EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
|
|
- Anna Nowak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 011/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA KLUCZ ODPOWIEDZI I SCHEMAT OCENIANIA ZADAŃ ARKUSZ GM-M1-1 KWIECIEŃ 01
2 Zadania zamknięte Zasady przyznawania punktów: za każdą poprawną odpowiedź 1 punkt za błędną odpowiedź lub brak odpowiedzi 0 punktów Liczba punktów za zadania zamknięte i otwarte: 30 Numer zadania Poprawna odpowiedź 1. D. B 3. B 4. A 5. PF 6. C 7. D 8. D 9. B 10. PF 11. A 1. B 13. C 14. A 15. D 16. FP 17. TC 18. A 19. C 0. D
3 Zadania otwarte UWAGA Za każde inne niż przedstawione poprawne rozwiązanie przyznajemy maksymalną liczbę punktów. Jeśli na jakimkolwiek etapie rozwiązania zadania popełniono jeden lub więcej błędów rachunkowych, ale zastosowane metody były poprawne, to obniżamy ocenę całego rozwiązania o 1 punkt. Zadanie 1. (0-4) Przykładowe sposoby rozwiązania I sposób x pojemność dużej doniczki y pojemność małej doniczki x 9y 6 4x 6y 6 Po rozwiązaniu układu równań otrzymujemy: x = 0,75 y = 0,5 5x + 4y = 5 0, ,5 = 3,75 + = 5,75 (litra) Wniosek. Wojtkowi wystarczy ziemi do napełnienia doniczek. Poziom wykonania zapisanie poprawnego wniosku P 5 3 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale dalsza część ustalenie sposobu ilości ziemi potrzebnej Wojtkowi do wypełnienia doniczek P 4 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone lub dalsza część rozwiązania zawiera poważne błędy merytoryczne obliczenie pojemności małej doniczki (0,5 litra) i dużej doniczki (0,75 litra) P 1 punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane ułożenie poprawnego układu równań opisującego związek między dwiema niewiadomymi (nawet bez oznaczenia niewiadomych użytych w równaniach) 3
4 II sposób Biorąc pod uwagę, że doniczki Kasi zawierają tyle samo ziemi co doniczki Asi wnioskujemy, że dwie duże doniczki zawierają tyle samo ziemi, co trzy małe. x pojemność dużej doniczki lub y pojemność małej doniczki x pojemność małej doniczki 3 1,5y pojemność dużej doniczki x + 9 x = 6 3 1,5y + 9y = 6 x = 0,75 (litra) 5x + 4 x = 5 0, y = 0,5 (litra) 0,75 = 5,75 5 1,5y + 4y = 5 1,5 0, ,5 = 5,75 Wniosek. Wojtkowi wystarczy ziemi do napełnienia doniczek. Poziom wykonania zapisanie poprawnego wniosku P 5 3 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale dalsza część ustalenie sposobu ilości ziemi potrzebnej Wojtkowi do wypełnienia doniczek P 4 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone lub dalsza część rozwiązania zawiera poważne błędy merytoryczne ułożenie poprawnego równania z jedną niewiadomą (nawet bez oznaczenia niewiadomej użytej w równaniu) P 1 punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane stwierdzenie lub zaznaczenie na rysunku, że dwie duże doniczki zawierają tyle samo ziemi, co trzy małe III sposób Biorąc pod uwagę, że doniczki Kasi zawierają tyle samo ziemi co doniczki Asi wnioskujemy, że dwie duże doniczki zawierają tyle samo ziemi, co trzy małe. lub Stąd duża doniczka ma 1,5 razy większą pojemność niż mała (V d = 1,5V m ). Zatem ziemi wypełni 1 małych doniczek. W 5 dużych doniczkach i 4 małych doniczkach Wojtka będzie tyle ziemi, co w 11,5 małych doniczkach. Stąd pojemność małej doniczki stanowi 3 pojemności dużej (Vm = 3 Vd ). Zatem ziemi wypełni 8 dużych doniczek. Doniczki Wojtka 5 dużych doniczek i 4 małe mieszczą tyle ziemi, co 7 3 dużej doniczki. Wniosek. Wojtkowi wystarczy ziemi do napełnienia doniczek. 4
5 Poziom wykonania zapisanie poprawnego wniosku P 5 3 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale dalsza część przeliczenie pojemności doniczek Wojtka na małe doniczki (11,5 małej doniczki) lub na duże doniczki (7 3 dużej doniczki) P 4 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone lub dalsza część rozwiązania zawiera poważne błędy merytoryczne ustalenie, że pojemność małej doniczki stanowi 3 pojemności dużej lub pojemność dużej to 1,5 pojemności małej doniczki P 1 punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane stwierdzenie lub zaznaczenie na rysunku, że dwie duże doniczki zawierają tyle samo ziemi, co trzy małe IV sposób Biorąc pod uwagę, że doniczki Kasi zawierają tyle samo ziemi co doniczki Asi wnioskujemy, że dwie duże doniczki zawierają tyle samo ziemi, co trzy małe (uczeń może zaznaczyć ten fakt na rysunku). Stąd wynika, że ziemi zmieści się w 8 dużych doniczkach (lub w 1 małych). Zatem 8 dużych doniczek 1 małych doniczek duża doniczka = l l mała doniczka = l l Wojtek ma 5 dużych doniczek i 4 małe doniczki, więc = Odpowiedź: Wojtkowi wystarczy ziemi do napełnienia doniczek. 5
6 V sposób duże duże Asia 8 dużych = 6 l duże Kasia 8 dużych Wojtek duże duże duże 7 dużych i 1 mała Wojtek ma razem 7 dużych doniczek i jedną małą, więc wystarczy mu ziemi do ich napełnienia. lub 3 małe Asia 1 małych = 6 l 3 małe 3 małe Kasia 1 małych 3 małe Wojtek 11,5 małej 3 małe 1,5 małej Wojtek ma razem 11,5 małej doniczki, więc wystarczy mu ziemi do ich napełnienia. Poziom wykonania (sposób IV i V) zapisanie poprawnego wniosku P 5 3 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale dalsza część ustalenie sposobu ilości ziemi potrzebnej Wojtkowi do wypełnienia doniczek P 4 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone lub dalsza część rozwiązania zawiera poważne błędy merytoryczne obliczenie pojemności małej doniczki (0,5 litra) i dużej doniczki (0,75 litra) 6
7 P 1 punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane stwierdzenie lub zaznaczenie na rysunku, że dwie duże doniczki zawierają tyle samo ziemi, co trzy małe VI sposób duże doniczki 3 małe doniczki 1 duża doniczka 1,5 małej doniczki Wojtek ma o 1 dużą doniczkę więcej niż Kasia, ale za to o małe doniczki mniej niż Kasia. Czyli w jego doniczkach zmieści się mniej ziemi niż w doniczkach Kasi. Odpowiedź: Wojtkowi wystarczy ziemi do napełnienia doniczek. Poziom wykonania zapisanie poprawnego wniosku P 5 3 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale dalsza część sprawdzenie, czy Wojtkowi wystarczy ziemi przez porównanie łącznej pojemności doniczek Wojtka z łączną pojemnością doniczek Kasi (lub Asi) P 4 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone lub dalsza część rozwiązania zawiera poważne błędy merytoryczne ustalenie, że pojemność małej doniczki stanowi 3 pojemności dużej lub pojemność dużej to 1,5 pojemności małej doniczki P 1 punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane stwierdzenie lub zaznaczenie na rysunku, że dwie duże doniczki zawierają tyle samo ziemi, co trzy małe 7
8 Zadanie. (0-) Przykładowe sposoby rozwiązania I sposób C α A 10 o B α Korzystając z własności kątów wierzchołkowych otrzymujemy: ABC = α. Korzystając z własności kątów przyległych otrzymujemy: CAB = = 60 Korzystając z twierdzenia o sumie kątów w trójkącie mamy: ABC + BCA + CAB = 180 α + α + 60 = 180 α = 10 α = 60 Czyli: CAB = 60, ABC = 60, BCA = 60 Z tego wynika, że trójkąt ABC jest trójkątem równobocznym. II sposób A o C α α B α α + α + 60 = 180 α = 10 α = 60 Trójkąt ABC jest trójkątem równobocznym. Poziom wykonania P 6 punkty pełne rozwiązanie obliczenie, że α = 60 P 5,4 1 punkt zasadnicze trudności zadania zostały pokonane bezbłędnie, ale dalsza część albo rozwiązanie nie zostało dokończone lub dalsza część rozwiązania zawiera poważne błędy merytoryczne zapisanie lub zaznaczenie na rysunku, że CAB = 60 i ABC = α np. Trójkąt jest równoboczny, bo wszystkie jego boki mają taką samą długość. 8
9 Zadanie 3. (0-4) Przykładowe sposoby rozwiązania I sposób r = 0 cm h D C r = 0 cm Oznaczenia: AB = a CD = EF = b AE = FB = x A E F B a a a b b b 4 a b 3 a = 56 a = 8 (cm) b = 4 (cm) Długość odcinka AE = FB = x x = 4 x = 1 (cm) Wysokość h trapezu (z twierdzenia Pitagorasa w trójkącie AED) jest równa: 1 + h = 0 h = h = 56 h = 16 (cm) a b Pole trapezu P = h P (cm ) Odpowiedź: Pole trapezu jest równe 56 cm. 9
10 II sposób D C 0 cm 0 cm h A E Trapez jest równoramienny, więc AE = FB = 1 4 = 1 (cm) F Wysokość h trapezu (z twierdzenia Pitagorasa w trójkącie AED) jest równa: DE = 0 1 DE = DE = 56 DE = 16 (cm) Obwód trapezu jest równy: 7 = AB + DC, zatem AB + DC = 3 (cm) Pole trapezu P AB + DC DE P (cm ) Odpowiedź: Pole trapezu jest równe 56 cm. Poziom wykonania obliczenie pola trapezu (56 cm ) B P 5 3 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale dalsza część zapisanie poprawnie sposobu obliczenia pola trapezu P punkty dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane obliczenie wysokości trapezu (16 cm) P 1 1 punkt dokonano niewielkiego, ale koniecznego postępu na drodze do całkowitego rozwiązania obliczenie długości krótszej podstawy trapezu (4 cm) lub obliczenie długości dłuższej podstawy trapezu (8 cm) lub obliczenie sumy długości podstaw trapezu (3 cm) lub obliczenie długości odcinka AE (1 cm) 10
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 011/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA KLUCZ ODPOWIEDZI I SCHEMAT OCENIANIA ZADAŃ ARKUSZ GM-M7-1 KWIECIEŃ 01 Liczba punktów
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ GM-M7-142 KWIECIEŃ 2014 Liczba punktów za zadania zamknięte i otwarte:
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY UNKTOWANIA GM-M1-132 KWIECIEŃ 2013 Liczba punktów za zadania zamknięte i otwarte: 29
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ GRUDZIEŃ 2011 Zadania zamknięte Numer
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ GM-M1-142 KWIECIEŃ 2014 Liczba punktów za zadania zamknięte i otwarte:
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ ARKUSZ GM-M7-125 LISTOPAD 2012 Liczba
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 01/013 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ ARKUSZ GM-M1-15 LISTOPAD 01 Liczba punktów
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 01/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA GM-M7-1 KWIECIEŃ 01 Liczba punktów za zadania zamknięte i otwarte: 9 Zadania
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
ZADANIA OTWARTE. Uwaga! Każde poprawne, inne niż przykładowe, rozwiązanie powinno być punktowane maksymalną liczbą punktów.
WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 05/06 GIMNAZJUM Wojewódzki Konkurs Matematyczny SCHEMAT PUNKTOWANIA ZADANIA ZAMKNIĘTE Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Zad. 5 6 7 9 0 5 6 7 Odp. A B
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 03/04 Przykładowe rozwiązania zadań i schemat punktowania Etap szkolny Przy punktowaniu zadań otwartych
ETAP III wojewódzki 16 marca 2019 r.
oraz klas trzecich oddziałów gimnazjalnych prowadzonych w szkołach innego typu Liczba punktów możliwych do uzyskania: 40 ETAP III wojewódzki 16 marca 2019 r. Zasady ogólne: 1. Za każde poprawne rozwiązanie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 014/015 ZĘŚĆ. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-M1X, GM-M, GM-M4, GM-M5, GM-M1L, GM-M1U KWIEIEŃ 015 Zadanie 1. (0 1) I. Wykorzystanie
Matematyka test dla uczniów klas drugich
Matematyka test dla uczniów klas drugich gimnazjów w roku szkolnym 011/01 Etap międzyszkolny Schemat punktowania (do uzyskania maksymalnie: 1) UWAGI OGÓLNE: 1) Za każde prawidłowo rozwiązane zadanie dowolną
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ GRUDZIEŃ 2011 Liczba punktów za zadania
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-MX4 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2016 Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
Zadania zamknięte. Numer zadania
Liczba punktów za zadania zamknięte i otwarte: 31 Zadania zamknięte Zasady przyznawania punktów: za każdą poprawną odpowiedź 1 punkt za błędną odpowiedź brak odpowiedzi 0 punktów Numer zadania Poprawna
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 4 5 6 7 8 9 10 11 1 1 14 B B C A D D A B C A B D C C Nr zad Odp. 15
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 2 3 4 5 6 7 8 9 10 11 12 B D C A B B A B A C D A Nr zad Odp. 13 14 15
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY Numer zadania Poprawna odpowiedź Liczba punktów. B 2. C 3. D 4. D 5. B 6. B 7. D 8. C 9. A 0. C. B 2. A 3. P,
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP WOJEWÓDZKI
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP WOJEWÓDZKI Numer Poprawna odpowiedź Liczba punktów zadania 1. A 1 2. B 1 3. C 1 4. A 1 5. B 2 6. A 2 7. D 2 8. D 2 9.
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKIE KONKURSY RZEDMIOTOWE 018/019 SZKOŁA ODSTAWOWA WOJEWÓDZKI KONKURS MATEMATYZNY DLA UZNIÓW SZKOŁY ODSTAWOWEJ W ROKU SZKOLNYM 018/019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź
Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do
MATEMATYKA EGZAMIN STANDARDOWY Wymagania konkursowe 1. Założenia ogólne
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Załącznik nr 8 do Regulaminu MATEMATYKA EGZAMIN STANDARDOWY Wymagania konkursowe 1. Założenia ogólne W ramach pracy konkursowej
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi Arkusz A I Strona z 7 Wersja A Odpowiedzi Zadanie 2 3 4 5 6 7 8 9 0 2 3 Odpowiedź C D B B C C A D A B A B C Zadanie 4 5 6 7 8 9 20 2 22 23 24
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem EGZAMIN
Nieczynnościowy sposób oceniania zadań otwartych
Nieczynnościowy sposób oceniania zadań otwartych MATEMATYKA Zmiany od 2010 roku Maria Dębska doradca metodyczny Bielsko - Biała Standard 3. modelowanie matematyczne Dlaczego zmiany? Standard 4. użycie
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ PAŹDZIERNIK 2011 czas (w procentach) Zadanie 1. Do przygotowania
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dla uczniów gimnazjów oraz oddziałów gimnazjalnych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie,
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH Nr zadania 4 5 6 7 8 9 0 4 5 6 7 8 9 0 Odpowiedź
KLUCZ ODPOWIEDZI POPRAWNA ODPOWIEDŹ 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D
Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH NR ZADANIA POPRAWNA ODPOWIEDŹ D C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 0 C B A 3 A 4 B 5 D 6 B 7 C 8 A 9 B 0 D Zadanie ( pkt) Okręgowa
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria
1 Pomimo, że ten dział, to typowa geometria wydawałoby się trudny dział to paradoksalnie troszkę tu odpoczniemy, jeśli chodzi o teorię. Dlaczego? Otóż jak zapewne doskonale wiesz, na maturze otrzymasz
Model odpowiedzi i schemat oceniania do arkusza I
Model odpowiedzi i schemat oceniania do arkusza I Zadanie 1 (4 pkt) n Odczytanie i zapisanie danych z wykresu: 100, 105, 100, 10, 101. n Obliczenie mediany: Mediana jest równa 101. n Obliczenie średniej
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 08/09 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Numer zadania Poprawna odpowiedź...
OCENIANIE ARKUSZA POZIOM PODSTAWOWY
Numer zadania.. Etapy rozwiązania zadania OCENIANIE ARKUSZA POZIOM PODSTAWOWY Zapisanie ceny wycieczki po podwyżce, np. x + 5% x, gdzie x oznacza pierwotną cenę wycieczki. Liczba punktów. Zapisanie równania:
Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka
WYPEŁNIA UCZEŃ PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10
Schemat oceniania zadań Arkusz M2
Schemat oceniania zadań Arkusz M2 Poprawne odpowiedzi do zadań zamkniętych Zadanie 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Poprawna odpowiedź B. A. A. FF B. C. PF FF D. BC BC D. Zadanie 13 Basia kupiła
Małopolski Konkurs Matematyczny r. etap wojewódzki A B C D
SCHEMAT PUNKTOWANIA ZADAŃ Z KARTY ODPOWIEDZI Numer zadania Liczba punktów za zadanie 1 1 x 1 x Miejsce na odpowiedź ucznia A B C D 3 1 x 4 1 x 5 1 x 6 x 7 x 8 x 9 x 10 x 11 0 1 11 17 % 17 13 45 ; 135 3
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na
STEREOMETRIA. Poziom podstawowy
STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola
Schemat oceniania zadań Arkusz M1
Schemat oceniania zadań Arkusz M1 Poprawne odpowiedzi do zadań zamkniętych Zadanie 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Poprawna odpowiedź C. B. C. PP C. C. FF PF A. AC AD B. Zadanie 13 Basia kupiła
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 00 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 00 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od. do 5. podane były
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU
UZGODNIONY SCHEMAT PUNKTOWANIA Próbny egzamin gimnazjalny z zakresu przedmiotów matematyczno-przyrodniczych
UZGODNIONY SCHEMAT PUNKTOWANIA Próbny egzamin gimnazjalny z zakresu przedmiotów matematyczno-przyrodniczych ZADANIA ZAMKNIĘTE Numer zadania odpowiedź poprawna 1 4 5 6 7 8 9 10 11 1 1 14 15 16 17 18 19
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
ETAP REJONOWY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/
WOJEWÓDZKIE KONKURSY RZEDMIOTOWE 08/09 GIMNAZJUM WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 08/09 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań inną
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:
Próbny egzamin z matematyki
Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Regionalnego Programu Operacyjnego Województwa Śląskiego na lata 2014-2020 Próbny egzamin z matematyki
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 04/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R CZERWIEC 0 Klucz punktowania zadań zamkniętych Nr zad. 3
Próbny egzamin maturalny z matematyki 2010
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki 00 Klucz punktowania do zadań zamkniętych oraz schemat oceniania do zadań
Ogólnopolski Próbny Egzamin Ósmoklasisty z OPERONEM Matematyka. Klucz punktowania
Matematyka Klucz punktowania Marzec 09 Zasady przyznawania. B pkt podanie poprawnej odpowiedzi. AD pkt podanie poprawnej odpowiedzi. C pkt podanie poprawnej odpowiedzi. C pkt podanie poprawnej odpowiedzi.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. Klucz odpowiedzi do zadań zamkniętych 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 3 4 6 7 8 9 0 3 4 6 7 8 9 0 D C D A A B D C C D B C A B B D B C A A Zadanie. (pkt) Rozwiąż
wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:
WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 8 stron (zadania 1. 2.).
PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY
5 KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY DATA: 30 MAJA 2017 R. GODZINA ROZPOCZĘCIA: 9:000 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 100 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1. 19.). 2. Arkusz zawiera 13 zadań zamkniętych i 6
MATURA Powtórka do matury z matematyki. Część VII: Planimetria ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.pl
MATURA 2012 Powtórka do matury z matematyki Część VII: Planimetria ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już siódmą z dziesięciu części materiałów powtórkowych do matury
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MTEMTYCZNY dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie, inne niż przewidziane
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 00 MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ 00 Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań
EGZAMIN GIMNAZJALNY 2010
entralna Komisja Egzaminacyjna w Warszawie EGZAMIN GIMNAZJALNY 2010 część matematyczno-przyrodnicza Klucz punktowania zadań (arkusz dla uczniów bez dysfunkcji i z dysleksją rozwojową) KWIEIEŃ 2010 Zadania
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_C) Czas pracy: 100 minut Czas pracy może być przedłużony zgodnie z przyznanym dostosowaniem. GRUDZIEŃ 2017
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
KONKURS Z MATEMATYKI
KONKURS Z MATEMATYKI ZESTAW POPRAWNYCH ODPOWIEDZI DO ARKUSZA - ETAP REJONOWY Numer zadania Poprawna odpowiedź Liczba punktów 1. C 1 2. D 1 3. P,F 2 4. D 1 5. C 1 6. B 1 7. D 1 8. A 1 9. C 1 10. B 1 11.
SEMESTRALNE BADANIE WYNIKÓW NAUCZANIA MATEMATYKI W KLASACH III. Kartoteka testu. Nr zad Czynność ucznia Kategoria celów
SEMESTRALNE BADANIE WYNIKÓW NAUCZANIA MATEMATYKI W KLASACH III Kartoteka testu Nr zad Czynność ucznia Kategoria celów Poziom wymagań Porównuje liczby wymierne i wskazuje prawidłową odpowiedź B P Oblicza
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2018 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY EGZAMIN MATURALNY
x Kryteria oceniania
Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę
EGZAMIN GIMNAZJALNY 2010
entralna Komisja Egzaminacyjna w Warszawie EGZAMIN GIMNAZJALNY 2010 -przyrodnicza Klucz punktowania ( 10 Zadanie 1. Obszar standardów Standard operowani (II.2) przetworzenie z ego Poprawna (1 p.) Zadanie
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) III. Modelowanie matematyczne. 2. Działania na liczbach naturalnych.
Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7
Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
EGZAMIN WSTĘPNY Z MATEMATYKI
Egzamin wstępny do I Społecznego Liceum Ogólnokształcącego BEDNARSKA Kod zdającego EGZAMIN WSTĘPNY Z MATEMATYKI 1. Przed sobą masz egzamin wstępny z matematyki, który składa się z dwóch części. Osoby,
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2018/2019 Etap II rejonowy
Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2018/2019 Etap II rejonowy W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 2016/2017
Wojewódzki Konkurs rzedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 016/017 rzykładowe rozwiązania zadań i schemat punktowania Etap szkolny rzy punktowaniu zadań otwartych