BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012
|
|
- Milena Sobczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ GRUDZIEŃ 2011
2 Liczba punktów za zadania zamknięte i otwarte: 29 Zadania zamknięte Numer Poprawna zadania odpowiedź Punktacja Zasady przyznawania punktów 1. C 0-1 poprawna odpowiedź 1 p. 2. D 0-1 błędna odpowiedź brak odpowiedzi 0 p. 3. B D C F P B A D A D C B B A B B C D P P 0-1 2
3 Zadania otwarte UWAGA: za każdy z występujących poziomów, począwszy od P 1, przyznajemy po 1 pkt. Zadanie 21. (0-3) Drogę w ruchu jednostajnym obliczamy mnożąc prędkość przez czas. W ciągu dwóch godzin jeden z kutrów przepłynął 2 4 = 8 (mil morskich), drugi 2 3 = 6 (mil morskich). Odległość między kutrami (x) obliczamy, wykorzystując twierdzenie Pitagorasa. x 2 = x 2 = x 2 = 100 x = 10 (mil morskich) 8 mil x 10 mil morskich, to m = m = 18,52 km Odpowiedź: Odległość między kutrami po 2 godzinach od wypłynięcia jest równa 18,52 km. 6 mil W ciągu godziny kutry przepłynęły odpowiednio: 4 mile morskie i 3 mile morskie. Odległość między kutrami (x) po godzinie można obliczyć wykorzystując twierdzenie Pitagorasa. x 2 = x 2 = x 2 = 25 x = 5 (mil morskich) Zatem po 2 godzinach odległość ta będzie dwa razy większa, czyli wyniesie 2 5 = 10 (mil morskich). 4 mile x 3 mile 10 mil morskich, to m = m = 18,52 km Odpowiedź: Odległość między kutrami po 2 godzinach od wypłynięcia jest równa 18,52 km. P 6 pełne rozwiązanie 3 punkty obliczenie odległości w km między kutrami po dwóch godzinach od wypłynięcia (18,52 km) dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne 2 punkty obliczenie odległości w milach między kutrami po dwóch godzinach od wypłynięcia (10 mil morskich) P 2 dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane 1 punkt obliczenie drogi przebytej przez każdy kuter w ciągu dwóch godzin (8 mil morskich, 6 mil morskich) obliczenie odległości między kutrami po godzinie od wypłynięcia (5 mil morskich) rozwiązanie błędne brak rozwiązania 3
4 Zadanie 22. (0-2) Jeżeli liczba jest podzielna przez 15, to jest podzielna przez 3 i 5. Jeżeli liczba jest podzielna przez 14, to jest podzielna przez 2 i 7. Ponieważ ta liczba jest podzielna jednocześnie przez 14 i 15, to znaczy, że jest podzielna przez 2, 3, 5 i 7. A jeśli jest podzielna przez 2 i 5 to jest podzielna przez 10. Liczba podzielna przez 14 jest też podzielna przez 2. Liczba podzielna przez 15 jest też podzielna przez 5. Skoro liczba jest podzielna przez 2 i 5, to oznacza, że liczba ta jest podzielna przez 10. P 6 pełne rozwiązanie 2 punkty wyprowadzenie wniosku, że z podzielności liczby przez 2 i 5 wynika podzielność przez 10 dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne 1 punkt zauważenie, że z podzielności przez 14 wynika podzielność przez 2 i że z podzielności przez 15 wynika podzielność przez 5 rozwiązanie błędne brak rozwiązania Zadanie 23. (0-4) Listewki dzielimy na 4 prostopadłościany o wymiarach 20 cm x 2 cm x 2 cm i 8 prostopadłościanów o wymiarach 16 cm x 2 cm x 2 cm. Zatem objętość modelu jest sumą objętości tych brył = 832 (cm 3 ) Masa listewek użytych do wykonania modelu jest równa 832 0,8 = 665,6 (g). Odpowiedź: Masa modelu jest równa 665,6 g. Listewki dzielimy na 4 prostopadłościany o wymiarach 16 cm x 2 cm x 2 cm i 8 prostopadłościanów o wymiarach 18 cm x 2 cm x 2 cm. Zatem objętość modelu jest sumą objętości tych brył = 832 (cm 3 ) Masa listewek użytych do wykonania modelu jest równa 832 0,8 = 665,6 (g). Odpowiedź: Model ma masę 665,6 g. I Listewki dzielimy na 12 prostopadłościanów o wymiarach 16 cm x 2 cm x 2 cm i 8 sześcianów o krawędzi 2 cm. Zatem objętość modelu jest sumą objętości tych brył = 832 (cm 3 ) Stąd masa tych listewek to 832 0,8 = 665,6 (g). Odpowiedź: Model ma masę 665,6 g. 4
5 IV sposób Jeśli od objętości sześcianu o krawędzi 20 cm odejmiemy objętość sześcianu o krawędzi 16 cm oraz objętość 6 prostopadłościanów o wymiarach 16 cm x 16 cm x 2 cm, to otrzymamy objętość modelu = 832 (cm 3 ) Masa listewek użytych do wykonania modelu to 832 0,8 = 665,6 (g). Odpowiedź: Masa modelu jest równa 665,6 g. V sposób Listewki dzielimy na 104 sześciany o krawędzi 2 cm. Objętość jednego sześcianu jest równa 8 cm 3. Jedna taka kostka ma masę 8 0,8 = 6,4 (g), zatem masa całego modelu jest równa 104 6,4 g = 665,6 g. P 6 pełne rozwiązanie 4 punkty obliczenie masy modelu 665,6 g P 5 zasadnicze trudności zadania zostały pokonane bezbłędnie, ale dalsza część rozwiązania zawiera usterki (błędy rachunkowe, niedokonanie wyboru właściwych rozwiązań itp.) 3 punkty poprawnie wyznaczono objętość modelu (832 cm 3 ), ale poprzestano na tym popełniono błąd w metodzie wyznaczania jego masy wybrano poprawną metodę obliczenia objętości i masy modelu, ale popełniono błędy rachunkowe dokończone dalsza część rozwiązania zawiera poważne błędy merytoryczne 2 punkty określono wymiary i liczbę prostopadłościanów, z których można otrzymać model (podano je wprost wynikają one z dalszych obliczeń) P 2 dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane 1 punkt podzielono model na prostopadłościany (np. na rysunku), ale błędnie podano wymiary albo liczbę tych prostopadłościanów podjęto próbę otrzymania modelu poprzez wycięcie z sześcianu o krawędzi 20 cm sześcianu o krawędzi 16 cm i co najmniej jednego innego prostopadłościanu rozwiązanie błędne brak rozwiązania 5
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ GRUDZIEŃ 2011 Zadania zamknięte Numer
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 01/013 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ ARKUSZ GM-M1-15 LISTOPAD 01 Liczba punktów
BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013
Centralna Komisja Egzaminacyjna BADANIE DIAGNOSTYCZNE W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA ZADAŃ ARKUSZ GM-M7-125 LISTOPAD 2012 Liczba
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 011/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA KLUCZ ODPOWIEDZI I SCHEMAT OCENIANIA ZADAŃ ARKUSZ GM-M7-1 KWIECIEŃ 01 Liczba punktów
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ GM-M1-142 KWIECIEŃ 2014 Liczba punktów za zadania zamknięte i otwarte:
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 011/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA KLUCZ ODPOWIEDZI I SCHEMAT OCENIANIA ZADAŃ ARKUSZ GM-M1-1 KWIECIEŃ 01 Zadania zamknięte
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ GM-M7-142 KWIECIEŃ 2014 Liczba punktów za zadania zamknięte i otwarte:
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY UNKTOWANIA GM-M1-132 KWIECIEŃ 2013 Liczba punktów za zadania zamknięte i otwarte: 29
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
MATEMATYKA EGZAMIN STANDARDOWY Wymagania konkursowe 1. Założenia ogólne
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Załącznik nr 8 do Regulaminu MATEMATYKA EGZAMIN STANDARDOWY Wymagania konkursowe 1. Założenia ogólne W ramach pracy konkursowej
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 01/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA GM-M7-1 KWIECIEŃ 01 Liczba punktów za zadania zamknięte i otwarte: 9 Zadania
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 03/04 Przykładowe rozwiązania zadań i schemat punktowania Etap szkolny Przy punktowaniu zadań otwartych
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2016 Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje
Matematyka test dla uczniów klas drugich
Matematyka test dla uczniów klas drugich gimnazjów w roku szkolnym 011/01 Etap międzyszkolny Schemat punktowania (do uzyskania maksymalnie: 1) UWAGI OGÓLNE: 1) Za każde prawidłowo rozwiązane zadanie dowolną
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
Zadania zamknięte. Numer zadania
Liczba punktów za zadania zamknięte i otwarte: 31 Zadania zamknięte Zasady przyznawania punktów: za każdą poprawną odpowiedź 1 punkt za błędną odpowiedź brak odpowiedzi 0 punktów Numer zadania Poprawna
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 2016/2017
Wojewódzki Konkurs rzedmiotowy z Matematyki dla uczniów gimnazjów woj. śląskiego w roku szkolnym 016/017 rzykładowe rozwiązania zadań i schemat punktowania Etap szkolny rzy punktowaniu zadań otwartych
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH Nr zadania 4 5 6 7 8 9 0 4 5 6 7 8 9 0 Odpowiedź
ZADANIA OTWARTE. Uwaga! Każde poprawne, inne niż przykładowe, rozwiązanie powinno być punktowane maksymalną liczbą punktów.
WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 05/06 GIMNAZJUM Wojewódzki Konkurs Matematyczny SCHEMAT PUNKTOWANIA ZADANIA ZAMKNIĘTE Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Zad. 5 6 7 9 0 5 6 7 Odp. A B
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) III. Modelowanie matematyczne. 2. Działania na liczbach naturalnych.
KONKURS Z MATEMATYKI
KONKURS Z MATEMATYKI ZESTAW POPRAWNYCH ODPOWIEDZI DO ARKUSZA - ETAP REJONOWY Numer zadania Poprawna odpowiedź Liczba punktów 1. C 1 2. D 1 3. P,F 2 4. D 1 5. C 1 6. B 1 7. D 1 8. A 1 9. C 1 10. B 1 11.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z
BADANIE DIAGNOSTYCZNE W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i
II WOJEWÓDZKI KONKURS Z MATEMATYKI
II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Klucz odpowiedzi i kryteria punktowania zadań III ETAP - WOJEWÓDZKI 3 marca 2018 r. Liczba punktów możliwych do uzyskania: 40 Zasady ogólne:
Kryteria oceniania zadań z matematyki na przykładzie prac uczniowskich
Kryteria oceniania zadań z matematyki na przykładzie prac uczniowskich Analiza rozwiązań dwóch zadań otwartych z matematyki na przykładach prac uczniowskich ZADANE 1. Okładka komiksu ma kształt prostokąta
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA
Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA Rozwiązania zadań zostały ocenione w sposób holistyczny.
EGZAMIN MATURALNY 2012 MATEMATYKA
entralna Komisja Egzaminacyjna EGZAMIN MATURALNY 0 MATEMATYKA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi SIERPIEŃ 0 Zadanie. (0 ) Zakres umiejętności (standardy) Opis wymagań Wykonuje obliczenia procentowe;
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania
ETAP III wojewódzki 16 marca 2019 r.
oraz klas trzecich oddziałów gimnazjalnych prowadzonych w szkołach innego typu Liczba punktów możliwych do uzyskania: 40 ETAP III wojewódzki 16 marca 2019 r. Zasady ogólne: 1. Za każde poprawne rozwiązanie
Przewodnik po typach zadań
8 Przewodnik po typach zadań Jedna ze zmian wprowadzonych do sprawdzianu w szóstej klasie szkoły podstawowej dotyczy typów zadań, które mogą się znaleźć w arkuszu egzaminacyjnym. Do tej pory na sprawdzianie
MATEMATYKA POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 03/0 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA SIERPIEŃ 0 Klucz punktowania zadań zamkniętych Nr zad 3 6 7 8 9 0 3 6 7 8 9 0 3 Odp A A B B C
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY Numer zadania Poprawna odpowiedź Liczba punktów. B 2. C 3. D 4. D 5. B 6. B 7. D 8. C 9. A 0. C. B 2. A 3. P,
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 014/015 ZĘŚĆ. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-M1X, GM-M, GM-M4, GM-M5, GM-M1L, GM-M1U KWIEIEŃ 015 Zadanie 1. (0 1) I. Wykorzystanie
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA UCZEŃ
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA UCZEŃ KOD UCZNIA PESEL miejsce na naklejkę z kodem BADANIE
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
Nieczynnościowy sposób oceniania zadań otwartych
Nieczynnościowy sposób oceniania zadań otwartych MATEMATYKA Zmiany od 2010 roku Maria Dębska doradca metodyczny Bielsko - Biała Standard 3. modelowanie matematyczne Dlaczego zmiany? Standard 4. użycie
PESEL. Czas pracy: do 135 minut 4. Rozwiązania zadań od 21. do 23. formułujesz samodzielnie.
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-MX4 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji.
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2017/2018 Etap III - wojewódzki
Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2017/2018 Etap III - wojewódzki W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe
Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny. Przykładowe rozwiązania i propozycja punktacji rozwiązań
Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny Przykładowe rozwiązania i propozycja punktacji rozwiązań Ustalenia do punktowania zadań otwartych: 1. Jeśli uczeń przedstawił obok prawidłowej
ZESTAW POPRAWNYCH ODPOWIEDZI DO ARKUSZA - ETAP WOJEWÓDZKI
Konkursy w województwie podkarpackim w roku szkolnym 202/203 ZESTAW POPRAWNYCH ODPOWIEDZI Numer zadania Zadania otwarte schemat oceniania: DO ARKUSZA - ETAP WOJEWÓDZKI Poprawna odpowiedź L. punktów. A
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/05 FORMUŁA DO 0 ( STARA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 05 Klucz punktowania zadań zamkniętych Nr zad. 3
KLUCZ ODPOWIEDZI POPRAWNA ODPOWIEDŹ 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D
Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH NR ZADANIA POPRAWNA ODPOWIEDŹ D C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 0 C B A 3 A 4 B 5 D 6 B 7 C 8 A 9 B 0 D Zadanie ( pkt) Okręgowa
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ PAŹDZIERNIK 2011 czas (w procentach) Zadanie 1. Do przygotowania
Próbny egzamin maturalny z matematyki 2010
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki 00 Klucz punktowania do zadań zamkniętych oraz schemat oceniania do zadań
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
BADANIE DIAGNOSTYCZNE W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA
BADANIE DIAGNOSTYCZNE W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Zadanie 1. Uczeń przeczytał w ciągu tygodnia ksiąŝkę liczącą 420 stron. Dzień Liczba przeczytanych stron Czas
Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom rozszerzony Listopad 8 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. B Wskazówki do rozwiązania q =, więc q
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH
XIV MIEJSKI KONKURS MATEMATYCZNY uczniów klas IV VIII szkół podstawowych FINAŁ 17 maja 2019r. KLASA VIII. jest: 0,5 0,25 0,0625 0,0(5)
tutaj wpisz swój kod XIV MIEJSKI KONKURS MATEMATYCZNY uczniów klas IV VIII szkół podstawowych FINAŁ 17 maja 2019r. KLASA VIII Drogi Ósmoklasisto! Gratulujemy zakwalifikowania się do finału XIV Miejskiego
III WOJEWÓDZKI KONKURS Z MATEMATYKI
III WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Klucz odpowiedzi i kryteria punktowania zadań III ETAP - WOJEWÓDZKI 2 marca 2019 r, godz 1000 Liczba punktów możliwych do uzyskania: 40
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 00 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 00 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od. do 5. podane były
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-800 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 3) Podstawa programowa
Nowy Sprawdzian Szóstoklasisty Język polski i matematyka Klucz punktowania
Nowy Sprawdzian Szóstoklasisty 2017 Język polski i matematyka Klucz punktowania ZADANIA WYBORU WIELOKROTNEGO 2. 9. 10. 12. 16. 17. 19. 20. 22. Poprawna odpowiedź C A B C C C D B A 1 pkt poprawna odpowiedź
EGZAMIN GIMNAZJALNY. Ocenianie arkusza egzaminacyjnego oraz typy zadań z matematyki. Opracowała: Ewa Ślubowska, doradca metodyczny matematyki CEN
EGZAMIN GIMNAZJALNY Ocenianie arkusza egzaminacyjnego oraz typy zadań z matematyki Opracowała: Ewa Ślubowska, doradca metodyczny matematyki CEN Holistyczne ocenianie arkusza egzaminacyjnego z matematyki
ZAŁĄCZNIK 1 a. - część matematyczno - przyrodnicza
ZAŁĄCZNK 1 a. - część matematyczno - przyrodnicza Klucz odpowiedzi i schemat punktowania dotyczy: punktowania odpowiedzi uczniów bez dysfunkcji, słabo widzących i słabo słyszących* - zestaw egzaminacyjny
Małopolski Konkurs Matematyczny r. etap wojewódzki A B C D
SCHEMAT PUNKTOWANIA ZADAŃ Z KARTY ODPOWIEDZI Numer zadania Liczba punktów za zadanie 1 1 x 1 x Miejsce na odpowiedź ucznia A B C D 3 1 x 4 1 x 5 1 x 6 x 7 x 8 x 9 x 10 x 11 0 1 11 17 % 17 13 45 ; 135 3
PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO SPRAWDZIAN 2
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI IMIE I NAZWISKO PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO SPRAWDZIAN 2 SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Trzej robotnicy pracujacy dziennie
SCHEMAT PUTNKTOWANIA ZADAŃ (A1) Z ZAKRESU PRZEDMIOTÓW MATEMATYCZNO PRZYRODNICZYCH PRÓBNY EGZAMIN GIMNAZJALNY
SCHEMAT PUTNKTOWANIA ZADAŃ (A) Z ZAKRESU PRZEDMIOTÓW MATEMATYCZNO PRZYRODNICZYCH PRÓBNY EGZAMIN GIMNAZJALNY Z a d a n i a z a m k n i ę t e Numer 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 zadania odpowiedź
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem dysleksja EGZAMIN W KLASIE
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.
Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych
Odpowiedzi do zadań zamkniętych Nr zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 Odpowiedź A C C B C A B C A D B C D B D C A B A A A C B A A Schemat oceniania zadań otwartych Zadanie 6. ( pkt) Rozwiąż
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
OCENIANIE ARKUSZA POZIOM PODSTAWOWY
Numer zadania.. Etapy rozwiązania zadania OCENIANIE ARKUSZA POZIOM PODSTAWOWY Zapisanie ceny wycieczki po podwyżce, np. x + 5% x, gdzie x oznacza pierwotną cenę wycieczki. Liczba punktów. Zapisanie równania:
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP REJONOWY
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP REJONOWY Numer zadania Poprawna odpowiedź Liczba punktów 1. C 1 2. B 1 3. A 1 4. F, P, P, F 4 5. A 1 6. B 1 7. B 1 8.
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
KONKURS MATEMATYCZNY STOŻEK 2007/2008. 1. Na rozwiązanie 5 zadań masz 90 minut. 2. Dokładnie czytaj treści zadań i udzielaj odpowiedzi.
KONKURS MATEMATYCZNY STOŻEK 007/008 1. Na rozwiązanie 5 zadań masz 90 minut.. Dokładnie czytaj treści zadań i udzielaj odpowiedzi. 3. W rozwiązaniach zadań przedstawiaj swój tok rozumowania. 4. Rozwiązania
Zadanie 1. (0 1) Cena okularów bez promocji wynosi 240 zł. Ile zapłaci za te okulary klient, który ma 35 lat? Wybierz odpowiedź spośród podanych.
Informacja do zadań 1. i 2. Promocja w zakładzie optycznym jest związana z wiekiem klienta i polega na tym, że klient otrzymuje tyle procent zniżki, ile ma lat. Zadanie 1. (0 1) Cena okularów bez promocji
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 3 4 6 7 8 9 0 3 4 6 7 8 9 0 D C D A A B D C C D B C A B B D B C A A Zadanie. (pkt) Rozwiąż
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań inną
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 00 MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ 00 Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_2) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (1 pkt) Asia
EGZAMIN MATURALNY 2012 MATEMATYKA
entralna Komisja Egzaminacyjna EGZAMIN MATURALNY 01 MATEMATYKA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi ZERWIE 01 Egzamin maturalny z matematyki Zadanie 1. (0 1) Obszar standardów i interpretowanie
MATURA 2012. Przygotowanie do matury z matematyki
MATURA 01 Przygotowanie do matury z matematyki Część IX: Stereometria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,
Trenuj przed sprawdzianem! Matematyka
Imię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. Informacja do zadań od 1. do 4. Szlak rowerowy Dolina Dolnej
Zestaw II sposób rozwiązania (rozkład trójmianu kwadratowego na czynniki)
CZERWIEC 00 Prawidłowe odpowiedzi do zadań zamkniętych Nr Zadania 3 4 8 9 0 3 4 8 9 0 3 4 Odpowiedź C D C D C D C C C C C D Zadanie. ( pkt) Rozwiąż nierówność x Schemat oceniania zadań otwartych x30 0.
Próbny Sprawdzian Szóstoklasisty Język polski i matematyka Klucz punktowania
Język polski i matematyka Klucz punktowania ZADANIA WYBORU WIELOKROTNEGO 1. 5. 6. 8. 9. 10. 11. 12. 1. 15. 19. 2. Poprawna odpowiedź C B D A C B A D C C A B 1 pkt poprawna odpowiedź 0 pkt niepoprawna odpowiedź
KONKURS MATEMATYCZNY dla uczniów gimnazjów województwa mazowieckiego w roku szkolnym 2017/2018. Model odpowiedzi i schematy punktowania
UWAGA KONKURS MATEMATYCZNY dla uczniów gimnazjów województwa mazowieckiego w roku szkolnym 07/08 Model odpowiedzi i schematy punktowania Za każde poprawne rozwiązanie, inne niż przewidziane w schemacie
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z próbnego arkusza egzaminacyjnego OMAP-100-1812 GRUDZIEŃ 2018 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Podstawa
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut Rozwiązania i punktacja Zadanie 1. (1 punkt) Średnia arytmetyczna liczb 0, 3 10 2015 i 2, 2 10 201 jest
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_Q) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) II.
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2014/2015 ETAP SZKOLNY 4 listopada 2014 roku
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 201/2015 ETAP SZKOLNY listopada 201 roku 1. Przed Tobą zestaw 21 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.