BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012
|
|
- Amelia Makowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ GRUDZIEŃ 2011
2 Zadania zamknięte Numer Poprawna zadania odpowiedź Punktacja Zasady przyznawania punktów 1. D 0-1 poprawna odpowiedź 1 p. 2. D 0-1 błędna odpowiedź brak odpowiedzi 0 p. 3. C C B D D P P P F P P C D D D F P C B D T, B B 0-1 2
3 Uwaga: Zadania otwarte Za każdy z występujących poziomów, począwszy od P 1, przyznajemy po 1 punkcie. Zadanie 21. (0-3) Przykładowe sposoby rozwiązań I sposób ułożenie układu równań x liczba pokoi dwuosobowych y liczba pokoi trzyosobowych 2x liczba dziewcząt 3y liczba chłopców Otrzymujemy układ równań: x y 15 2x 3y 38 Rozwiązując ten układ równań metodą podstawiania przeciwnych współczynników otrzymamy: x = 7, y = 8 zatem: 2x = 14, 3y = 24 Odpowiedź: W wycieczce uczestniczyło 14 dziewcząt i 24 chłopców. x liczba dziewcząt y liczba chłopców x 2 liczba pokoi dwuosobowych y 3 liczba pokoi trzyosobowych Otrzymujemy układ równań: x y 38 x 2 y 3 15 Po rozwiązaniu układu równań otrzymamy: x = 14, y = 24 II sposób ułożenie równania z jedną niewiadomą x liczba pokoi dwuosobowych 15 x liczba pokoi dwuosobowych 2x liczba dziewcząt 3(15 x) liczba chłopców 2x 3(15 x) 2x 45 3x x 7 x
4 2x = 14 3(15 x) = 24 Odpowiedź: W wycieczce uczestniczyło 14 dziewcząt i 24 chłopców. III sposób metoda prób i błędów Uczeń zakłada, że liczba pokoi dwuosobowych wynosi 1, wówczas jest 14 pokoi trzyosobowych. Sprawdza, ile osób mieszczą te pokoje za dużo, potem kolejno skokami sprawdza inne liczby pokoi za dużo za dużo za dużo zgadza się Uczeń sprawdza, czy są jeszcze inne możliwości: za mało za mało za mało Uczeń zauważa, że im więcej pokoi dwuosobowych, tym mniej trzyosobowych i tym mniej osób łącznie w tych pokojach się mieści. Czyli nie ma już innej możliwości niż 7 pokoi dwuosobowych i 8 trzyosobowych. 7 2 = = 24 Odpowiedź: W wycieczce uczestniczyło 14 dziewcząt i 24 chłopców. Poziom wykonania P 6 pełne rozwiązanie 3 punkty uzyskanie poprawną metodą odpowiedzi: 14 dziewcząt i 24 chłopców P 4 zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne 2 punkty ułożenie równania z jedną niewiadomą układu równań z dwiema niewiadomymi wyrażenie jednej niewiadomej jako funkcji drugiej dokonanie pełnego przeglądu możliwości w metodzie prób i błędów P 1 dokonano niewielkiego, ale koniecznego postępu na drodze do całkowitego rozwiązania 1 punkt zauważenie zależności między liczbą i rodzajem pokoi a liczbą dziewcząt i liczbą chłopców podstawienie i sprawdzenie warunków zadania dla co najmniej dwóch par liczb oznaczających liczbę pokoi (metoda prób i błędów) P 0 rozwiązanie niestanowiące postępu 0 punktów rozwiązanie błędne brak rozwiązania 4
5 Zadanie 22. (0-3) Przykładowy sposób rozwiązania D x P C A 48 B Korzystając z definicji dwusiecznej kąta, mamy: BAP = DAP = 24 oraz ABP = CBP = α Korzystając z własności miar kątów w równoległoboku, mamy: α = 180, stąd 2α = 132, czyli α = 66 Korzystając z twierdzenia o sumie miar kątów trójkąta, mamy: APB = 180 ( ) = = 90. Odpowiedź: Miara kąta APB jest równa 90. Poziom wykonania P 6 pełne rozwiązanie 3 punkty obliczenie miary kąta APB (90 ) P 4 zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne 2 punkty wykorzystanie faktu, że suma miar kątów przy jednym boku równoległoboku wynosi 180 P 2 dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane 1 punkt wykorzystanie własności dwusiecznej kąta, np. odpowiednie oznaczenie kątów na rysunku (24, α) opis słowny P 0 rozwiązanie niestanowiące postępu 0 punktów rozwiązanie błędne brak rozwiązania Zadanie 23. (0-4) Przykładowy sposób rozwiązania Bryła składa się z graniastosłupa prawidłowego czworokątnego i ostrosłupa prawidłowego czworokątnego. Objętość bryły V jest równa sumie objętości graniastosłupa V g i ostrosłupa V o. V = V g + V o Objętość graniastosłupa prawidłowego czworokątnego jest równa: V g = = 1280 (cm 3 ) Objętość ostrosłupa prawidłowego czworokątnego jest równa: V o = = 320 (cm 3 ) Objętość całej bryły: V = = 1600 (cm 3 ) Odpowiedź: Objętość bryły jest równa 1600 cm 3. 5
6 Poziom wykonania P 6 P 5 P 4 P 2 P 0 pełne rozwiązanie 4 punkty obliczenie objętości bryły (1600 cm 3 ) zasadnicze trudności zadania zostały pokonane bezbłędnie, ale dalsza część rozwiązania zawiera usterki (błędy rachunkowe, niedokonanie wyboru właściwych rozwiązań itp.) 3 punkty obliczenie objętości całej bryły (przy zastosowaniu poprawnej metody obliczania objętości graniastosłupa i ostrosłupa), ale zostały popełnione błędy rachunkowe w obliczeniach w zapisie jednostek zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne 2 punkty zauważenie, że bryłę można podzielić na dwie bryły: graniastosłup prawidłowy czworokątny i ostrosłup prawidłowy czworokątny, poprawne obliczenie objętości tych brył (1280 cm 3, 320 cm 3 ) dokonano istotnego postępu, ale zasadnicze trudności zdania nie zostały pokonane na drodze do całkowitego rozwiązania 1 punkt zauważenie, że bryłę można podzielić na dwie bryły, rozpoznanie, że jedna z nich jest graniastosłupem prawidłowym czworokątnym i obliczenie jego objętości (1280 cm 3 ), ale została zastosowana niepoprawna metoda obliczania objętości drugiej bryły zauważenie, że bryłę można podzielić na dwie bryły, rozpoznanie, że jedna z nich jest ostrosłupem prawidłowym czworokątnym i obliczenie jego objętości (320 cm 3 ), ale została zastosowana niepoprawna metoda obliczania objętości drugiej bryły zauważenie, że bryłę można podzielić na dwie bryły, zastosowanie poprawnej metody obliczania objętości każdej z brył rozwiązanie niestanowiące postępu 0 punktów rozwiązanie błędne brak rozwiązania 6
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ PAŹDZIERNIK 2011 czas (w procentach) Zadanie 1. Do przygotowania
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 011/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA KLUCZ ODPOWIEDZI I SCHEMAT OCENIANIA ZADAŃ ARKUSZ GM-M7-1 KWIECIEŃ 01 Liczba punktów
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ GRUDZIEŃ 2011 Liczba punktów za zadania
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 011/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA KLUCZ ODPOWIEDZI I SCHEMAT OCENIANIA ZADAŃ ARKUSZ GM-M1-1 KWIECIEŃ 01 Zadania zamknięte
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 01/013 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ ARKUSZ GM-M1-15 LISTOPAD 01 Liczba punktów
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY UNKTOWANIA GM-M1-132 KWIECIEŃ 2013 Liczba punktów za zadania zamknięte i otwarte: 29
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ ARKUSZ GM-M7-125 LISTOPAD 2012 Liczba
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 01/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA GM-M7-1 KWIECIEŃ 01 Liczba punktów za zadania zamknięte i otwarte: 9 Zadania
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2016 Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ GM-M7-142 KWIECIEŃ 2014 Liczba punktów za zadania zamknięte i otwarte:
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ GM-M1-142 KWIECIEŃ 2014 Liczba punktów za zadania zamknięte i otwarte:
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 014/015 ZĘŚĆ. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-M1X, GM-M, GM-M4, GM-M5, GM-M1L, GM-M1U KWIEIEŃ 015 Zadanie 1. (0 1) I. Wykorzystanie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-MX4 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie
MATEMATYKA EGZAMIN STANDARDOWY Wymagania konkursowe 1. Założenia ogólne
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Załącznik nr 8 do Regulaminu MATEMATYKA EGZAMIN STANDARDOWY Wymagania konkursowe 1. Założenia ogólne W ramach pracy konkursowej
ETAP III wojewódzki 16 marca 2019 r.
oraz klas trzecich oddziałów gimnazjalnych prowadzonych w szkołach innego typu Liczba punktów możliwych do uzyskania: 40 ETAP III wojewódzki 16 marca 2019 r. Zasady ogólne: 1. Za każde poprawne rozwiązanie
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na
Zadania zamknięte. Numer zadania
Liczba punktów za zadania zamknięte i otwarte: 31 Zadania zamknięte Zasady przyznawania punktów: za każdą poprawną odpowiedź 1 punkt za błędną odpowiedź brak odpowiedzi 0 punktów Numer zadania Poprawna
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i
ZADANIA OTWARTE. Uwaga! Każde poprawne, inne niż przykładowe, rozwiązanie powinno być punktowane maksymalną liczbą punktów.
WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 05/06 GIMNAZJUM Wojewódzki Konkurs Matematyczny SCHEMAT PUNKTOWANIA ZADANIA ZAMKNIĘTE Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Zad. 5 6 7 9 0 5 6 7 Odp. A B
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 03/04 Przykładowe rozwiązania zadań i schemat punktowania Etap szkolny Przy punktowaniu zadań otwartych
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKIE KONKURSY RZEDMIOTOWE 018/019 SZKOŁA ODSTAWOWA WOJEWÓDZKI KONKURS MATEMATYZNY DLA UZNIÓW SZKOŁY ODSTAWOWEJ W ROKU SZKOLNYM 018/019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) III. Modelowanie matematyczne. 2. Działania na liczbach naturalnych.
Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny. Przykładowe rozwiązania i propozycja punktacji rozwiązań
Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny Przykładowe rozwiązania i propozycja punktacji rozwiązań Ustalenia do punktowania zadań otwartych: 1. Jeśli uczeń przedstawił obok prawidłowej
Materiały diagnostyczne z matematyki poziom podstawowy
Materiały diagnostyczne z matematyki poziom podstawowy czerwiec 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Materiały diagnostyczne przygotowała Agata Siwik we współpracy z nauczycielami
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. Klucz odpowiedzi do zadań zamkniętych 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17
Matura próbna 2014 z matematyki-poziom podstawowy
Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
Matematyka na egzaminie gimnazjalnym od Katowice Bielsko-Biała, grudzień 2011
Matematyka na egzaminie gimnazjalnym od 2012 Katowice Bielsko-Biała, grudzień 2011 Program spotkania Zestaw zadań z matematyki Przykłady zadań Punktowanie rozwiązań Komunikowanie wyników 2 Matematyka Wymagania
Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
Matematyka test dla uczniów klas drugich
Matematyka test dla uczniów klas drugich gimnazjów w roku szkolnym 011/01 Etap międzyszkolny Schemat punktowania (do uzyskania maksymalnie: 1) UWAGI OGÓLNE: 1) Za każde prawidłowo rozwiązane zadanie dowolną
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z
KLUCZ ODPOWIEDZI POPRAWNA ODPOWIEDŹ 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D
Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH NR ZADANIA POPRAWNA ODPOWIEDŹ D C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 0 C B A 3 A 4 B 5 D 6 B 7 C 8 A 9 B 0 D Zadanie ( pkt) Okręgowa
w najprostszych przypadkach, np. dla trójkątów równobocznych
MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu
UZGODNIONY SCHEMAT PUNKTOWANIA Próbny egzamin gimnazjalny z zakresu przedmiotów matematyczno-przyrodniczych
UZGODNIONY SCHEMAT PUNKTOWANIA Próbny egzamin gimnazjalny z zakresu przedmiotów matematyczno-przyrodniczych ZADANIA ZAMKNIĘTE Numer zadania odpowiedź poprawna 1 4 5 6 7 8 9 10 11 1 1 14 15 16 17 18 19
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH
OCENIANIE ARKUSZA POZIOM PODSTAWOWY
Numer zadania.. Etapy rozwiązania zadania OCENIANIE ARKUSZA POZIOM PODSTAWOWY Zapisanie ceny wycieczki po podwyżce, np. x + 5% x, gdzie x oznacza pierwotną cenę wycieczki. Liczba punktów. Zapisanie równania:
Małopolski Konkurs Matematyczny r. etap wojewódzki A B C D
SCHEMAT PUNKTOWANIA ZADAŃ Z KARTY ODPOWIEDZI Numer zadania Liczba punktów za zadanie 1 1 x 1 x Miejsce na odpowiedź ucznia A B C D 3 1 x 4 1 x 5 1 x 6 x 7 x 8 x 9 x 10 x 11 0 1 11 17 % 17 13 45 ; 135 3
ZESTAW POPRAWNYCH ODPOWIEDZI DO ARKUSZA - ETAP WOJEWÓDZKI
Konkursy w województwie podkarpackim w roku szkolnym 202/203 ZESTAW POPRAWNYCH ODPOWIEDZI Numer zadania Zadania otwarte schemat oceniania: DO ARKUSZA - ETAP WOJEWÓDZKI Poprawna odpowiedź L. punktów. A
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY Numer zadania Poprawna odpowiedź Liczba punktów. B 2. C 3. D 4. D 5. B 6. B 7. D 8. C 9. A 0. C. B 2. A 3. P,
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2017/2018
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 017/018 etap wojewódzki Kryteria oceniania Zad.1.(0 3) Michał, Romek, Staszek, Tomek
x Kryteria oceniania
Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Zadanie 1 [2 punkty] Podaj trzy różne liczby pierwsze, których suma również jest liczbą pierwszą. Kryteria oceniania
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2014/2015 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę rozwiązania
punktów 0 2 punktów oznaczenie i wyskalowanie osi wykresu narysowanie odcinka łączącego punkty o współrzędnych (0 m; 0 J) i (31,25 m; J)
Egzamin gimnazjalny cz. matematyczno-przyrodnicza ROZWIAZANIA I SCHEMAT PUNKTACJI Zadania zamknięte 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 A A C B C B D C C D C D C A B A B C D C C D D
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki Zad.1. (0-3) PRZYKŁADOWE ROZWIĄZANIA I KRYTERIA OCENIANIA
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy
LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.
Wymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
Próbny egzamin maturalny z matematyki 2010
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki 00 Klucz punktowania do zadań zamkniętych oraz schemat oceniania do zadań
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MTEMTYCZNY dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie, inne niż przewidziane
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP WOJEWÓDZKI
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP WOJEWÓDZKI Numer Poprawna odpowiedź Liczba punktów zadania 1. A 1 2. B 1 3. C 1 4. A 1 5. B 2 6. A 2 7. D 2 8. D 2 9.
Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA
Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA Rozwiązania zadań zostały ocenione w sposób holistyczny.
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań inną
Nieczynnościowy sposób oceniania zadań otwartych
Nieczynnościowy sposób oceniania zadań otwartych MATEMATYKA Zmiany od 2010 roku Maria Dębska doradca metodyczny Bielsko - Biała Standard 3. modelowanie matematyczne Dlaczego zmiany? Standard 4. użycie
1. Czy poniższa para liczb spełnia równanie 6x + 4y = 23? Wstaw znak X w odpowiednią kratkę. x = 4,5, y = 1 TAK NIE
1. Czy poniższa para liczb spełnia równanie 6x + 4y = 23? Wstaw znak X w odpowiednią kratkę. x = 0,5, y = 5 TAK NIE x = 3, y = 1 TAK NIE x = 7, y = 5 TAK NIE x = 4,5, y = 1 TAK NIE 2. Sprawdź, czy para
MATEMATYKA POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 03/0 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA SIERPIEŃ 0 Klucz punktowania zadań zamkniętych Nr zad 3 6 7 8 9 0 3 6 7 8 9 0 3 Odp A A B B C
Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom rozszerzony Listopad 8 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. B Wskazówki do rozwiązania q =, więc q
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ PAŹDZIERNIK 2011 czas (w procentach) Zadanie 1. Do przygotowania
Egzamin maturalny z matematyki Poziom rozszzerzony. Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja
Zadanie ( pkt) Wyznacz wszystkie rozwiązania równania, π sin 7cos = należące do przedziału Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja cos 7 cos = trygonometryczna
KONKURS MATEMATYCZNY dla uczniów szkół podstawowych w roku szkolnym 2013/2014. I stopień zawodów ( szkolny) 15 października 2013
KONKURS MTEMTYZNY dla uczniów szkół podstawowych w roku szkolnym 201/201 I stopień zawodów ( szkolny) 15 października 201 Propozycja punktowania rozwiązań zadań Uwaga: Za każde poprawne rozwiązanie inne
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY Numer zadania Etapy rozwiązania zadania Liczba punktów. Zapisanie dziedziny funkcji f:,.. Podanie miejsc zerowych funkcji: Naszkicowanie wykresu funkcji
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY Numer zadania Etapy rozwiązania zadania Liczba punktów Zapisanie dziedziny funkcji f:, Podanie miejsc zerowych funkcji: Naszkicowanie wykresu funkcji
1. W tubie, w kształcie walca, o wysokości 6 cm umieszczono pionowo trzy piłeczki, które ściśle przylegały do ścianek i do siebie nawzajem.
Warto rozwiązać: 1. W tubie, w kształcie walca, o wysokości 6 cm umieszczono pionowo trzy piłeczki, które ściśle przylegały do ścianek i do siebie nawzajem. Oceń prawdziwość podanych zdań. Wybierz, jeśli
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
= Odpowiedź: Pole wielokąta ECD jest równe 37,5, a pole wielokąta BEDA jest równe 58,5. Kryteria oceniania
Finał Wojewódzkiego Konkursu Matematycznego dla uczniów gimnazjów rok szkolny 014/015 W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę rozwiązania
MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań
MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
Małopolski Konkurs Matematyczny r. etap wojewódzki A B C D E
SCHEMAT PUNKTOWANIA ZADAŃ Z KARTY ODPOWIEDZI Numer zadania SCHEMAT PUNKTOWANIA ZADAŃ TESTOWYCH Liczba punktów za zadanie Miejsce na odpowiedź ucznia A B C D E 1 X X X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 X
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty.
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA-POZIOM ROZSZERZONY Zadanie 1. (4 pkt) Rozwiąż równanie: w przedziale. 1 pkt Przekształcenie równania
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 00 MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ 00 Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań
PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA
MAŁOPOLSKI KONKURS MATEMATYCZNY Rok szkolny 018/019 ETAP WOJEWÓDZKI 5 marca 019 roku PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA zadanie odpowiedź punkty 1 A 3 A 3 3 B 3 4 E 3 5 A 3 6 E 3 7 C 3 8 E 3 9 C 3 10 A
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Przykładowe rozwiązania
Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Klucz odpowiedzi do zadań zamkniętych Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A Zadanie 14 15 16 17 18
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY Stowarzyszenie Nauczycieli Matematyki www.snm.edu.pl KOD PESEL Miejsce na naklejkę z kodem (podczas egzaminu w maju) PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź czy
Model odpowiedzi i schemat oceniania do arkusza I
Model odpowiedzi i schemat oceniania do arkusza I Zadanie 1 (4 pkt) n Odczytanie i zapisanie danych z wykresu: 100, 105, 100, 10, 101. n Obliczenie mediany: Mediana jest równa 101. n Obliczenie średniej
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH Nr zadania 1 3 4 Liczba punktów D B A
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_Q) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) II.
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 2016/2017
Wojewódzki Konkurs rzedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 016/017 rzykładowe rozwiązania zadań i schemat punktowania Etap szkolny rzy punktowaniu zadań otwartych
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.
Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez pisemnej zgody wydawcy zabronione.
WPISUJE UCZEŃ KOD UCZNIA PESEL OGÓLNOPOLSKI PRÓBNY EGZAMIN ÓSMOKLASISTY Z OPERONEM MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 11 stron (zadania 1. 21.). Ewentualny brak
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dla uczniów gimnazjów oraz oddziałów gimnazjalnych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie,
PRÓBNY EGZAMIN ÓSMOKLASISTY Z NOWĄ ERĄ 2018/2019 MATEMATYKA
PRÓBNY EGZAMIN ÓSMOKLASISTY Z NOWĄ ERĄ 2018/2019 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych