Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS"

Transkrypt

1 MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0). Krok 1. Wstępna siatka Robimy wstępną (zwykle domyślną) siatkę, sprawdzamy jej jakość, przeprowadzamy obliczenia i robimy wstępną analizę wyników: 1. Sprawdzenie poprawności umocowania/obciążenia przez analizę reakcji oraz ogólnego wyglądu konstrukcji odkształconej. Jeżeli są błędy wracamy do kroku 0 2. Czy dalsza analiza ma sens? Jeżeli wynik (naprężenia, ugięcie, itp.) wyraźnie przekracza dopuszczalny poziom, to dalsza analiza traci sens i trzeba zmienić samą konstrukcję 3. Za pomocą wskaźników błędu oceniamy dokładność rozwiązania oraz wyznaczamy strefy, w których gęstość siatki ma być zmieniona 4. Decyzja czy dalsze obliczenia są konieczne i możliwe? Kroki 2-N. Osiągnięcie wyników zbieżnych o wysokiej dokładności Jednym z celów tych kroków jest eliminacja elementów modelu (np. karbów) powodujących rozbieżność wyników 1. Generujemy nową siatkę o zmienionej gęstości, sprawdzamy jej jakość, ew. zmieniamy siatkę 2. Przeprowadzamy obliczenia, oceniamy dokładność wyników (wskaźnik błędu, różnica pomiędzy wynikami po uśrednianiu węzłowym i elementowym, itp.) 3. W przypadku rozbieżności zmieniamy model, w przypadku osiągnięcia zbieżności kończymy obliczenia Część II Uproszczenia modelu 1. Elementy prostsze od 3D Typy modeli elementów konstrukcji Generalne zasady 1. Żyjemy w świecie 3D, każdy element konstrukcji ciało 3D 2. Czy musimy w MES wszystko modelować używając elementów 3D? Niekoniecznie. 3. Opis geometrii ciała zawsze wymaga 3 niezależnych wymiarów, opis pól naprężeń/odkształceń może być prostszy. W MES modelujemy fizykę, nie geometrię! Model MES model CAD. Jeżeli w jakieś części konstrukcji dominują naprężenia w jednym kierunku, to ją można modelować za pomocą prostych typów elementów. 4. Używanie elementów uproszczonych (wszystkie poza 3D) zawsze oznacza połączenie rozwiązania analitycznego z numerycznym. 5. Czy można uparcie używać tylko elementy 3D (a la SimulationXpress, DesignCheck)? Skutki: duży czas obliczeń, niska dokładność, brak uniwersalnych algorytmów generacji siatek 3D dla wszystkich typów elementów.

2 6. Podstawowe zasady modelowania w MES: 1) Upraszczamy; 2) Upraszczamy; 3) Upraszczamy... W literaturze angielskojęzycznej często rozróżnia się elementy skończone podobne do obiektów rzeczywistych (3D i płaskie) i niezawierające dziwnych stopni swobody (rotations) od bardziej sztucznych (pręty, belki, powłoki). Pierwsze noszą nazwę solid elements, czyli elementy-ciała, drugie structural elements, czyli elementy konstrukcyjne. Elementy fizyczne (Solid Elements) Element przestrzenny 1. Brak uproszczeń od strony równań równowagi. Elementy tego typu są autentycznymi elementami 3D 2. W każdym węźle mamy 3 stopnie swobody: przemieszczenia w kierunku X,Y,Z 3. Wyniki są w 100% wynikami numerycznymi 4. Wady tych elementów: bardzo długi czas obliczeń, duże wymagania sprzętowe 5. Zastosowanie: konstrukcję klockowate (trzy wymiary podobne), złącza 6. Dodatkowe uproszczenia: usuwanie zaokrągleń, faz, małych otworów, itp. Płaski stan naprężeń (plane stress) Obciążenie (ściskanie lub rozciąganie) działa tylko w jednej płaszczyźnie modelu W kierunku prostopadłym mamy zerowe naprężenia oraz niezerowe odkształcenia. To pozwala uprościć równania równowagi Wyniki są częściowo numeryczne (przemieszczenia i naprężenia w płaszczyźnie przekroju), częściowo analityczne (zerowe naprężenia normalne i styczne) W każdym węźle mamy 2 stopnie swobody: przemieszczenia w kierunku X,Y na płaszczyźnie Zastosowanie: bardzo ograniczone, często typowo naukowe, pojedyncze części Płaski stan odkształceń (plane strain) y x W płaskim stanie odkształceń mamy brak odkształceń w jednej z płaszczyzn modelu (w danym przypadku ε xx = 0). Odpowiednia składowa naprężeń (σ xx ) jest niezerowa. Obszar zastosowań jest bardzo podobny do p.s.n. Osiowa symetria (axisymmetric) I.Rokach,

3 1. W przypadku symetrii osiowej konstrukcji i obciążenia modelujemy połowę przekroju konstrukcji wzdłuż osi 2. W każdym węźle mamy 2 stopnie swobody: przemieszczenia w kierunku promieniowym i osiowym 3. Wyznaczamy odkształcenia i naprężenia w płaszczyźnie przekroju oraz obwodowe (prostopadłe do płaszczyzny przekroju) 4. Zastosowanie w technice: bardzo szerokie Cechy elementów fizycznych W elementach fizycznych płaskich występuje połączenie rozwiązania numerycznego z dodatkiem teoretycznym. p.s.n.: σ xx = σ xy = σ xz = 0; p.s.o.: ε xx = γ xy = γ xz = 0; osiowa symetria: ε θθ = u/r, γ rθ = γ zθ = 0 Jedynym typem obciążenia jest obciążenie realne: siła lub przemieszczenie przyłożone do powierzchni lub do całej objętości ciała. Brak obciążeń wypadkowych ( kumulacyjnych ) typowych dla elementów konstrukcyjnych (siła skupiona, moment, itp). Elementy konstrukcyjne (Structural Elements) