EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
|
|
- Marta Borkowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_1) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa
2 Zadanie 1. (0 1) II. Wykorzystanie i tworzenie informacji. 1. Odczytywanie i interpretowanie danych przedstawionych w różnej formie oraz ich przetwarzanie. Wymagania szczegółowe XIV. Zadania tekstowe. Uczeń: 1) czyta ze zrozumieniem tekst zawierający informacje liczbowe. XIII. Odczytywanie danych i elementy statystyki opisowej. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów, w tym także wykresów w układzie współrzędnych. A Zadanie 2. (0 1) I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci w działaniach trudniejszych pisemnie oraz wykorzystanie tych umiejętności w sytuacjach praktycznych. IV. Ułamki zwykłe i dziesiętne. Uczeń: 8) zapisuje ułamki dziesiętne skończone w postaci ułamków zwykłych. AD Zadanie 3. (0 1) II. Wykorzystanie i tworzenie informacji. 1. Odczytywanie i interpretowanie danych przedstawionych w różnej formie oraz ich przetwarzanie. XII. Obliczenia praktyczne. Uczeń: 3) wykonuje proste obliczenia zegarowe na godzinach, minutach i sekundach Strona 2 z 18
3 PP Zadanie 4. (0 1) III. Wykorzystanie i interpretowanie reprezentacji. 1. Używanie prostych, dobrze znanych obiektów matematycznych, interpretowanie pojęć matematycznych i operowanie obiektami matematycznymi. XI. Obliczenia w geometrii. Uczeń: 1) oblicza obwód wielokąta o danych długościach boków. C Zadanie 5. (0 1) III. Wykorzystanie i interpretowanie reprezentacji. 1. Używanie prostych, dobrze znanych obiektów matematycznych, interpretowanie pojęć matematycznych i operowanie obiektami matematycznymi. I. Potęgi o podstawach wymiernych. Uczeń: 2) mnoży i dzieli potęgi o wykładnikach całkowitych dodatnich. PP Zadanie 6. (0 1) III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie modelu matematycznego do prostej sytuacji oraz budowanie go w różnych kontekstach, także w kontekście praktycznym. Strona 3 z 18
4 XII. Obliczenia praktyczne. Uczeń: 9) w sytuacji praktycznej oblicza: drogę przy danej prędkości i czasie, prędkość przy danej drodze i czasie, czas przy danej drodze i prędkości oraz stosuje jednostki prędkości km/h i m/s. B Zadanie 7. (0 1) III. Wykorzystanie i interpretowanie reprezentacji. 1. Używanie prostych, dobrze znanych obiektów matematycznych, interpretowanie pojęć matematycznych i operowanie obiektami matematycznymi. XII. Wprowadzenie do kombinatoryki i rachunku prawdopodobieństwa. Uczeń: 2) przeprowadza proste doświadczenia losowe, polegające na rzucie monetą, rzucie sześcienną kostką do gry, rzucie kostką wielościenną losowaniu kuli spośród zestawu kul, analizuje je i oblicza prawdopodobieństwa zdarzeń w doświadczeniach losowych. PF Zadanie 8. (0 1) II. Wykorzystanie i tworzenie informacji. 2. Interpretowanie i tworzenie tekstów o charakterze matematycznym oraz graficzne przedstawianie danych. Wymagania szczegółowe VI. Elementy algebry. Uczeń: 1) korzysta z nieskomplikowanych wzorów, w których występują oznaczenia literowe, opisuje wzór słowami. III. Tworzenie wyrażeń algebraicznych z jedną i z wieloma zmiennymi. Uczeń: 2) oblicza wartości liczbowe wyrażeń algebraicznych. Strona 4 z 18
5 C Zadanie 9. (0 1) IV. Rozumowanie i argumentacja. 2. Dostrzeganie regularności, podobieństw oraz analogii i formułowanie wniosków na ich podstawie. VI. Elementy algebry. Uczeń: 1) korzysta z nieskomplikowanych wzorów, w których występują oznaczenia literowe, opisuje wzór słowami. BD Zadanie 10. (0 1) IV. Rozumowanie i argumentacja. 1. Przeprowadzanie prostego rozumowania, podawanie argumentów uzasadniających poprawność rozumowania, rozróżnianie dowodu od przykładu. XIV. Zadania tekstowe. Uczeń: 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody. NB Zadanie 11. (0 1) III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie modelu matematycznego do prostej sytuacji oraz budowanie go w różnych kontekstach, także w kontekście praktycznym. Strona 5 z 18
6 VIII. Własności figur geometrycznych na płaszczyźnie. Uczeń: 8) zna i stosuje w sytuacjach praktycznych twierdzenie Pitagorasa (bez twierdzenia odwrotnego). C Zadanie 12. (0 1) III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie modelu matematycznego do prostej sytuacji oraz budowanie go w różnych kontekstach, także w kontekście praktycznym. V. Obliczenia procentowe. Uczeń: 5) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym, również w przypadkach wielokrotnych podwyżek obniżek danej wielkości. B Zadanie 13. (0 1) II. Wykorzystanie i tworzenie informacji. 1. Odczytywanie i interpretowanie danych przedstawionych w różnej formie oraz ich przetwarzanie. Wymagania szczegółowe IX. Wielokąty, koła i okręgi. Uczeń: 3) stosuje twierdzenie o sumie kątów wewnętrznych trójkąta. VIII. Własności figur geometrycznych na płaszczyźnie. Uczeń: 5) zna i stosuje własności trójkątów równoramiennych (równość kątów przy podstawie). Strona 6 z 18
7 FP Zadanie 14. (0 1) I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci w działaniach trudniejszych pisemnie oraz wykorzystanie tych umiejętności w sytuacjach praktycznych. II. Pierwiastki. Uczeń: 2) szacuje wielkość danego pierwiastka kwadratowego sześciennego oraz wyrażenia arytmetycznego zawierającego pierwiastki. BC Zadanie 15. (0 1) III. Wykorzystanie i interpretowanie reprezentacji. 1. Używanie prostych, dobrze znanych obiektów matematycznych, interpretowanie pojęć matematycznych i operowanie obiektami matematycznymi. X. Oś liczbowa. Układ współrzędnych na płaszczyźnie. Uczeń: 4) znajduje środek odcinka, którego końce mają dane współrzędne (całkowite wymierne), oraz znajduje współrzędne drugiego końca odcinka, gdy dane są jeden koniec i środek. D Zadanie 16. (0 1) II. Wykorzystanie i tworzenie informacji. 1. Odczytywanie i interpretowanie danych przedstawionych w różnej formie oraz ich przetwarzanie. XIV. Zadania tekstowe. Uczeń: Strona 7 z 18
8 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody. FP Strona 8 z 18
9 Zadania otwarte UWAGA Za każde poprawne rozwiązanie inne niż przedstawione przyznajemy maksymalną liczbę punktów. Jeśli na jakimkolwiek etapie rozwiązania zadania popełniono jeden więcej błędów rachunkowych, ale zastosowane metody były poprawne, to obniżamy ocenę całego rozwiązania o 1 punkt. W pracy ucznia uprawnionego do dostosowanych kryteriów oceniania dopuszcza się: 1. lustrzane zapisywanie cyfr i liter (np. 6 9,...) 2. gubienie liter, cyfr, nawiasów 3. problemy z zapisywaniem przecinków w liczbach dziesiętnych 4. błędy w zapisie działań pisemnych (dopuszczalne drobne błędy rachunkowe) 5. trudności w zapisie liczb wielocyfrowych i liczb z dużą ilością zer 6. luki w zapisie obliczeń obliczenia pamięciowe 7. uproszczony zapis równania i przekształcenie go w pamięci; brak opisu niewiadomych 8. niekończenie wyrazów 9. problemy z zapisywaniem jednostek (np. C OC,...). 10. błędy w przepisywaniu 11. chaotyczny zapis operacji matematycznych 12. mylenie indeksów dolnych i górnych (np. P1 P1, m 2 m2,...). Strona 9 z 18
10 Zadanie 17. (0 2) IV. Rozumowanie i argumentacja. 3. Stosowanie strategii wynikającej z treści zadania, tworzenie strategii rozwiązania problemu, również w rozwiązaniach wieloetapowych oraz w takich, które wymagają umiejętności łączenia wiedzy z różnych działów matematyki XI. Geometria przestrzenna. Uczeń: 1) rozpoznaje graniastosłupy i ostrosłupy w tym proste i prawidłowe Przykładowy sposób rozwiązania Zauważamy, że prostopadłościan ma dwie kwadratowe ściany i cztery prostokątne. 3 cm 5 cm Ma on zatem 8 krawędzi o długości 5 cm i 4 krawędzie o długości 3 cm. Suma długości wszystkich krawędzi tego prostopadłościanu jest zatem równa = = 52 (cm). Odpowiedź: Suma długości wszystkich krawędzi prostopadłościanu jest równa 52 cm. 5 cm 2 pkt rozwiązanie pełne poprawne wyznaczenie sumy długości wszystkich krawędzi prostopadłościanu (52 cm). 1 pkt ustalenie liczby ścian kwadratowych i liczby ścian prostokątnych prostopadłościanu ustalenie liczby krawędzi o długości 5 cm krawędzi o długości 3 cm. 0 pkt rozwiązanie, w którym nie dokonano istotnego postępu. Zadanie 18. (0 2) IV. Rozumowanie i argumentacja. 3. Stosowanie strategii wynikającej z treści zadania, tworzenie strategii rozwiązania problemu, również w rozwiązaniach wieloetapowych oraz w takich, które wymagają umiejętności łączenia wiedzy z różnych działów matematyki Klasy IV VI XIV. Zadania tekstowe. Uczeń: 6) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania. Strona 10 z 18
11 Przykładowy sposób rozwiązania zadania Jeśli Ania wzięłaby tylko jeden kamień z drugiego stosu, to Jarek w kolejnym ruchu może wziąć: 1 kamień z drugiego stosu i zostanie po 1 kamieniu na obu stosach > Ania musi wziąć 1 kamień z dowolnego stosu > ostatni kamień zostaje dla Jarka i to on wygrywa, 1 kamień z pierwszego stosu > Ania bierze dwa kamienie z drugiego stosu i to ona wygrywa, 2 kamienie z drugiego stosu > Ania bierze kamień z pierwszego stosu i to ona wygrywa. Jeśli Ania wzięłaby jedyny kamień z pierwszego stosu, to Jarek w kolejnym ruchu może wziąć: 3 kamienie z drugiego stosu i to on wygrywa, 2 kamienie z drugiego stosu > Ania bierze ostatni kamień z drugiego stosu i to ona wygrywa, 1 kamień z drugiego stosu > Ania bierze 2 kamienie z drugiego stosu i to ona wygrywa, 1 kamień z drugiego stosu > Ania bierze 1 kamień z drugiego stosu > ostatni kamień zostaje dla Jarka i to on wygrywa. W każdym z powyższych przypadków wygrana Ani jest uzależniona od ruchu Jarka. Jeśli Ania wzięłaby trzy kamienie z drugiego stosu, to Jarek weźmie kamień z pierwszego stosu i to on wygrywa. Pozostaje jedna możliwość Ania musi wziąć 2 kamienie z drugiego stosu, po czym Jarek 1 kamień z dowolnego ze stosów. Wówczas ostatni kamień zostanie dla Ani i to ona wygrywa. Tylko w tym przypadku wygrana Ani nie jest uzależniona od ruchu Jarka. 2 pkt rozwiązanie pełne przedstawienie pełnego uzasadnienia strategii wygrywającej Ani przy wzięciu 2 kamieni z drugiego stosu. 1 pkt przedstawienie przebiegu gry przynamniej dla dwóch przypadków, w których Ania w pierwszym ruchu nie bierze dwóch kamieni z drugiego stosu przedstawienie przebiegu gry, w którym Ania bierze dwa kamienie z drugiego stosu, Jarek jeden z drugiego/pierwszego stosu, i na tym kończy się opis. 0 pkt rozwiązanie, w którym nie dokonano istotnego postępu. Zadanie 19. (0 2) III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie modelu matematycznego do prostej sytuacji oraz budowanie go w różnych kontekstach, także w kontekście praktycznym. XIV. Zadania tekstowe. Uczeń: Strona 11 z 18
12 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody. Przykładowe sposoby rozwiązania Pierwszy sposób Wojtek korzystał z gratisowego wejścia w następujących dniach marca: 4, 8, 12, 16, 20, 24 i 28, czyli 7 razy. Wojtek zapłacił za 31 7 = 24 wejścia = 216 Za korzystanie z pływalni przez cały marzec Wojtek zapłacił 216 zł. Drugi sposób Wojtek korzystał z gratisowego wejścia w następujących dniach marca: 4, 8, 12, 16, 20, 24 i 28, czyli 7 razy. Bez ulg promocyjnych Wojtek zapłaciłby 31 9 = 279 złotych. Zniżki promocyjne, to kwota 7 9 = 63 złote = 216 Za korzystanie z pływalni przez cały marzec Wojtek zapłacił 216 zł. Trzeci sposób W cyklu 4 kolejnych dni Wojtek płacił po 9 zł za trzy wejścia na basen, a czwarte miał darmowe. 31 : 4 = 7 reszta 3 Wojtek zapłacił za = 24 wejścia = 216 Za korzystanie z pływalni przez cały marzec Wojtek zapłacił 216 zł. Czwarty sposób 1 marca 9 zł 2 marca 9 zł 3 marca 9 zł 4 marca 0 zł 5 marca 9 zł 6 marca 9 zł 7 marca 9 zł 8 marca 0 zł 9 marca 9 zł 10 marca 9 zł 11 marca 9 zł 12 marca 0 zł 13 marca 9 zł 14 marca 9 zł Strona 12 z 18
13 15 marca 9 zł 16 marca 0 zł 17 marca 9 zł 18 marca 9 zł 19 marca 9 zł 20 marca 0 zł 21 marca 9 zł 22 marca 9 zł 23 marca 9 zł 24 marca 0 zł 25 marca 9 zł 26 marca 9 zł 27 marca 9 zł 28 marca 0 zł 29 marca 9 zł 30 marca 9 zł 31 marca 9 zł 24 9 = 216 Za korzystanie z pływalni przez cały marzec Wojtek zapłacił 216 zł. 2 pkt rozwiązanie pełne obliczenie kosztu korzystania z pływalni przez cały marzec (216 zł). 1 pkt poprawna metoda obliczenia liczby płatnych wejść na pływalnię w marcu poprawna metoda obliczenia kwoty zniżki poprawna metoda obliczenia kosztu korzystania z pływalni przez cały marzec. 0 pkt rozwiązanie, w którym nie dokonano istotnego postępu. Zadanie 20. (0 3) IV. Rozumowanie i argumentacja. 2. Dostrzeganie regularności, podobieństw oraz analogii i formułowanie wniosków na ich podstawie. Klasy IV VI XIV. Zadania tekstowe. Uczeń: 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania np. poprzez szacowanie, sprawdzanie wszystkich warunków zadania, ocenianie rzędu wielkości otrzymanego wyniku. Strona 13 z 18
14 Przykładowe sposoby rozwiązania Pierwszy sposób Rozważamy liczbę opakowań z 3 piłkami, a następnie liczymy liczbę opakowań z 4 piłkami tak, aby łączna liczba piłek była równa 25. Liczba opakowań po 3 sztuki Liczba piłek w opakowaniach po 3 sztuki Liczba piłek w opakowaniach po 4 sztuki Liczba opakowań po 4 sztuki Akceptacja rozwiązania , , , , , , Trener mógł kupić 3 opakowania po 3 piłki w każdym i 4 opakowania po 4 piłki w każdym albo 7 opakowań po 3 piłki w każdym i jedno opakowanie z 4 piłkami. Drugi sposób Wprowadzamy oznaczenia: m liczba opakowań z 3 piłkami d liczba opakowań z 4 piłkami Budujemy równanie: 3m + 4d = 25 Jeśli m = 0, to d = 6,25. Jeśli m = 1, to d = 5,5. Jeśli m = 2, to d = 4,75. Jeśli m = 3, to d = 4. Jeśli m = 4, to d = 3,25. Jeśli m = 5, to d = 2,5. Jeśli m = 6, to d = 1,75. Jeśli m = 7, to d = 1. Jeśli m = 8, to d = 1 3. Trener mógł kupić 3 opakowania po 3 piłki w każdym i 4 opakowania po 4 piłki w każdym albo 7 opakowań po 3 piłki w każdym i jedno opakowanie z 4 piłkami. Trzeci sposób Zauważamy, że 25 to liczba nieparzysta. Aby kupić łącznie nieparzystą liczbę piłek, liczba piłek w małych opakowaniach liczba piłek w dużych opakowaniach musi być nieparzysta. Jednak skoro każde duże opakowanie zawiera 4 piłki, to ich liczba będzie zawsze parzysta, czyli liczba piłek w małych opakowaniach musi być nieparzysta. Strona 14 z 18
15 Zauważamy, że gdyby trener kupił 0, 2, 4 jakąś inną parzystą liczbę małych opakowań z piłkami, to łączna liczba znajdujących się w nich piłek byłaby parzysta a ma być nieparzysta. Czyli wystarczy sprawdzić nieparzyste liczby małych opakowań. 1 małe opakowanie to 3 piłki, wtedy piłek w dużych opakowaniach musi być 22, a to jest liczba niepodzielna przez 4, 3 małe opakowania to 9 piłek, wtedy pozostałe 16 piłek mieści się w 4 dużych opakowaniach, 5 małych opakowań to 15 piłek, wtedy piłek w dużych opakowaniach musi być 10, a to jest liczba niepodzielna przez 4, 7 małych opakowań to 21 piłek, wtedy pozostałe 4 piłki mieszczą się w 1 dużym opakowaniu. Dalej już nie trzeba sprawdzać, bo 9 małych opakowań to 27 piłek, a to już jest więcej niż 25. Trener mógł kupić 3 opakowania po 3 piłki w każdym i 4 opakowania po 4 piłki w każdym albo 7 opakowań po 3 piłki w każdym i jedno opakowanie z 4 piłkami. 3 pkt rozwiązanie pełne podanie dwóch możliwości. 2 pkt podanie jednego możliwości. 1 pkt zapisanie poprawnego równania, z 2 niewiadomi, opisującego związki między wielkościami podanymi w zadaniu (nawet bez oznaczenia niewiadomych użytych w równaniach) poprawny sposób poszukiwania rozwiązań (przynajmniej 3 próby) bez wskazania rozwiązania. 0 pkt rozwiązanie, w którym nie dokonano istotnego postępu. Zadanie 21. (0 3) IV. Rozumowanie i argumentacja. 3. Stosowanie strategii wynikającej z treści zadania, tworzenie strategii rozwiązania problemu, również w rozwiązaniach wieloetapowych oraz w takich, które wymagają umiejętności łączenia wiedzy z różnych działów matematyki. Klasy IV VI XI. Obliczenia w geometrii. Uczeń: 2) oblicza pola: trójkąta, kwadratu, prostokąta, rombu, równoległoboku, trapezu, przedstawionych na rysunku oraz w sytuacjach praktycznych, w tym także dla danych wymagających zamiany jednostek i w sytuacjach z nietypowymi wymiarami, na przykład pole trójkąta o boku 1 km i wysokości 1 mm. Strona 15 z 18
16 Przykładowe sposoby rozwiązania Pierwszy sposób 8 : 2 = 4 Szara widoczna część paska jest prostokątem o wymiarach 2 cm na 4 cm. Biała część jest trapezem o wysokości 2 cm i podstawach 12 4 = 8 centymetrów oraz 8 2 = 6 centymetrów Odpowiedź: Pole widocznej białej części paska jest równe 14 cm 2. Drugi sposób 8 : 2 = 4 Szara widoczna część paska jest prostokątem o wymiarach 2 cm na 4 cm. Biała część składa się z prostokąta o jednym boku długości 2 cm i drugim długości = 6 centymetrów oraz trójkąta prostokątnego równoramiennego o przyprostokątnych długości 2 cm Odpowiedź: Pole widocznej białej części paska jest równe 14 cm 2. 3 pkt rozwiązanie pełne obliczenie pola widocznej białej części paska (14 cm 2 ). 2 pkt poprawny sposób obliczenie pola widocznej białej części paska. 1 pkt poprawny sposób obliczenia wymiarów białego trapezu. 0 pkt rozwiązanie, w którym nie dokonano istotnego postępu. Zadanie 22. (0 4) IV. Rozumowanie i argumentacja. 3. Stosowanie strategii wynikającej z treści zadania, tworzenie strategii rozwiązania problemu, również w rozwiązaniach wieloetapowych oraz w takich, które wymagają umiejętności łączenia wiedzy z różnych działów matematyki. VI. Równania z jedną niewiadomą. Uczeń: 4) rozwiązuje zadania tekstowe za pomocą równania pierwszego stopnia z jedną niewiadomą, w tym także z obliczeniami procentowymi. Przykładowe sposoby rozwiązania Pierwszy sposób W wypożyczalni Gierka płaci się po 50 groszy więcej za każdy dzień wypożyczenia powyżej trzeciego, Strona 16 z 18
17 a w wypożyczalni Planszówka płaci się o 4 zł wyższą opłatę stałą za trzy początkowe dni wypożyczenia. Aby koszty były jednakowe, trzeba znaleźć taką liczbę dodatkowych dni (powyżej trzeciego), dla której te różnice się zrównoważą. 4 : 0,5 = 8 (dni) = 11 Odpowiedź: Przy wypożyczeniu gry na 11 dni koszty w obu wypożyczalniach są jednakowe. Drugi sposób Oznaczmy: x liczba dni powyżej trzeciego 8 + 2,5x koszt w wypożyczalni Gierka na (x + 3) dni x koszt w wypożyczalni Planszówka (x + 3) dni 8 + 2,5x = x 4 = 0,5x x = 8 x + 3 = 11 Odpowiedź: Przy wypożyczeniu gry na 11 dni koszty w obu wypożyczalniach są jednakowe. Trzeci sposób Wypożyczalnia Wypożyczalnia Liczba dni Liczba Gierka Planszówka powyżej dni Łączny koszt Łączny koszt trzeciego wypożyczenia wypożyczenia Różnica kosztów ,5 = 20, = ,5 = 1,5 Gierka tańsza o 1,50 zł ,5 = = = 1 Gierka tańsza o 1 zł ,5 = 25, = ,5 = 0,5 Gierka tańsza o 0,50 zł ,5 = = 28 Równy koszt ,5 = 30, = 30 30,5 30 = 0,5 Planszówka tańsza o 0,50 zł Tylko dla 11 dni koszt jest równy, bo kiedy zwiększamy liczbę dni, koszt wypożyczenia w wypożyczalni Gierka rośnie szybciej niż w Planszówka. Odpowiedź: Przy wypożyczeniu gry na 11 dni koszty w obu wypożyczalniach są jednakowe. Strona 17 z 18
18 4 pkt rozwiązanie pełne obliczenie liczby dni wypożyczenia gry przy jednakowych kosztach w obu wypożyczalniach (11). 3 pkt poprawny sposób obliczenia liczby dni wypożyczenia gry przy jednakowych kosztach w obu wypożyczalniach z uwzględnieniem 3 dni objętych stałą opłatą. 2 pkt poprawny sposób obliczenia liczby dni wypożyczenia gry przy jednakowych kosztach w obu wypożyczalniach bez uwzględnienia 3 dni objętych stałą opłatą zapisanie poprawnego równania opisującego związki między wielkościami podanymi w zadaniu (nawet bez oznaczenia niewiadomej) poprawny sposób poszukiwania rozwiązania (przynajmniej 2 próby) bez wskazania rozwiązania. 1 pkt ustalenie różnicy w opłacie stałej oraz różnicy w kosztach wypożyczenia za każdy dzień (powyżej 3 dni) w obu wypożyczalniach zapisanie za pomocą wyrażenia algebraicznego kosztów wypożyczenia gry w co najmniej jednej wypożyczalni poprawny sposób obliczenia kosztów wypożyczenia gry w obu wypożyczalniach przy tej samej liczbie dni. 0 pkt rozwiązanie, w którym nie dokonano istotnego postępu. Strona 18 z 18
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_Q) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) II.
