PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA
|
|
- Alina Karczewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o.
2 Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek [ ]. C Zadanie 2. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie). Uczeń: 1) interpretuje liczby wymierne na osi liczbowej. Oblicza odległość między dwiema liczbami na osi liczbowej. A Zadanie 3. (0 1) I. Wykorzystanie i tworzenie informacji. 5. Procenty. Uczeń: 1) przedstawia część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie. B Zadanie 4. (0 1) III. Modelowanie matematyczne. 7. Równania. Uczeń: 4) zapisuje związki między nieznanymi wielkościami za pomocą układu dwóch rów nań pierwszego stopnia z dwiema niewiadomymi. C 2 z 12
3 Zadanie 5. (0 1) Wymagania szczegółowe 8) korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rom bach i w trapezach. SZKOŁA PODSTAWOWA 9. Wielokąty, koła, okręgi. Uczeń: 3) stosuje twierdzenie o sumie kątów trójkąta. PP Zadanie 6. (0 1) 8. Wykresy funkcji. Uczeń: 5) oblicza wartości funkcji podanych nieskomplikowanym wzorem i zaznacza punkty należące do jej wykresu. D Zadanie 7. (0 1) III. Modelowanie matematyczne. Wymagania szczegółowe 6. Wyrażenia algebraiczne. Uczeń: 5) mnoży jednomiany, mnoży sumę algebraiczną przez jednomian oraz, w nietrud nych przykładach, mnoży sumy algebraiczne. 9) oblicza pola i obwody trójkątów i czworokątów. A 3 z 12
4 Zadanie 8. (0 1) V. Rozumowanie i argumentacja. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 4) wyznacza średnią arytmetyczną i medianę zestawu danych. PP Zadanie 9. (0 1) V. Rozumowanie i argumentacja. 9) oblicza pola i obwody trójkątów i czworokątów. B Zadanie 10. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 4) zaokrągla rozwinięcia dziesiętne liczb. D 4 z 12
5 Zadanie 11. (0 1) Wymagania szczegółowe 1) korzysta ze związków między kątami utworzonymi przez prostą przecinającą dwie proste równoległe. SZKOŁA PODSTAWOWA 9. Wielokąty, koła, okręgi. Uczeń: 3) stosuje twierdzenie o sumie kątów trójkąta. FF Zadanie 12. (0 1) I. Wykorzystanie i tworzenie informacji. Wymagania szczegółowe SZKOŁA PODSTAWOWA 4. Ułamki zwykłe i dziesiętne. Uczeń: 1) opisuje część danej całości za pomocą ułamka; 12) porównuje ułamki (zwykłe i dziesiętne). C Zadanie 13. (0 1) III. Modelowanie matematyczne. Wymagania szczegółowe 3. Potęgi. Uczeń: 2) zapisuje w postaci jednej potęgi: iloczyny i ilorazy potęg o takich samych podstawach, iloczyny i ilorazy potęg o takich samych wykładnikach oraz potęgę potęgi (przy wy kładnikach naturalnych). 9) oblicza pola i obwody trójkątów i czworokątów. D 5 z 12
6 Zadanie 14. (0 1) I. Wykorzystanie i tworzenie informacji. 8. Wykresy funkcji. Uczeń: 4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym). PP Zadanie 15. (0 1) III. Modelowanie matematyczne. 9) oblicza pola i obwody trójkątów i czworokątów. D 0 p. odpowiedź niepoprawna lub brak odpowiedzi. Zadanie 16. (0 1) V. Rozumowanie i argumentacja. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 5) analizuje proste doświadczenia losowe (np. rzut kostką, rzut monetą, wyciąganie losu) i określa prawdopodobieństwa najprostszych zdarzeń w tych doświadcze niach (prawdopodobieństwo wypadnięcia orła w rzucie monetą, dwójki lub szóstki w rzucie kostką, itp.). FP 6 z 12
7 Zadanie 17. (0 1) V. Rozumowanie i argumentacja. 15) korzysta z własności trójkątów prostokątnych podobnych. T3 Zadanie 18. (0 1) IV. Użycie i tworzenie strategii. 6) oblicza pole koła, pierścienia kołowego, wycinka kołowego. B Zadanie 19. (0 1) 11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali. B Zadanie 20. (0 1) IV. Użycie i tworzenie strategii. Wymagania szczegółowe 2. Liczby wymierne (dodatnie i niedodatnie). Uczeń: 2) wskazuje na osi liczbowej zbiór liczb spełniających warunek typu: x 3, x < 5, 3) dodaje, odejmuje, mnoży i dzieli liczby wymierne. C 7 z 12
8 ZADANIA OTWARTE Uwagi: Za każde inne niż przedstawione poprawne rozwiązanie przyznaje się maksymalną liczbę punktów. Jeśli na jakimkolwiek etapie rozwiązania zadania uczeń popełnił jeden lub więcej błędów rachunkowych, ale zastosował poprawne metody obliczania, to ocenę rozwiązania obniża się o 1 punkt. W pracy ucznia uprawnionego do dostosowanych kryteriów oceniania dopuszcza się: 1. lustrzane zapisywanie cyfr i liter (np. 6 9,...) 2. gubienie liter, cyfr, nawiasów 3. problemy z zapisywaniem przecinków w liczbach dziesiętnych 4. błędy w zapisie działań pisemnych (dopuszczalne drobne błędy rachunkowe) 5. luki w zapisie obliczeń obliczenia pamięciowe 6. uproszczony zapis równania i przekształcenie go w pamięci; brak opisu niewiadomych 7. niekończenie wyrazów 8. problemy z zapisywaniem jednostek (np. C OC,...) 9. błędy w przepisywaniu 10. chaotyczny zapis operacji matematycznych 11. niepoprawny zapis indeksów dolnych i górnych (np. x 2 x2, m 2 m2,...). Zadanie 21. (0 3) V. Rozumowanie i argumentacja. 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kon tek ście praktycznym, w tym do zamiany jednostek (jednostek pręd kości, gęstości itp.). Przykładowe rozwiązania I sposób Jeśli przez x oznaczymy liczbę stołów czteroosobowych, a przez y liczbę stołów sześcioosobowych, to sytuację z zadania przedstawia równanie 4x + 6y = 40. Jeśli obie strony równania podzielimy przez 2, otrzymamy 2x + 3y = 20. Zauważamy w tym momencie, że liczba stołów sześcioosobowych musi być parzysta (2x jest parzyste, więc 3y też musi być liczbą parzystą, a co za tym idzie y też). Jeśli są 2 stoły sześcioosobowe (12 miejsc), to musi być 7 stołów czteroosobowych (28 miejsc). Jeśli są 4 stoły sześcioosobowe (24 miejsca), to muszą być 4 stoły czteroosobowe (16 miejsc). Jeśli jest 6 stołów sześcioosobowych (36 miejsc), to musi być 1 stół czteroosobowy (4 miejsca). Osiem stołów sześcioosobowych to 48 miejsc za dużo. 8 z 12
9 II sposób Metoda prób i błędów: kupujemy 1 stół sześcioosobowy (6 miejsc), liczba stołów czteroosobowych: (40 6) : 4 odpada kupujemy 2 stoły sześcioosobowe (12 miejsc), liczba stołów czteroosobowych: (40 12) : 4 = 7 kupujemy 3 stoły sześcioosobowe (18 miejsc), liczba stołów czteroosobowych: (40 18) : 4 odpada kupujemy 4 stoły sześcioosobowe (24 miejsca), liczba stołów czteroosobowych: (40 24) : 4 = 4 kupujemy 5 stołów sześcioosobowych (30 miejsc), liczba stołów czteroosobowych: (40 30) : 4 odpada kupujemy 6 stołów sześcioosobowych (36 miejsc), liczba stołów czteroosobowych: (40 36) : 4 = 1 kupujemy 7 stołów sześcioosobowych 42 miejsca za dużo. III sposób Oczywiście można by kupić 10 stołów 4-osobowych, bo 4 10 = 40. Ale chcemy mieć również stoły 6-osobowe. Ile stołów 4-osobowych można wymienić na stoły 6-osobowe? 1 stół nie, 2 nie, 3 stoły tak, bo 3 4 = 12 i 12 : 6 = 2. Po wymianie jest 7 stołów 4-osobowych i 2 stoły 6-osobowe ( = = 40). Znów wymieniamy 3 stoły 4-osobowe na 2 stoły 6-osobowe i mamy 4 stoły 4-osobowe i 4 stoły 6-osobowe ( = = 40). Po kolejnej wymianie będzie 1 stół 4-osobowy i 6 stołów 6-osobowych ( = = 40). Oczywiście więcej wymian nie można już zrobić, czyli nie ma więcej możliwości. Odpowiedź: Można kupić 2 stoły sześcioosobowe i 7 stołów czteroosobowych albo 4 stoły sześcioosobowe i 4 stoły czteroosobowe albo 6 stołów sześcioosobowych i 1 stół czteroosobowy. P 6 3 punkty pełne rozwiązanie podanie wszystkich możliwych rozwiązań P 4 2 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone lub dalsza część rozwiązania zawiera poważne błędy merytoryczne znalezienie dwóch rozwiązań P 2 1 punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane znalezienie jednego rozwiązania LUB zapisanie poprawnego równania P 0 0 punktów rozwiązanie niestanowiące postępu brak rozwiązania lub rozwiązanie błędne 9 z 12
10 Zadanie 22. (0 2) IV. Użycie i tworzenie strategii. 11. Bryły. Uczeń: 2) oblicza pole powierzchni i objętość graniastosłupa prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym). Przykładowe rozwiązania bryła I bryła II I sposób Zauważamy, że pole powierzchni każdej z brył jest równe sumie pól powierzchni dwóch wyjściowych graniastosłupów pomniejszonej o pola tych ścian lub fragmentów ścian, które zostały ze sobą sklejone. A zatem pole powierzchni pierwszej bryły to dwa pola powierzchni graniastosłupa pomniejszone o dwa pola podstawy, a pole powierzchni drugiej bryły to dwa pola powierzchni graniastosłupa pomniejszone o dwa pola ściany bocznej. Ponieważ dwa pola podstawy są równe polu jednej ściany bocznej, stąd różnica pól powierzchni otrzymanych brył to pole jednej ściany bocznej graniastosłupa. II sposób Oznaczamy krawędź podstawy graniastosłupa przez x, a krawędź boczną przez 2x. Zapisujemy pole powierzchni graniastosłupa 2x x 2 = 10x 2. Zapisujemy pole powierzchni pierwszej bryły 20x 2 2x 2 = 18x 2. Zapisujemy pole powierzchni drugiej bryły 20x 2 4x 2 = 16x 2. Zapisujemy różnicę pól tych brył 18x 2 16x 2 = 2x 2. Zauważamy, że pole jednej ściany bocznej graniastosłupa jest równe 2x 2. III sposób Oznaczmy pole podstawy graniastosłupa przez P, a pole ściany bocznej przez 2P. Wtedy pole powierzchni graniastosłupa to: 2 P + 4 2P = 10P. Pole powierzchni pierwszej bryły to: 2 10P 2 P = 18P. Pole powierzchni drugiej bryły to: 2 10P 2 2P = 16P. Różnica pól tych brył to 2P, czyli tyle, ile jest równe pole ściany bocznej. P 6 2 punkty pełne rozwiązanie poprawne wykazanie, że różnica pól powierzchni brył jest równa polu jednej ściany bocznej graniastosłupa prawidłowego czworokątnego P 2 1 punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane zauważenie, że pole powierzchni każdej z brył jest równe sumie pól powierzchni dwóch graniastosłupów pomniejszonej o pola tych ścian lub fragmentów ścian, które zostały ze sobą sklejone P 0 0 punktów rozwiązanie niestanowiące postępu rozwiązanie błędne lub brak rozwiązania 10 z 12
11 Zadanie 23. (0 3) IV. Użycie i tworzenie strategii. 9) oblicza pola i obwody trójkątów i czworokątów. Przykładowe rozwiązania I sposób D C A B Zauważamy, że liczba wyrażająca długość boku kwadratu jest dzielnikiem liczb 12 i 21. Ponieważ musi być ona większa niż 1, więc jest równa 3. Zatem drugi bok szarego prostokąta jest równy 4, a drugi bok czarnego prostokąta jest równy 7. Stąd długość odcinka AB jest równa 13, a odcinka BC wynosi 7. Obliczamy obwód prostokąta ABCD: = 40. II sposób Boki wszystkich czworokątów, które powstały po podziale prostokąta ABCD są liczbami naturalnymi większymi od 1. Zatem boki prostokąta o polu 21 muszą być równe 3 i 7. Stąd wynika, że kwadraty mają boki równe 3, a prostokąt o polu 12 ma boki 3 i 4. Stąd wynika, że długość krótszego boku prostokąta ABCD jest równa = 7, a dłuższego boku: = 13. Zatem obwód prostokąta ABCD jest równy 40. III sposób Oznaczmy długości boków kwadratów przez a, a długości dłuższych boków prostokątów przez b i c, tak, jak na rysunku. D a a c a 21 C b 12 A Wiadomo, że a, b i c są liczbami naturalnymi większymi od 1. Pole jednego z prostokątów jest równe 12, więc a b = 12. Zatem a może być równe 2, 3, 4 lub 6. Drugi prostokąt ma pole 21, więc a c = 21. Stąd wynika, że a może być równe 3 lub 7. Jedyną liczbą spełniającą oba warunki jest 3, zatem a = 3. Stąd wynika, że b = 4 oraz c = 7. Obwód prostokąta ABCD jest równy 6a + 2b + 2c = = 40. Odpowiedź: Obwód prostokąta ABCD jest równy 40. B 11 z 12
12 P 6 3 punkty pełne rozwiązanie obliczenie obwodu prostokąta ABCD (40) P 4 2 punkty zasadnicze trudności zadania zostały pokonane bezbłędnie, ale rozwiązanie nie zostało dokończone lub dalsza część rozwiązania zawiera błędy merytoryczne obliczenie długości wszystkich boków czworokątów składowych prostokąta ABCD (3 i 4 i 7) P 2 1 punkt dokonano istotnego postępu, ale zasadnicze trudności zadania nie zostały pokonane ustalenie długości boku kwadratu (3) LUB ustalenie długości boków prostokąta o polu 21: 3 i 7 P 0 0 punktów rozwiązanie niestanowiące postępu brak rozwiązania lub rozwiązanie błędne 12 z 12
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)
Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE
Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) III. Modelowanie matematyczne. 2. Działania na liczbach naturalnych.
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-MX4 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji.
PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot
KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 014/015 ZĘŚĆ. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-M1X, GM-M, GM-M4, GM-M5, GM-M1L, GM-M1U KWIEIEŃ 015 Zadanie 1. (0 1) I. Wykorzystanie
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
Wyniki procentowe poszczególnych uczniów
K la s a IA Próbny egzamin gimnazjalny Wyniki procentowe poszczególnych uczniów 0% 80% 70% 60% 50% 40% 30% Polska (41%) % % 0% nr ucznia 1 2 3 4 5 6 7 8 16 18 1 21 22 24 25 26 27 28 wynik w % 45 65 42
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Wymagania edukacyjne klasa druga.
Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie
Rozkład łatwości zadań
Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Wymagania edukacyjne klasa pierwsza.
Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie
Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum. Część matematyczno-przyrodnicza. LUTY 2016 Analiza wyników
Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum Część matematyczno-przyrodnicza LUTY 2016 Analiza wyników Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu i 3 zadań
MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej
MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej 1. Cel: Liczby wymierne dodatnie. 1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); 2) dodaje,
TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA
Egzamin Gimnazjalny z WSiP LISTOPAD 2015 Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2016 Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje
Wymagania edukacyjne na poszczególne oceny
Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy I Gimnazjum poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: praca zbiorowa
1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi
Przedmiotowe zasady oceniania matematyka
Gimnazjum nr 1 im. Jana Pawła II w Polkowicach Przedmiotowe zasady oceniania matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności
Regulamin XV Regionalnego Konkursu Matematycznego Czas na szóstkę
Regulamin XV Regionalnego Konkursu Matematycznego Czas na szóstkę 1. Konkurs jest przeznaczony dla uczniów klas II - III gimnazjum oraz dla klas VII szkół podstawowych. 2. Organizatorzy: - Zespół Szkół
Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów
Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Wymagania edukacyjne ogólne 1. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa
MATEMATYKA KLASA III GIMNAZJUM
Ogólne wymagania edukacyjne Ocenę celującą otrzymuje uczeń, który: MATEMATYKA KLASA III GIMNAZJUM Potrafi stosować wiadomości w sytuacjach nietypowych (problemowych) Operuje twierdzeniami i je dowodzi
Regulamin XVI Regionalnego Konkursu Matematycznego "Czas na szóstkę"
Regulamin XVI Regionalnego Konkursu Matematycznego "Czas na szóstkę" 1. Konkurs jest przeznaczony dla uczniów klas III gimnazjum oraz dla klas VII i VIII szkół podstawowych. 2. Organizatorzy: - Zespół
Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka
Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności matematycznych w
III etap edukacyjny MATEMATYKA
III etap edukacyjny MATEMATYKA Cele kształcenia wymagania ogólne I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa języka matematycznego do
Egzamin gimnazjalny 2015 część matematyczna
Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 - wyniki niskie - wyniki średnie - wyniki wysokie liczba
Egzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
Ułamki i działania 20 h
Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie
KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO
KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014 Program merytoryczny konkursu z matematyki dla gimnazjum I. CELE KONKURSU 1. Wyłanianie uczniów uzdolnionych matematycznie.
KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014. Program merytoryczny konkursu z matematyki dla gimnazjum
I. CELE KONKURSU KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014 Program merytoryczny konkursu z matematyki dla gimnazjum 1. Wyłanianie uczniów uzdolnionych matematycznie.
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_Q) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) II.
WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP
WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP KLASA 1 Główne działy podstawy programowej Liczby wymierne dodatnie Liczby wymierne (dodatnie i niedodatnie) Hasła programowe Cztery działania
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
PRÓBNY EGZAMIN ÓSMOKLASISTY Z NOWĄ ERĄ 2018/2019 MATEMATYKA
PRÓBNY EGZAMIN ÓSMOKLASISTY Z NOWĄ ERĄ 2018/2019 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-Q00-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) Podstawa programowa
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,
Przedmiotowy system oceniania matematyka
Gimnazjum nr 1 im. Jana Pawła II w Polkowicach Przedmiotowy system oceniania matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności
REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012
REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012 1 PRZEBIEG POSZCZEGÓLNYCH ETAPÓW KONKURSU 1. INFORMACJE OGÓLNE 1) Zadania Komisji
REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012
REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012 1 PRZEBIEG POSZCZEGÓLNYCH ETAPÓW KONKURSU 1. INFORMACJE OGÓLNE 1) Zadania Komisji
WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA V Wymagania konieczne i podstawowe - na ocenę dopuszczającą i dostateczną. Uczeń powinien umieć: dodawać i odejmować w pamięci liczby dwucyfrowe
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
Wymagania edukacyjne z matematyki - gimnazjum
Wymagania edukacyjne z matematyki - gimnazjum Skrót postanowień: III etap edukacyjny (kl. I-III gimnazjum) Cele kształcenia (wymagania ogólne): wykorzystanie i tworzenie informacji - uczeń interpretuje
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7
Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
Tabela 1. Liczba uczniów z uwzględnieniem rodzaju arkusza i laureatów w poszczególnych klasach
Myszyniec, dnia 13.11.2013r. Analiza wyników egzaminu gimnazjalnego w części matematyczno-przyrodniczej z zakresu matematyki przeprowadzonego w roku szkolnym 2012/2013 w Publicznym Gimnazjum w Myszyńcu
Wymagania edukacyjne szczegółowe w Gimnazjum
Wymagania edukacyjne szczegółowe w Gimnazjum Treści nauczania określone w programie Matematyka wokół nas Gimnazjum zostały rozłożone na trzy lata. Zgodnie z założeniem MEN treści programu nauczania mogą
MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT 1. LICZBY I DZIAŁANIA Liczby. Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny) Rozdział 1. Bryły wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup
Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa
Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej
STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki. w I semestrze drugiej klasy gimnazjum MATEMATYKA
STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki w I semestrze drugiej klasy gimnazjum MATEMATYKA Zestaw składał się z 21 zadań zamkniętych różnego typu i 3 zadań otwartych. Zadania sprawdzały
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny) Rozdział 1. Bryły wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_8) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 2) II. Wykorzystanie
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-800 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 3) Podstawa programowa
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w
Przedmiotowe System Oceniania z matematyki na podstawie programu "Matematyka z plusem"
Przedmiotowe System Oceniania z matematyki na podstawie programu "Matematyka z plusem" Opracowany zgodnie ze Statutem oraz z Wewnątrzszkolnym Systemem Oceniania Przedmiotem oceny z matematyki są: 1) wiedza,
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie
Myszyniec, dnia 27.10.2014 r.
Myszyniec, dnia 27.10.2014 r. Analiza wyników egzaminu gimnazjalnego w części matematyczno-przyrodniczej z zakresu matematyki przeprowadzonego w roku szkolnym 2013/2014 w Publicznym Gimnazjum w Myszyńcu
NaCoBeZU z matematyki dla klasy 7
NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby
Wymagania na poszczególne oceny szkolne Klasa 7
1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Wymagania na poszczególne stopnie szkolne
Wymagania na poszczególne stopnie szkolne Dział, temat Wymagania na ocenę dopuszczającą (K) Wymagania na ocenę dostateczną (P) Wymagania na ocenę dobrą (R) Wymagania na ocenę bardzo dobrą (D) Wymagania
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie