BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013
|
|
- Halina Murawska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 01/013 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ ARKUSZ GM-M1-15 LISTOPAD 01
2 Liczba punktów za zadania zamknięte i otwarte: 9 Zadania zamknięte Numer Odpowiedź zadania poprawna Zasady przyznawania punktów 1 C poprawna odpowiedź 1 p. D odpowiedź błędna brak odpowiedzi 0 p. 3 PP 4 A 5 PP 6 PF 7 C 8 FP 9 C 10 PF 11 PF 1 B 13 C 14 PF 15 FF 16 FP 17 PF 18 TC 19 D 0 B
3 Zadania otwarte UWAGA Za każde inne niż przedstawione poprawne rozwiązanie przyznajemy maksymalną liczbę punktów. Zadanie 1. (0-3) Przykładowe rozwiązania I sposób Wszystkie klasy zebrały razem 100 zł. Zniżka dla szkoły wynosi 00 zł, zatem szkoła płaci = zebranej kwoty. Stąd wniosek, że każda klasa płaci zebranych pieniędzy, więc dostanie zwrot wpłaconej kwoty. Zatem klasa 3a otrzyma zwrot 360 zł = 60 zł. 6 6 II sposób Zebrane kwoty przez poszczególne klasy to: 360 zł, 300 zł, 300 zł, 40 zł. Razem zebrano 100 zł. Zniżka dla szkoły wynosi 00 zł. Stosunek zebranych kwot: 6 : 5 : 5 : 4. Stosunek zwróconych kwot powinien być taki sam. Ponieważ 00 zł : 0 = 10 zł, zatem klasa 3a otrzyma zwrot 6 10 zł = 60 zł. III sposób Wszystkie klasy zebrały łącznie 100 zł. Wkład klasy 3a stanowi 360 = 3 tej kwoty Do podziału między wszystkie klasy jest 00 zł. Wobec tego klasie 3a trzeba zwrócić 3 00 zł = 60 zł 10 IV sposób Stosunek zwróconych kwot powinien być taki sam jak stosunek zebranych kwot: 360 zł, 300 zł, 300 zł, 40 zł 100 zł 180 zł, 150 zł, 150 zł, 10 zł 600 zł 60 zł, 50 zł, 50 zł, 40 zł 00 zł Odpowiedź. Klasie 3a zwrócono 60 zł. V sposób Klasy 3b i 3c wpłaciły łącznie taką samą kwotę jak klasy 3a i 3d łącznie, czyli po 600 zł. Skoro do zwrotu jest 00 zł (100 zł 1000 zł), to klasom 3b i 3c łącznie trzeba zwrócić tyle samo co klasom 3a i 3d razem, czyli po 100 zł, ale każdej klasie proporcjonalne do jej wpłaty: 3a : 3d = 360 : 40 = 3 : Kwota 100 zł podzielona w tej proporcji to 3a : 3d = 60 zł : 40 zł Odpowiedź. Klasie 3a zwrócono 60 zł. 3
4 Poziom wykonania P 6 3 punkty pełne rozwiązanie obliczenie kwoty zwróconej klasie 3a (60 zł) P 4 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne ustalenie metody dokonania podziału kwoty: obliczenie, jaką częścią całej zebranej kwoty jest kwota do zwrotu (I sposób: np. 00 = 1 ) wyznaczenie stosunku wpłat dokonanych przez poszczególne klasy (II sposób: np. 6 : 5 : 5 : 4 ; V sposób: np. 3a : 3d = 3 : ) obliczenie, jaką częścią zebranej kwoty jest wpłata klasy 3a (III sposób: np. 360 = 3 ) proporcjonalne zmniejszenie kwot wpłaconych przez poszczególne klasy w celu uzyskania sumy równej łącznej kwocie do zwrotu (IV sposób) obliczenie kwoty, którą należy zwrócić klasie 3a z błędem rachunkowym P 1 1 punkt dokonano niewielkiego, ale koniecznego postępu na drodze do całkowitego rozwiązania obliczenie łącznej kwoty do zwrotu (00 zł) ustalenie metody dokonania podziału kwoty z błędem rachunkowym i poprzestanie na tym P 0 0 punktów rozwiązanie niestanowiące postępu rozwiązanie błędne brak rozwiązania Zadanie. (0-3) Przykładowe rozwiązania I sposób Paweł mógł wyrzucić liczby: 1,, 3, 4, 5, 6. Otrzymana liczba ma być parzysta, czyli jej ostatnią cyfrą może być, 4 6. Otrzymana liczba ma być podzielna przez 9, więc suma jej cyfr musi być liczbą podzielną przez 9. A zatem: jeśli ostatnia cyfra jest równa, to mamy liczbę 31x. Spośród liczb od 1 do 6 tylko dla x = 1 otrzymana liczba jest podzielna przez 9. jeśli ostatnia cyfra jest równa 4, to liczba jest równa 31x4. Żadna z liczb od 1 do 6, wstawiona w miejsce x, nie utworzy liczby podzielnej przez 9. 4
5 jeśli ostatnia cyfra jest równa 6, to mamy liczbę 31x6. Spośród liczb od 1 do 6 tylko dla x = 6 otrzymana liczba jest podzielna przez 9. Odpowiedź. Paweł wyrzucił kolejno liczby 1 i 6 i 6. II sposób Szukana liczba to 31xy i x, y to liczby od 1 do 6. Aby ta liczba była podzielna przez 9 suma jej cyfr musi być podzielna przez 9. Stąd x + y = 3 x + y = 1 Aby szukana liczba była parzysta, to jej ostatnia cyfra musi być równa 4 6. Jeśli y =, to x musi być równe 1. Jeśli y = 4, to nie ma odpowiedniego x. Jeśli y = 6, to x musi być równe 6. Czyli za czwartym i piątym razem Paweł wyrzucił 1 i 6 i 6. Poziom wykonania P 6 3 punkty pełne rozwiązanie podanie obu rozwiązań zadania wraz z uzasadnieniem P 4 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne podanie rozwiązań (1 i, 6 i 6, i 1) powołujących się tylko na podzielność liczb przez 9 podanie jednego z poprawnych rozwiązań i podjęcie próby argumentacji, powołując się zarówno na parzystość, jak i podzielność przez 9 P 1 punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane podanie dwóch poprawnych rozwiązań ale bez uzasadnienia podanie jednego poprawnego rozwiązania i podjęcie próby argumentacji, powołując się tylko na jeden z warunków P 0 0 punktów rozwiązanie niestanowiące postępu niepoprawne rozwiązanie brak rozwiązania Zadanie 3. (0-3) Przykładowe rozwiązania I sposób P p = 0,75P 1, więc P c = P p + 4P 1 = 0,75 P 1 + 4P 1 = 1,5 P P 1 = 5,5 P 1 64 = 5,5 P 1, stąd P 1 = 48 cm, P p = 36 cm Podstawą graniastosłupa jest kwadrat, więc a = 6 cm. Ściana boczna jest prostokątem o polu 48 cm, więc jej drugi bok jest równy 8 cm. Zatem wysokość bryły jest równa 8 cm. 5
6 II sposób P p = a, P 1 = ah, P p = 0,75P 1, więc a = 0,75ah, stąd a = 0,75h P c = P p + 4P 1 64 = a + 4ah = (0,75h) + 4 0,75h h = 8 9 h +3h = 8 33 h h = 64, więc h = 8 (cm) Odpowiedź: Wysokość graniastosłupa jest równa 8 cm. III sposób Jeśli P p = 0,75P 1, to stosunek pól ścian w graniastosłupie wynosi P p : P p : P 1 : P 1 : P 1 : P 1 = 4 3 : 4 3 : 1 : 1 : 1 : 1 64 cm : =1 cm, zatem P 1 = 48 cm, P p = 36 cm Podstawą graniastosłupa jest kwadrat, więc a = 6 cm. Ściana boczna jest prostokątem, więc jego drugi bok jest równy 8 cm. Zatem wysokość bryły wynosi 8 cm. IV sposób P p = a, P 1 = ah, P p = 0,75P 1, więc a = 0,75ah P c = P p + 4P 1, więc 64 = a + 4ah a = 0,75ah 64 = a + 4ah a = 0,75ah 64 = 5,5ah Stąd ah = 48, zatem a = 36, więc a = 6 i h = 8 Odpowiedź. Wysokość graniastosłupa jest równa 8 cm. Poziom wykonania P 6 3 punkty pełne rozwiązanie obliczenie wysokości graniastosłupa (8 cm) P 4 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne wyznaczenie pola podstawy i pola jednej ściany bocznej graniastosłupa (I i III sposób) zapisanie równania z jedną niewiadomą prowadzącego do wyznaczenia długości jednej z krawędzi graniastosłupa (II sposób) zapisanie układu równań z dwiema niewiadomymi prowadzącego do wyznaczenia długości obu krawędzi graniastosłupa (IV sposób) rozwiązanie zadania do końca poprawną metodą ale z błędami rachunkowymi 6
7 P 1 punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane zapisanie równania z jedną niewiadomą prowadzącego do obliczenia pola jednej ze ścian graniastosłupa zapisanie związku między polami ścian graniastosłupa (P c = P p + 4P 1 ) i związku między krawędziami graniastosłupa (a = 0,75ah) P 0 0 punktów rozwiązanie niestanowiące postępu rozwiązanie błędne brak rozwiązania 7
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ ARKUSZ GM-M7-125 LISTOPAD 2012 Liczba
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 011/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA KLUCZ ODPOWIEDZI I SCHEMAT OCENIANIA ZADAŃ ARKUSZ GM-M7-1 KWIECIEŃ 01 Liczba punktów
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ GRUDZIEŃ 2011 Zadania zamknięte Numer
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ GM-M7-142 KWIECIEŃ 2014 Liczba punktów za zadania zamknięte i otwarte:
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ GM-M1-142 KWIECIEŃ 2014 Liczba punktów za zadania zamknięte i otwarte:
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 011/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA KLUCZ ODPOWIEDZI I SCHEMAT OCENIANIA ZADAŃ ARKUSZ GM-M1-1 KWIECIEŃ 01 Zadania zamknięte
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 01/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA GM-M7-1 KWIECIEŃ 01 Liczba punktów za zadania zamknięte i otwarte: 9 Zadania
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY UNKTOWANIA GM-M1-132 KWIECIEŃ 2013 Liczba punktów za zadania zamknięte i otwarte: 29
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ GRUDZIEŃ 2011 Liczba punktów za zadania
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2016 Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-MX4 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji.
KONKURS Z MATEMATYKI
KONKURS Z MATEMATYKI ZESTAW POPRAWNYCH ODPOWIEDZI DO ARKUSZA - ETAP REJONOWY Numer zadania Poprawna odpowiedź Liczba punktów 1. C 1 2. D 1 3. P,F 2 4. D 1 5. C 1 6. B 1 7. D 1 8. A 1 9. C 1 10. B 1 11.
ZADANIA OTWARTE. Uwaga! Każde poprawne, inne niż przykładowe, rozwiązanie powinno być punktowane maksymalną liczbą punktów.
WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 05/06 GIMNAZJUM Wojewódzki Konkurs Matematyczny SCHEMAT PUNKTOWANIA ZADANIA ZAMKNIĘTE Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Zad. 5 6 7 9 0 5 6 7 Odp. A B
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 014/015 ZĘŚĆ. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-M1X, GM-M, GM-M4, GM-M5, GM-M1L, GM-M1U KWIEIEŃ 015 Zadanie 1. (0 1) I. Wykorzystanie
ETAP III wojewódzki 16 marca 2019 r.
oraz klas trzecich oddziałów gimnazjalnych prowadzonych w szkołach innego typu Liczba punktów możliwych do uzyskania: 40 ETAP III wojewódzki 16 marca 2019 r. Zasady ogólne: 1. Za każde poprawne rozwiązanie
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 03/04 Przykładowe rozwiązania zadań i schemat punktowania Etap szkolny Przy punktowaniu zadań otwartych
Zadania zamknięte. Numer zadania
Liczba punktów za zadania zamknięte i otwarte: 31 Zadania zamknięte Zasady przyznawania punktów: za każdą poprawną odpowiedź 1 punkt za błędną odpowiedź brak odpowiedzi 0 punktów Numer zadania Poprawna
Matematyka test dla uczniów klas drugich
Matematyka test dla uczniów klas drugich gimnazjów w roku szkolnym 011/01 Etap międzyszkolny Schemat punktowania (do uzyskania maksymalnie: 1) UWAGI OGÓLNE: 1) Za każde prawidłowo rozwiązane zadanie dowolną
Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny. Przykładowe rozwiązania i propozycja punktacji rozwiązań
Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny Przykładowe rozwiązania i propozycja punktacji rozwiązań Ustalenia do punktowania zadań otwartych: 1. Jeśli uczeń przedstawił obok prawidłowej
Ogólnopolski Próbny Egzamin Ósmoklasisty z OPERONEM Matematyka. Klucz punktowania
Matematyka Klucz punktowania Marzec 09 Zasady przyznawania. B pkt podanie poprawnej odpowiedzi. AD pkt podanie poprawnej odpowiedzi. C pkt podanie poprawnej odpowiedzi. C pkt podanie poprawnej odpowiedzi.
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) III. Modelowanie matematyczne. 2. Działania na liczbach naturalnych.
Kryteria punktowania zadań - KRAKOWSKA MATEMATYKA 2012/2013. Etap międzyszkolny - KRAKÓW MIASTO UCZONYCH I ŻAKÓW klasa piąta 1 D) 966 1
Kryteria punktowania zadań - KRAKOWSKA MATEMATYKA 0/0 Etap międzyszkolny - KRAKÓW MIASTO UCZONYCH I ŻAKÓW klasa piąta Zadanie Rozwiązanie Kryteria oceniania D) 966 Max. liczba pkt. D) W XIV wieku B) 75
MATEMATYKA EGZAMIN STANDARDOWY Wymagania konkursowe 1. Założenia ogólne
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Załącznik nr 8 do Regulaminu MATEMATYKA EGZAMIN STANDARDOWY Wymagania konkursowe 1. Założenia ogólne W ramach pracy konkursowej
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania
Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA
Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA Rozwiązania zadań zostały ocenione w sposób holistyczny.
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Kryteria oceniania zadań
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Kryteria oceniania zadań Zadania zamknięte Zadanie 1 4 5 6 7 8 9 10 11 1 1 Odpowiedź C D D C A B C D C A B C D Zadania Prawda/Fałsz Zadanie Odpowiedź
x Kryteria oceniania
Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
Małe Olimpiady Przedmiotowe. Test z matematyki
Małe Olimpiady Przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa nr 17 Szkoła Podstawowa nr 18 Drogi Uczniu, Test składa się z
KLUCZ ODPOWIEDZI POPRAWNA ODPOWIEDŹ 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D
Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH NR ZADANIA POPRAWNA ODPOWIEDŹ D C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 0 C B A 3 A 4 B 5 D 6 B 7 C 8 A 9 B 0 D Zadanie ( pkt) Okręgowa
KONKURS Z MATEMATYKI
KONKURS Z MATEMATYKI ZESTAW POPRAWNYCH ODPOWIEDZI DO ARKUSZA - ETAP WOJEWÓDZKI Numer zadania Poprawna odpowiedź Liczba punktów 1. C 1 2. C 1 3. B 1 4. P, F, P 3 5. B 1 6. A 1 7. B 1 8. C 1 9. B 1 10. D
Szanowni Państwo, Nauczyciele poprawiający prace uczniowskie z badania diagnostycznego z matematyki
Szanowni Państwo, Nauczyciele poprawiający prace uczniowskie z badania diagnostycznego z matematyki Poniżej przedstawiamy zasady, dotyczące oceniania arkuszy egzaminacyjnych z matematyki Zasady te są omawiane
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. Klucz odpowiedzi do zadań zamkniętych 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17
OCENIANIE ARKUSZA POZIOM PODSTAWOWY
Numer zadania.. Etapy rozwiązania zadania OCENIANIE ARKUSZA POZIOM PODSTAWOWY Zapisanie ceny wycieczki po podwyżce, np. x + 5% x, gdzie x oznacza pierwotną cenę wycieczki. Liczba punktów. Zapisanie równania:
MATERIAŁ ĆWICZENIOWY DLA UCZNIÓW I NAUCZYCIELI
EGZAMIN ÓSMOKLASISTY MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ MATERIAŁ ĆWICZENIOWY DLA UCZNIÓW I NAUCZYCIELI MARZEC 2019 Zestaw zadań został opracowany przez Okręgową Komisję Egzaminacyjną w Krakowie
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-800 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 3) Podstawa programowa
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY Numer zadania Poprawna odpowiedź Liczba punktów. B 2. C 3. D 4. D 5. B 6. B 7. D 8. C 9. A 0. C. B 2. A 3. P,
PRÓBNY EGZAMIN ÓSMOKLASISTY Z NOWĄ ERĄ 2018/2019 MATEMATYKA
PRÓBNY EGZAMIN ÓSMOKLASISTY Z NOWĄ ERĄ 2018/2019 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych
Kryteria oceniania zadań z matematyki na przykładzie prac uczniowskich
Kryteria oceniania zadań z matematyki na przykładzie prac uczniowskich Analiza rozwiązań dwóch zadań otwartych z matematyki na przykładach prac uczniowskich ZADANE 1. Okładka komiksu ma kształt prostokąta
Nowy Sprawdzian Szóstoklasisty Język polski i matematyka Klucz punktowania
Nowy Sprawdzian Szóstoklasisty 2017 Język polski i matematyka Klucz punktowania ZADANIA WYBORU WIELOKROTNEGO 2. 9. 10. 12. 16. 17. 19. 20. 22. Poprawna odpowiedź C A B C C C D B A 1 pkt poprawna odpowiedź
Małopolski Konkurs Matematyczny r. etap wojewódzki A B C D
SCHEMAT PUNKTOWANIA ZADAŃ Z KARTY ODPOWIEDZI Numer zadania Liczba punktów za zadanie 1 1 x 1 x Miejsce na odpowiedź ucznia A B C D 3 1 x 4 1 x 5 1 x 6 x 7 x 8 x 9 x 10 x 11 0 1 11 17 % 17 13 45 ; 135 3
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH Nr zadania 4 5 6 7 8 9 0 4 5 6 7 8 9 0 Odpowiedź
KONKURS MATEMATYCZNY
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W CHEŁMIE INSTYTUT MATEMATYKI i INFORMATYKI 22-100 Chełm, ul. Pocztowa 54 tel./fax. (082) 562 11 24 KONKURS MATEMATYCZNY im. Samuela Chróścikowskiego 10 kwiecień 2015r.
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ PAŹDZIERNIK 2011 czas (w procentach) Zadanie 1. Do przygotowania
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 01 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MTEMTYCZNY dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie, inne niż przewidziane
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Listopad 0 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. B ( ) 9 : 7 = 7 = 7 6 5 5. B log ( log0
Próbny Sprawdzian Szóstoklasisty 2016 II edycja Marzec 2016. Język polski i matematyka Klucz punktowania
Próbny Sprawdzian Szóstoklasisty 016 II edycja Marzec 016 Język polski i matematyka Klucz punktowania ZADANIA WYBORU WIELOKROTNEGO 1. 6. 9. 10. 11. 15. 17. 18. 0. 1. 3. Poprawna odpowiedź B D D A C D B
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 04/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R CZERWIEC 0 Klucz punktowania zadań zamkniętych Nr zad. 3
EGZAMIN GIMNAZJALNY. Ocenianie arkusza egzaminacyjnego oraz typy zadań z matematyki. Opracowała: Ewa Ślubowska, doradca metodyczny matematyki CEN
EGZAMIN GIMNAZJALNY Ocenianie arkusza egzaminacyjnego oraz typy zadań z matematyki Opracowała: Ewa Ślubowska, doradca metodyczny matematyki CEN Holistyczne ocenianie arkusza egzaminacyjnego z matematyki
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
KOD ZDAJĄCEGO WPISUJE ZDAJĄCY symbol klasy symbol zdającego PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka
WYPEŁNIA UCZEŃ PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 2016/2017
Wojewódzki Konkurs rzedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 016/017 rzykładowe rozwiązania zadań i schemat punktowania Etap szkolny rzy punktowaniu zadań otwartych
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2012
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Poprawna odpowiedź Zad. 4 Zad. 5 Zad.
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom rozszerzony Listopad 8 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. B Wskazówki do rozwiązania q =, więc q
PESEL. 1. Rozwiązania wszystkich zadań zapisuj na kartach odpowiedzi, pamiętając o podaniu numeru zadania.
Układ graficzny CKE 20 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
Przewodnik po typach zadań
8 Przewodnik po typach zadań Jedna ze zmian wprowadzonych do sprawdzianu w szóstej klasie szkoły podstawowej dotyczy typów zadań, które mogą się znaleźć w arkuszu egzaminacyjnym. Do tej pory na sprawdzianie
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 4 5 6 7 8 9 10 11 1 1 14 B B C A D D A B C A B D C C Nr zad Odp. 15
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )
MATEMATYKA POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 03/0 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA SIERPIEŃ 0 Klucz punktowania zadań zamkniętych Nr zad 3 6 7 8 9 0 3 6 7 8 9 0 3 Odp A A B B C
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_1) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) II. Wykorzystanie
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 2 3 4 5 6 7 8 9 10 11 12 B D C A B B A B A C D A Nr zad Odp. 13 14 15
Sprawdzian z matematyki w pierwszym semestrze nauki w szóstej klasie szkoły podstawowej Praga. Instrukcja dla nauczyciela oceniającego test
Sprawdzian z matematyki w pierwszym semestrze nauki w szóstej klasie szkoły podstawowej Praga Instrukcja dla nauczyciela oceniającego test Celem badania jest zdiagnozowanie poziomu umiejętności matematycznych
Matematyk Roku gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA
Imię i nazwisko:.. Klasa:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2017 - gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA 1. Przed Tobą zestaw 20 zadań konkursowych.
TWÓJ KOD. do elektronicznego zeszytu ćwiczeń ZNAJDUJE SIĘ W ŚRODKU
TWÓJ KOD do elektronicznego zeszytu ćwiczeń ZNAJDUJE SIĘ W ŚRODKU 2 część 2 klasa Spis treści V. Wyrażenia algebraiczne 1. Wyrażenia algebraiczne / 5 2. Wartość liczbowa wyrażenia algebraicznego / 9 3.
Próbny Sprawdzian Szóstoklasisty Język polski i matematyka Klucz punktowania
Język polski i matematyka Klucz punktowania ZADANIA WYBORU WIELOKROTNEGO 1. 5. 6. 8. 9. 10. 11. 12. 1. 15. 19. 2. Poprawna odpowiedź C B D A C B A D C C A B 1 pkt poprawna odpowiedź 0 pkt niepoprawna odpowiedź
KONKURS "WEJŚCIÓWKA 2015" Matematyka, fizyka i informatyka
Siedlce, 09.05.2015 Imię i nazwisko uczestnika Nazwa szkoły uczestnika Imię i nazwisko nauczyciela matematyki lub fizyki Adres e-mail i numer telefonu uczestnika KONKURS "WEJŚCIÓWKA 2015" Matematyka, fizyka
Małopolski Konkurs Matematyczny r. etap wojewódzki A B C D E
SCHEMAT PUNKTOWANIA ZADAŃ Z KARTY ODPOWIEDZI Numer zadania SCHEMAT PUNKTOWANIA ZADAŃ TESTOWYCH Liczba punktów za zadanie Miejsce na odpowiedź ucznia A B C D E 1 X X X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 X
Schemat oceniania zadań Arkusz M1
Schemat oceniania zadań Arkusz M1 Poprawne odpowiedzi do zadań zamkniętych Zadanie 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Poprawna odpowiedź C. B. C. PP C. C. FF PF A. AC AD B. Zadanie 13 Basia kupiła
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNI ZESPÓŁ NZORUJĄY KO UZNI PESEL miejsce na naklejkę EGZMIN W KLSIE TRZEIEJ GIMNZJUM ZĘŚĆ 2. MTEMTYK Instrukcja dla ucznia
ARKUSZ VIII
www.galileusz.com.pl ARKUSZ VIII W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Iloczyn liczb 2+ 3 i odwrotności liczby 2 3 jest równy A) 2 3 B) 1 C) 2 3 D) 2+
Próbne arkusze z matematyki. Odpowiedzi. Wydawnictwo Tales
Próbne arkusze z matematyki Odpowiedzi Wydawnictwo Tales KARTOTEKA TESTU NR 1 1. B II 1.5) 2.3) 2. B II 12.3) 3. C II 12.3) 4. A I 2.1) 2.3) 2.11) 5. 1F II 12.9) 6. B2 II 3.5) 7. D I 4.12) 5.2) 8. B II
EGZAMIN MATURALNY 2012 MATEMATYKA
entralna Komisja Egzaminacyjna EGZAMIN MATURALNY 01 MATEMATYKA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi ZERWIE 01 Egzamin maturalny z matematyki Zadanie 1. (0 1) Obszar standardów i interpretowanie
EGZAMIN MATURALNY OD ROKU SZKOLNEGO
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla
Nieczynnościowy sposób oceniania zadań otwartych
Nieczynnościowy sposób oceniania zadań otwartych MATEMATYKA Zmiany od 2010 roku Maria Dębska doradca metodyczny Bielsko - Biała Standard 3. modelowanie matematyczne Dlaczego zmiany? Standard 4. użycie
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI P-1 POZIOM PODSTAWOWY Czas pracy: 170 minut Za rozwiązanie wszystkich zadań można uzyskać łącznie 50 punktów BRUDNOPIS Zadanie 1. (1 pkt) ZADANIA ZAMKNIĘTE
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej
Matematyka na egzaminie gimnazjalnym od Katowice Bielsko-Biała, grudzień 2011
Matematyka na egzaminie gimnazjalnym od 2012 Katowice Bielsko-Biała, grudzień 2011 Program spotkania Zestaw zadań z matematyki Przykłady zadań Punktowanie rozwiązań Komunikowanie wyników 2 Matematyka Wymagania