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_8) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 2) II. Wykorzystanie
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_C) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) II. Wykorzystanie
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-Q00-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) Podstawa programowa
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-800 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 3) Podstawa programowa
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Zasady oceniania rozwiązań zadań z arkusza egzaminacyjnego OMAP-700-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0
PRÓBNY EGZAMIN ÓSMOKLASISTY Z NOWĄ ERĄ 2018/2019 MATEMATYKA
PRÓBNY EGZAMIN ÓSMOKLASISTY Z NOWĄ ERĄ 2018/2019 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Zasady oceniania rozwiązań zadań z arkusza egzaminacyjnego OMAP-500-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
MATEMATYKA. klasa VII. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2017-09-01 MATEMATYKA klasa VII Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach
MATERIAŁ ĆWICZENIOWY DLA UCZNIÓW I NAUCZYCIELI
EGZAMIN ÓSMOKLASISTY MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ MATERIAŁ ĆWICZENIOWY DLA UCZNIÓW I NAUCZYCIELI MARZEC 2019 Zestaw zadań został opracowany przez Okręgową Komisję Egzaminacyjną w Krakowie
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z próbnego arkusza egzaminacyjnego OMAP-100-1812 GRUDZIEŃ 2018 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Podstawa
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie
MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA
2018-09-01 MATEMATYKA klasa VIII Podstawa programowa SZKOŁA BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach trudniejszych
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT 1. LICZBY I DZIAŁANIA Liczby. Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-MX4 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji.
Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)
Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o
WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT
WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA System rzymski. Powtórzenie i utrwalenie umiejętności z zakresu podstawy
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) III. Modelowanie matematyczne. 2. Działania na liczbach naturalnych.
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
LICZBA GODZIN TEMAT LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (11 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ WYMAGANIA SZCZEGÓŁOWE
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
TEMAT ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ LICZBA GODZIN LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (12 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 014/015 ZĘŚĆ. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-M1X, GM-M, GM-M4, GM-M5, GM-M1L, GM-M1U KWIEIEŃ 015 Zadanie 1. (0 1) I. Wykorzystanie
MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2016-09-01 MATEMATYKA KLASA VI Podstawa programowa przedmiotu SZKOŁY BENEDYKTA I. Sprawność rachunkowa. Cele kształcenia wymagania ogólne Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas
22 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb
I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY PODSTAWOWEJ
I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY 1. W zakresie sprawności rachunkowej uczeń: wykonuje proste działania pamięciowe na liczbach naturalnych, zna i stosuje algorytmy działań pisemnych
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
Wymagania na poszczególne oceny szkolne KLASA VI
Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
Wymagania na poszczególne oceny szkolne Klasa VI - matematyka
Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Dział 1. Działania na ułamkach zwykłych i dziesiętnych wykonuje działania na ułamkach dziesiętnych z pomocą kalkulatora; mnoży ułamki zwykłe
Rozkład materiału nauczania. Klasa 5
1 Rozkład materiału nauczania. Klasa 5 Temat 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek pamięciowy Dodawanie i mnożenie LICZBY NATURALNE (20 h) 1 2. 3 ) wykonuje proste
MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2016-09-01 MATEMATYKA KLASA IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,
Wymagania z matematyki dla klasy VII na poszczególne oceny
Wymagania z matematyki dla klasy VII na poszczególne oceny Treści nauczania w klasie VII na podstawie podstawy programowej I. Potęgi o podstawach wymiernych. 1) zapisuje iloczyn jednakowych czynników w
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII
Wymagania na poszczególne oceny szkolne w klasie V
Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
MATEMATYKA. klasa IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2017-09-01 MATEMATYKA klasa IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawności rachunkowa. 1) Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
Wymagania edukacyjne z matematyki w klasie piątej
Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA
2018-09-01 MATEMATYKA klasa V Podstawa programowa SZKOŁA BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawności rachunkowa. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach trudniejszych
MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć:
MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: dodawać, odejmować, mnożyć i dzielić liczby naturalne, ułamki zwykłe oraz ułamki dziesiętne, obliczać wartości wyrażeń arytmetycznych i algebraicznych
MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBY NATURALNE I UŁAMKI 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
Treści nauczania. Klasa 6
. Klasa 6 2. Działania na liczbach naturalnych Obliczenia pamięciowe i pisemne Podzielność liczb naturalnych przez 2, 3, 5, 9, 10, 25*, 100 Średnia arytmetyczna* wykonuje działania na liczbach naturalnych
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:
Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ
PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ Na ocenę niedostateczną: nie spełnia kryteriów oceny dopuszczającej. 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym 1) odczytuje i
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4
KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ
KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ KOD UCZNIA PESEL Nr zad. MATEMATYKA Odpowiedzi 1 AC. AD. BC. BD. 2 AC. AD. BC. BD. 3 A. B. C. D. 4 AC. AD. BC. BD. 5 A. B. C. D. 6 PP. PF. FP. FF. 7 A. B. C. D. 8 PP. PF.
Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej. z przedmiotu matematyka
Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej z przedmiotu matematyka 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń 1) odczytuje i zapisuje liczby naturalne
Wymagania edukacyjne z matematyki w klasie 5
Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE
Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki
MIEJSKI OŚRODEK DOSKONALENIA NAUCZYCIELI w KONINIE. ul. Sosnowa 6, Konin tel/fax lub
MIEJSKI OŚRODEK DOSKONALENIA NAUCZYCIELI w KONINIE ul. Sosnowa 6, 62-510 Konin tel/fax. 632433352 lub 632112756 sekretariat@modn.konin.pl www.modn.konin.pl CENTRUM DOSKONALENIA NAUCZYCIELI W KONINIE ul.
WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie 2. O ile więcej, o ile mniej 3. Rachunki pamięciowe mnożenie i dzielenie 4. Mnożenie i dzielenie (cd.) 5. Ile razy więcej, ile
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..
Wymagania na poszczególne oceny szkolne KLASA V
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania z matematyki dla klasy VIII na poszczególne oceny
Wymagania z matematyki dla klasy VIII na poszczególne oceny Treści nauczania w klasie VIII na podstawie podstawy programowej I Obliczenia procentowe. 1) stosuje obliczenia procentowe do w kontekście praktycznym,
TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe
Wymagania programowe z matematyki w klasie V.
Wymagania programowe z matematyki w klasie V. I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: zapisuje i odczytuje liczby naturalne wielocyfrowe; interpretuje liczby naturalne na osi liczbowej;
PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot
KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
Ułamki i działania 20 h
Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie
Próbny egzamin z matematyki
Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Regionalnego Programu Operacyjnego Województwa Śląskiego na lata 2014-2020 Próbny egzamin z matematyki
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
Wymagania edukacyjne z matematyki w Szkole Podstawowej nr 16 w Zespole Szkolno-Przedszkolnym nr 1 w Gliwicach
Wymagania edukacyjne z matematyki w Szkole Podstawowej nr 16 w Zespole Szkolno-Przedszkolnym nr 1 w Gliwicach Wymagania edukacyjne dla ucznia klasy IV: wykonuje rachunki pamięciowe na liczbach naturalnych;
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy
Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE DLA KLASY IV TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne w dziesiątkowym
Wymagania edukacyjne klasa druga.
Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie
WYMAGANIA EGZAMINACYJNE DLA KLASY V
TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do
Wyniki procentowe poszczególnych uczniów
K la s a IA Próbny egzamin gimnazjalny Wyniki procentowe poszczególnych uczniów 0% 80% 70% 60% 50% 40% 30% Polska (41%) % % 0% nr ucznia 1 2 3 4 5 6 7 8 16 18 1 21 22 24 25 26 27 28 wynik w % 45 65 42