Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.

Save this PDF as:
Wielkość: px
Rozpocząć pokaz od strony:

Download "Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum."

Transkrypt

1 Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa bywa skomplikowane. Przydatną wówczas jest tak zwana metoda drzew. Drzewem nazywamy graf ilustrujący przebieg doświadczenia losowego, na którym każdej krawędzi przyporządkowuje się prawdopodobieństwo. Reguła iloczynów. Prawdopodobieństwo zdarzenia reprezentowanego przez jedną gałąź drzewa jest równe iloczynowi prawdopodobieństw przyporządkowanych krawędziom, z których składa się rozważana gałąź. Reguła sum. Prawdopodobieństwo danego zdarzenia opisanego przez kilka gałęzi drzewa jest równe sumie prawdopodobieństw otrzymanych według reguły iloczynów dla tych gałęzi.

2

3 Ćwiczenie 35. Mamy dwie torebki z cukierkami. W pierwszej jest 12 cukierków czekoladowych i 18 cukierków owocowych, w drugiej - 10 cukierków czekoladowych i 14 cukierków owocowych. Rzucamy dwa razy monetą. Jeżeli wypadną dwie reszki, to wyciągamy cukierek z pierwszej torebki, a w pozostałych przypadkach - z drugiej torebki. Zilustruj to doświadczenie drzewem i oblicz prawdopodobieństwo: zdarzenia A, że wylosowano cukierek czekoladowy z pierwszej torebki zdarzenia B, że wylosowano cukierek czekoladowy z drugiej torebki zdarzenia C, że wylosowano cukierek czekoladowy.

4 Ćwiczenie 36. Rzucamy dwa razy kostką sześcienną do gry. Oblicz prawdopodobieństwo: a) zdarzenia A polegającego na tym, że w drugim rzucie wypadło więcej niż cztery oczka, b) zdarzenia B polegającego na tym, że suma liczb oczek, które wypadły w obu rzutach, jest równa 7. Ćwiczenie 37. W Polsce na 1000 urodzeń rodzi się 520 chłopców. Pewna rodzina ma dwoje dzieci w różnym wieku. Narysuj drzewo i oblicz prawdopodobieństwo zdarzenia, że w tej rodzinie: a) młodsze dziecko jest chłopcem, b) starsze dziecko jest chłopcem.

5 Przykład 31. Gra polega na rzucaniu sześcienną kostką do gry. Jeśli wypadnie 6 oczek, to wygrywamy l O złotych i możemy grać dalej, a jeśli wypadnie inna liczba oczek niż 6, to odpadamy z gry. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że jeżeli zagramy, wygramy 30 złotych. Ćwiczenie 38. W urnie znajdują się dwie kule czarne i trzy białe. Wyciągamy z urny po jednej kuli (bez zwracania), dopóki nie wyciągniemy kuli czarnej. Zbuduj drzewo ilustrujące to doświadczenie i oblicz prawdopodobieństwo: zdarzenia A, że kula czarna została wyciągnięta za drugim razem zdarzenia B, że kula czarna została wyciągnięta za trzecim razem zdarzenia C, że kula czarna została wyciągnięta za czwartym razem.

6 Przykład 33. W sklepie jest 100 żarówek, wśród których są 4 wadliwe. Klient kupił 3 żarówki. Podaj ilustrację tego doświadczenia w postaci drzewa oraz oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że dwie żarówki kupione przez klienta są wadliwe. Rozwiązanie. Oznaczamy literą D zdarzenie, że kupiona żarówka jest dobra, a literą U - zdarzenie, że żarówka jest wadliwa. Ćwiczenie 41. Uwzględniając warunki opisane w powyższym przykładzie, oblicz prawdopodobieństwo: a) zdarzenia B polegającego na tym, że wśród trzech kupionych żarówek jest jedna wadliwa, b) zdarzenia C polegającego na tym, że wszystkie kupione żarówki były dobre. Przykład 34. Z pudełka zawierającego cztery kule zielone i sześć kuł czerwonych losujemy kolejno dwa razy po jednej. Po pierwszym losowaniu zapisujemy kolor wylosowanej kuli oraz: a) wylosowaną kulę odkładamy na bok (losowanie bez zwracania), b) ponownie wrzucamy kulę do pudełka (losowanie ze zwracaniem). Oblicz prawdopodobieństwo wylosowania dwóch kuł tego samego koloru.

7 Ćwiczenie 42. Z pudełka zawierającego trzy kule białe, trzy kule czerwone i dwie kule zielone losujemy kolejno dwa razy po jednej kuli. Oblicz prawdopodobieństwo zdarzenia, że wylosowano kulę białą i kulę czerwoną, gdy po pierwszym losowaniu wylosowaną kulę: a) odkładano na bok, b) ponownie wrzucano do pudełka. Ćwiczenie 43. Uwzględniając dane z przykładu 35., oblicz prawdopodobieństwo, że losowo wybrana osoba z badanej grupy ma piwne oczy.

8 dane dotyczące liczby błędnych rozwiązań ilustruje diagram obok. Nauczyciel zamierza wylosować jeden zeszyt z rozwiązaniami, a następnie z tego zeszytu sprawdzić rozwiązanie jednego losowo wybranego zadania. Oblicz prawdopodobieństwo, że w wybranym rozwiązaniu nie będzie błędu. Zadania utrwalające

9

10

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

DOŚWIADCZENIA WIELOETAPOWE

DOŚWIADCZENIA WIELOETAPOWE . 4. DOŚWIADCZENIA WIELOETAPOWE Drzewem stochastycznym nazywamy graf ilustrujący przebieg wieloetapowego doświadczenia losowego. Wierzchołkom drzewa stochastycznego przyporządkowane są wyniki poszczególnych

Bardziej szczegółowo

Zdarzenie losowe (zdarzenie)

Zdarzenie losowe (zdarzenie) Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

Skrypt 30. Prawdopodobieństwo

Skrypt 30. Prawdopodobieństwo Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Prawdopodobieństwo 5.

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych

Bardziej szczegółowo

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12. IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo

Bardziej szczegółowo

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( ) Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo

Bardziej szczegółowo

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B; Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.

Bardziej szczegółowo

Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6

Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6 Wariacje bez powtórzeń Jeśli w doświadczeniu losowym ze zbioru n-elementowego wybieramy k elementów w ten sposób, że: wybrane elementy nie mogą się powtarzać kolejność wybranych elementów jest istotna

Bardziej szczegółowo

12. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania

12. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania 2. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania Zad.2.. Oblicz ile moŝna utworzyć z cyfr 0,, 2, liczb: a) dwucyfrowych, których cyfry mogą się powtarzać; b) trzycyfrowych o niepowtarzających się cyfrach;

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka 1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA

RACHUNEK PRAWDOPODOBIEŃSTWA RACHUNEK PRAWDOPODOBIEŃSTWA Zadanie 1. W urnie jest 1000 kartoników będących losami loterii pieniężnej. Cztery z kartoników wygrywają po 100 zł i szesnaście po 10 zł. Reszta kartoników to losy puste. Pierwszy

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka

Podstawy nauk przyrodniczych Matematyka Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT) NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI

PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT)   NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI IMIE I NAZWISKO PRAWDOPODOBIEŃSTWO PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia A na każdej kostce wypadła

Bardziej szczegółowo

ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad. 1. (1 pkt) Ile jest wszystkich liczb naturalnych dwucyfrowych, w których

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka Matematyczna

Rachunek Prawdopodobieństwa i Statystyka Matematyczna Rachunek rawdopodobieństwa i Statystyka Matematyczna rowadzący: prof. dr hab. inż. Ireneusz Jóźwiak Zestaw nr. Opracowanie: Grzegorz Drzymała 4996 Grzegorz Dziemidowicz 49965 drian Gawor 49985 Zadanie..

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

Statystyka podstawowe wzory i definicje

Statystyka podstawowe wzory i definicje 1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią

Bardziej szczegółowo

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,

Bardziej szczegółowo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR) .. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem

Bardziej szczegółowo

Doświadczenie i zdarzenie losowe

Doświadczenie i zdarzenie losowe Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.

Bardziej szczegółowo

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30. Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadanie PP RP 1. Z pojemnika, w którym znajdują się cztery losy z numerami 112, 121, 211, 212 losujemy trzy razy po jednym losie, po każdym losowaniu zwracając wylosowany los do pojemnika. Oblicz prawdopodobieństwo,

Bardziej szczegółowo

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 1.

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 1. Zestaw 1. Zadanie. 1. Wyobraźnia jest ważniejsza od wiedzy A.Einstein Czy zdarzenia polegające na wyciągnięciu z talii liczącej 52 karty dowolnej karty pik (zdarzenie A) i wyciągnięciu asa (zdarzenie B)

Bardziej szczegółowo

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych

Bardziej szczegółowo

dr Jarosław Kotowicz 14 października Zadania z wykładu 1

dr Jarosław Kotowicz 14 października Zadania z wykładu 1 Rachunek prawdopodobieństwa - ćwiczenia drugie Prawdopodobieństwo warunkowe i całkowite. Wzór Bayesa. Zdarzenia niezależne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 14 października 2011

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne. Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,

Bardziej szczegółowo

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ). KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska Przykład 1 Alicja wylosowała jedną kartę z

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja

Bardziej szczegółowo

KOMBINATORYKA I P-WO CZ.1 PODSTAWA

KOMBINATORYKA I P-WO CZ.1 PODSTAWA KOMBINATORYKA I P-WO CZ.1 PODSTAWA ZADANIE 1 (1 PKT) Pan Jakub ma marynarki, 7 par różnych spodni i 10 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i

Bardziej szczegółowo

W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora.

W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora. Egzamin maturalny od roku szkolnego 2014/2015 Matematyka Poziom rozszerzony Przykładowy zestaw zadań dla osób słabowidzących (A4) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3.

Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3. Zadanie 1. O zdarzeniach A, B, C z pewnej przestrzeni uzyskaliśmy informacje, iż P (A B C) = 0.6, P (B A C) = 0.3 oraz P (C A B) = 0.9. Obliczyć P [A B C (A B) (A C) (B C)]. Odp. 9/37 Zadanie 2. Wiadomo,

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A) W czasie trwania egzaminu zdający może korzystać z

Bardziej szczegółowo

Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1. Prawdopodobieństwo klasyczne i geometryczne Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie)

Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) (1) Ile liczb czterocyfrowych można utworzyć używając jedynie cyfr 1,2,3,4,5,6,7,8? (2) Ile liczb czterocyfrowych o różnych cyfrach można utworzyć

Bardziej szczegółowo

Prawdopodobieństwo zadania na sprawdzian

Prawdopodobieństwo zadania na sprawdzian Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych

Bardziej szczegółowo

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania: Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda

15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda 1. Każdej karcie bankomatowej jest przypisany numer identyfikacyjny zwany kodem PIN. Kod ten składa się z czterech cyfr(cyfry mogą się powtarzać, ale kodem PIN nie może być 0000). Oblicz prawdopodobieństwo,

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3 Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił

Bardziej szczegółowo

Zagadnienia na powtórzenie

Zagadnienia na powtórzenie Zagadnienia na powtórzenie TERESA ZIEGLER IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz takie dokończenie zdania, aby otrzymać zdanie prawdziwe. Sześcian przecięto płaszczyzną zawierającą dwie równoległe

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite,

04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite, 04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite, wzór Bayesa Definicja. 1. Prawdopodobieństwem warunkowym zajścia zdarzenia A pod warunkiem zajścia zdarzenia B, gdzie P(B > 0, nazywamy

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA

RACHUNEK PRAWDOPODOBIEŃSTWA Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ RACHUNEK PRAWDOPODOBIEŃSTWA Co powinienem umieć Umiejętności znam pojęcie zdarzenia elementarnego znam pojęcie doświadczenia losowego i potrafię

Bardziej szczegółowo

Numer zadania Liczba punktów

Numer zadania Liczba punktów Kod ucznia Łączna liczba punktów Numer zadania 1 13 14 16 17 18 19 20 Liczba punktów Drogi Uczniu! Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 45 punktów. Aby mieć

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez

Bardziej szczegółowo

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp. Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA ( ) PRAWDOPOD OBIEŃSTW O W A RUNKOWE PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B ( ) WIĘC CO OZNACZA, ŻE ZDARZENIE B NIE MA WPŁYWU

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2 ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych

Bardziej szczegółowo

Matematyka. Podręcznik inspirowany postacią Pitagorasa twórcy podstaw matematyki

Matematyka. Podręcznik inspirowany postacią Pitagorasa twórcy podstaw matematyki Matematyka P O D R Ę C Z N I K D L S Z K O ŁY P O D S T W O W E J 8 Podręcznik inspirowany postacią Pitagorasa twórcy podstaw matematyki R E F O R M 2 0 1 7 SPIS TREŚCI 1. Liczby i wyrażenia algebraiczne

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 1 1 / 24 Warunki zaliczenia 1 Do egzaminu dopuszczeni wszyscy, którzy uczęszczali na

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

BAZA ZADAŃ KLASA 3 Ga

BAZA ZADAŃ KLASA 3 Ga BAZA ZADAŃ KLASA 3 Ga CIĄGI LICZBOWE 1. Ile wyrazów dodatnich ma ciąg? Podaj największy z nich. 2. Które wyrazy ciągu są równe zeru? 3. Które wyrazy ciągu są mniejsze od liczby m? 4. Zbadaj, czy poniższe

Bardziej szczegółowo

Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki

Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki Pochodne funkcji i jej zastosowania 1. Oblicz pochodną funkcji f, gdy: a) f(x) = 3x 8 + 2 x + 3 7, b) f(x) = x 11 6x 5 + 2 x + 3 x, c)

Bardziej szczegółowo

Projekt dofinansowała Fundacja mbanku PRAWDOPODOBIEŃSTWO

Projekt dofinansowała Fundacja mbanku PRAWDOPODOBIEŃSTWO Projekt dofinansowała Fundacja mbanku PRAWDOPODOBIEŃSTWO 1 Na ile sposobów może ubrać się Pani Dyrektor, która ma 3 różne kapelusze, 6 sukni i 4 pary butów? 1. Każdy zestaw składa się z kapelusza, sukni

Bardziej szczegółowo

PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA P A = A Ω PRAWDOPOD OBIEŃSTW O W A RUNKOWE P(A B) P A B =, P B 0 PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B P A B = P A B = P

Bardziej szczegółowo

I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie:

I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie: Strona 1 z 9 I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zapisz za pomocą potęgi o podanej podstawie: 5 4 ( 27) ( ) a), podstawa : ( ) b) 6 ( 9) c), podstawa: (5) d) Oblicz: a) 1 6 4 2 1 1 1 2 (0,25)

Bardziej szczegółowo

BAZA ZADAŃ KLASA 3 Ha 2014/2015

BAZA ZADAŃ KLASA 3 Ha 2014/2015 BAZA ZADAŃ KLASA 3 Ha 2014/2015 GEOMETRIA 1 W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu opisanego ma długość 19 cm Oblicz pole tego trójkąta

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara

Bardziej szczegółowo

Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa

Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa Rachunek prawdopodobieństwa i kombinatoryka Spis treści Rachunek prawdopodobieństwa Podstawowe pojęcia rachunku prawdopodobieństwa Liczba wyników doświadczenia losowego. Reguła mnożenia i reguła dodawania

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

Rachunek prawdopodobieństwa lista zadań nr 6

Rachunek prawdopodobieństwa lista zadań nr 6 1) Klasa zorganizowała loterię fantową. Do sprzedaży przeznaczono 50 losów ponumerowanych od 1 do 50. Organizatorzy przyjęli zasadę, że każdy los, którego numer jest liczbą podzielną przez 3, wygrywa fant.

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź

Bardziej szczegółowo

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w 02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,

Bardziej szczegółowo

Wersja testu A 18 czerwca 2012 r. x 2 +x dx

Wersja testu A 18 czerwca 2012 r. x 2 +x dx 1. Funkcja f : R R jest różniczkowalna na całej prostej, a ponadto dla każdej liczby rzeczywistej x zachodzi nierówność f x

Bardziej szczegółowo

Podstawy Teorii Prawdopodobieństwa

Podstawy Teorii Prawdopodobieństwa Statystyka Opisowa z Demografią oraz Biostatystyka Podstawy Teorii Prawdopodobieństwa Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag

Bardziej szczegółowo

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 = Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której

Bardziej szczegółowo

Rzucamy 10 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 10 razy orzeł i B reszka wypadła dokładnie 10 razy są zależne?

Rzucamy 10 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 10 razy orzeł i B reszka wypadła dokładnie 10 razy są zależne? Zad. Rzucamy 0 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 0 razy orzeł i B reszka wypadła dokładnie 0 razy są zależne? Zad. Badania statystyczne przeprowadzone wśród studentów wykazały,

Bardziej szczegółowo