobów k różnych tabliczek czekolady można rozdzielić pomiędzy n osób (każda z osób może otrzymać najwyżej jedną tabliczkę)? Zadanie 36. Jaka jest ilość funkcji różnowartościowych f z {1,2,...,k} do {1,2,...,n}? Zadanie 37. Jaka jest ilość funkcji f z {1,2,...,k} do {1,2,...,n}? Zadanie 38. Na ile sposobów można wybrać k-elementowy podzbiór ze zbioru n-elementowego? Zadanie 39. Na ile sposobów k-najwyższych rangą urzędników w Polsce może zostać wybranych z pośród n-osób? (Ma to być uporządkowana lista, a nie zbiór.) Zadanie 40. Na ile sposobów k cukierków (niekoniecznie tego samego rodzaju) może zostać wybranych z pośród n rodzajów? Zadanie 41. Na ile sposobów k dzieci może wybrać jeden cukierek (każdy o innym smaku) z pośród n różnych smaków cukierków? 5

6 Zadanie 42. Na ile sposobów można ustawić litery a, b, c, d, e, f w takiej kolejności, by litery a i b sąsiadowały z sobą? Zadanie 43. Na ile sposobów można ustawić litery a, b, c, d, e, f w takiej kolejności, by litery a i b nie sąsiadowały z sobą? Zadanie 44. Na ile sposobów można ustawić litery a, b, c, d, e, f w takiej kolejności, by litery a i b sąsiadowały z sobą, ale litery a i c nie? Zadanie 45. Na ile sposobów można rozmieścić 14 przedmiotów (jednego rodzaju) w 3 pudełkach tak, by w jednym z pudełek znalazło się co najmniej 8 przedmiotów? Zadanie 46. Na ile sposobów można rozmieścić 14 przedmiotów w 3 pudełkach tak, by w żadnym z pudełek nie znalazło się więcej niż 7 przedmiotów? Zadanie 47. Ile jest liczb między 0 a 999, których suma cyfr jest równa 20? Wskazówka: każda z cyfr musi być równa co najmniej 2; można zastosować część ( b ). 6

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów.

Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów. PERMUTACJE Z1. Oblicz: Z2. Doprowadź do najprostszej postaci wyrażenia: Z3. Sprawdź czy prawdziwa jest równość: Dana równość jest prawdziwa. Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

SPRAWDZIAN KOMBINATORYKA

SPRAWDZIAN KOMBINATORYKA www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI SPRAWDZIAN KOMBINATORYKA 12 GRUDNIA 2011 CZAS PRACY: 45 MIN. ZADANIE 1 Spośród liczb {1, 2, 3,..., 1000} losujemy jednocześnie dwie, które

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie)

Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) (1) Ile liczb czterocyfrowych można utworzyć używając jedynie cyfr 1,2,3,4,5,6,7,8? (2) Ile liczb czterocyfrowych o różnych cyfrach można utworzyć

Bardziej szczegółowo

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( ) Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo

Bardziej szczegółowo

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12. IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo

Bardziej szczegółowo

ZADANIE 1 ZADANIE 2. NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI A) 5,5 B) 8 C) 5,75 D) 4. nie wygramy nagrody jest równe A)

ZADANIE 1 ZADANIE 2.   NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI A) 5,5 B) 8 C) 5,75 D) 4. nie wygramy nagrody jest równe A) ZADANIE 1 Średnia arytmetyczna licz 5,5,7,3,9,9,4,4 jest liczba A) 5,5 B) 8 C) 5,75 D) 4 ZADANIE 2 Na loterii jest 10 losów, z których 4 sa wygrywajace. Kupujemy jeden los. Prawdopodobieństwo zdarzenia,

Bardziej szczegółowo

liczb naturalnych czterocyfrowych. Mamy do dyspozycji następujące cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. g) Ile jest liczb czterocyfrowych parzystych?

liczb naturalnych czterocyfrowych. Mamy do dyspozycji następujące cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. g) Ile jest liczb czterocyfrowych parzystych? KOMBINATORYKA ZADANIA Z ROZWIĄZANIAMI 1. Udziel odpowiedzi na poniższe pytania: a) Ile jest możliwych wyników w rzucie jedną kostką? W rzucie jedną kostką możemy otrzymać jeden spośród następujących wyników:

Bardziej szczegółowo

WITAMY SERDECZNIE NA MIĘDZYSZKOLNYCH WARSZTATACH MATEMATYCZNYCH 12

WITAMY SERDECZNIE NA MIĘDZYSZKOLNYCH WARSZTATACH MATEMATYCZNYCH 12 Dobry matematyk potrafi dostrzegać fakty, matematyk wybitny analogie między faktami, zaś matematyk genialny analogie między analogiami. Stefan Banach WITAMY SERDECZNIE NA MIĘDZYSZKOLNYCH WARSZTATACH MATEMATYCZNYCH

Bardziej szczegółowo

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B; Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.

Bardziej szczegółowo

Zadanie 1. Na diagramie Venna dla 3 zbiorów zaznacz:

Zadanie 1. Na diagramie Venna dla 3 zbiorów zaznacz: Zadanie 1 Na diagramie Venna dla 3 zbiorów zaznacz: A B C Zadanie 1 Na diagramie Venna dla 3 zbiorów zaznacz: A B C A B C Zadanie 1 Na diagramie Venna dla 3 zbiorów zaznacz: A B C A B C A B C Zadanie 1

Bardziej szczegółowo

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy:

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

Typy zadań kombinatorycznych:

Typy zadań kombinatorycznych: Typy zadań kombinatorycznych: I. Ustawianie wszystkich elementów zbioru w pewnej kolejności Przestawieniem nazywamy ustawienie elementów danego zbioru w pewnej kolejności. Liczba przestawień określa na

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka 1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Rachunek prawdopodobieństwa - ćwiczenia pierwsze Kombinatoryka. kierunek: informatyka i ekonometria I

Rachunek prawdopodobieństwa - ćwiczenia pierwsze Kombinatoryka. kierunek: informatyka i ekonometria I Rachunek prawdopodobieństwa - ćwiczenia pierwsze Kombinatoryka. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 07.10.2011 Spis treści 1 Kombinatoryka 1 1 Kombinatoryka permutacja bez powtórzeń

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl 9/14 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to

Bardziej szczegółowo

1. Elementy kombinatoryki - zadania do wyboru

1. Elementy kombinatoryki - zadania do wyboru . Elementy kombinatoryki - zadania do wyboru Bernadeta Tomasz Zadania dodatkowe Zadanie.. Mamy do wyboru mieszkania i auta. Na ile sposobów można dokonać wyboru, jeśli. mamy wybrać mieszkanie i samochód,.

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

Lista zadania nr 1 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 1 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 1 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2 Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w Białymstoku

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadanie PP RP 1. Z pojemnika, w którym znajdują się cztery losy z numerami 112, 121, 211, 212 losujemy trzy razy po jednym losie, po każdym losowaniu zwracając wylosowany los do pojemnika. Oblicz prawdopodobieństwo,

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 6/10 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

Skrypt 30. Prawdopodobieństwo

Skrypt 30. Prawdopodobieństwo Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Prawdopodobieństwo 5.

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 9A/14 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to

Bardziej szczegółowo

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 24 MARCA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Która równość jest fałszywa? Wybierz odpowiedź spośród

Bardziej szczegółowo

Ciągi Podzbiory Symbol Newtona Zasada szufladkowa Dirichleta Zasada włączania i wyłączania. Ilość najkrótszych dróg. Kombinatoryka. Magdalena Lemańska

Ciągi Podzbiory Symbol Newtona Zasada szufladkowa Dirichleta Zasada włączania i wyłączania. Ilość najkrótszych dróg. Kombinatoryka. Magdalena Lemańska Kombinatoryka Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Aspekty kombinatoryki Victor Bryant

Bardziej szczegółowo

KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015)

KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015) MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna malgorzata.sterna@cs.put.poznan.pl www.cs.put.poznan.pl/msterna/ KOMBINATORYKA OBIEKTY KOMBINATORYCZNE TEORIA ZLICZANIA Teoria zliczania

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych

Bardziej szczegółowo

Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 24 marca 2012 Czas pracy: 90 minut

Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis   24 marca 2012 Czas pracy: 90 minut Strona 1 /Gimnazjum/Egzamin gimnazjalny Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 24 marca 2012 Czas pracy: 90 minut Zadanie 1 (1 pkt.) Która równość jest

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 9A/14 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia)

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) 1. Ile układów kart w pokerze to Dwie pary? Dwie pary to układ 5 kart

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 016/017 0.0.017 1. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

KOMBINATORYKA. Problem przydziału prac

KOMBINATORYKA. Problem przydziału prac KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty

Bardziej szczegółowo

Doświadczenie i zdarzenie losowe

Doświadczenie i zdarzenie losowe Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 2010 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem EGZMIN MTURLNY Z MTEMTYKI

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 KWIETNIA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Jeżeli liczba 3b

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 KWIETNIA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Jeżeli liczba 3b

Bardziej szczegółowo

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)

Bardziej szczegółowo

Funkcja. x X! y Y : x, y f. f : X Y f x = y f : x y. Funkcja o dziedzinie X i przeciwdziedzinie Y to dowolna relacja f XxY taka, że: Notacje:

Funkcja. x X! y Y : x, y f. f : X Y f x = y f : x y. Funkcja o dziedzinie X i przeciwdziedzinie Y to dowolna relacja f XxY taka, że: Notacje: Funkcja Funkcja o dziedzinie X i przeciwdziedzinie Y to dowolna relacja f XxY taka, że: Notacje: x X! y Y : x, y f f : X Y f x = y f : x y Przykłady f: N N, f(n) = 2n f: N R, f(n) = n/2 f: N {13}, f(n)

Bardziej szczegółowo

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w 02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30. Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne

Bardziej szczegółowo

Zdarzenie losowe (zdarzenie)

Zdarzenie losowe (zdarzenie) Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o

Bardziej szczegółowo

Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń

Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Zadanie 1 Po potasowaniu sześciu kart: asa, dwójki, trójki, czwórki, piątki i szóstki wyłożono na stół w rzędzie

Bardziej szczegółowo

Prawdopodobieństwo zadania na sprawdzian

Prawdopodobieństwo zadania na sprawdzian Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych

Bardziej szczegółowo

Zadania należy samodzielnie rozwiązać, a następnie sprawdzić poprawność wyniku!

Zadania należy samodzielnie rozwiązać, a następnie sprawdzić poprawność wyniku! Zadania testowe kombinatoryka (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) Zadania należy samodzielnie rozwiązać, a następnie sprawdzić poprawność wyniku! 1. Ze zbioru cyfr * + losujemy

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA ( ) PRAWDOPOD OBIEŃSTW O W A RUNKOWE PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B ( ) WIĘC CO OZNACZA, ŻE ZDARZENIE B NIE MA WPŁYWU

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl 14/14 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy - dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 10A/15 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

ZASADA SZUFLADKOWA DIRICHLETA

ZASADA SZUFLADKOWA DIRICHLETA ZASADA SZUFLADKOWA DIRICHLETA Andrzej FRYSZKOWSKI SZCZECIN, 27 MARCA 2014 Andrzej FRYSZKOWSKI () ZASADA SZUFLADKOWA DIRICHLETA SZCZECIN, 27 MARCA 2014 1 / 25 BROSZURA OMG I (2005/2006) (opracowanie: Joanna

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA

RACHUNEK PRAWDOPODOBIEŃSTWA Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ RACHUNEK PRAWDOPODOBIEŃSTWA Co powinienem umieć Umiejętności znam pojęcie zdarzenia elementarnego znam pojęcie doświadczenia losowego i potrafię

Bardziej szczegółowo

Statystyka podstawowe wzory i definicje

Statystyka podstawowe wzory i definicje 1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 MARCA 2019 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Cena towaru bez podatku

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 2 KWIETNIA 2016 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Pomiędzy dworcem kolejowym i lotniskiem kursuja

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Instrukcja dla zdającego POZIOM ROZSZERZONY Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Wprowadzenie do kombinatoryki

Wprowadzenie do kombinatoryki Wprowadzenie do kombinatoryki http://www.matemaks.pl/kombinatoryka.html Kombinatoryka jest działem matematyki, który pomaga odpowiedzieć na pytania typu: "ile jest możliwych wyników w rzucie monetą?",

Bardziej szczegółowo

Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.

Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5. Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest

Bardziej szczegółowo

ELEMENTY KOMBINATORYKI

ELEMENTY KOMBINATORYKI ELEMENTY KOMBINATORYKI Kombinatoryka to dział matematyki, który zajmuje się zliczaniem, na ile sposobów może zajść jakieś zjawisko. Powstała dzięki grom hazardowym a dopiero później rozwinęła się w gałąź

Bardziej szczegółowo

MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu

MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu województwa małopolskiego Rok szkolny 2018/2019 ETAP REJONOWY

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

1. W tubie, w kształcie walca, o wysokości 6 cm umieszczono pionowo trzy piłeczki, które ściśle przylegały do ścianek i do siebie nawzajem.

1. W tubie, w kształcie walca, o wysokości 6 cm umieszczono pionowo trzy piłeczki, które ściśle przylegały do ścianek i do siebie nawzajem. Warto rozwiązać: 1. W tubie, w kształcie walca, o wysokości 6 cm umieszczono pionowo trzy piłeczki, które ściśle przylegały do ścianek i do siebie nawzajem. Oceń prawdziwość podanych zdań. Wybierz, jeśli

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 12 marca 2009 r.

KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 12 marca 2009 r. KOD Nr zad. 1 2 3 4 5 6 7 8 9 10 11 12 Razem Max liczba pkt. 3 3 3 3 3 3 3 3 4 3 3 6 40 Liczba pkt. Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 12 marca 2009 r. Przeczytaj uważnie

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest

Bardziej szczegółowo

BAZA ZADAŃ KLASA 3 Ha 2014/2015

BAZA ZADAŃ KLASA 3 Ha 2014/2015 BAZA ZADAŃ KLASA 3 Ha 2014/2015 GEOMETRIA 1 W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu opisanego ma długość 19 cm Oblicz pole tego trójkąta

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 101-170 101. Oblicz postać zwartą symbolu { n 4}. 102. Udowodnij, że n k =1 ( 1) k ( n k) =1 103. Ile może być 4-cyfrowych

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której

Bardziej szczegółowo

XV Olimpiada Matematyczna Juniorów

XV Olimpiada Matematyczna Juniorów XV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (26 września 209 r.) Rozwiązania zadań testowych. odatnia liczba a jest mniejsza od. Wynika z tego, że a) a 2 > a; b) a > a; c)

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 sierpnia

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Poniższa tabela przedstawia temperaturę odczytywana

Bardziej szczegółowo

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji?

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Porada niniejsza traktuje o tzw. elementach kombinatoryki. Często zdarza się, że rozwiązujący zadania z tej dziedziny mają problemy

Bardziej szczegółowo

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp. Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 1949 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Trzecia część liczby

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa

Wstęp do rachunku prawdopodobieństwa wykład : Wstęp do rachunku prawdopodobieństwa STTYSTYK OPISOW Wanda Olech Katedra Genetyki i Ochrony Zwierząt Statystyka zajmuje się Zjawiskami losowymi - które bada przez doświadczenie U podstaw współczesnej

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 1 Elementy kombinatoryki ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kombinatorykę można określić

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo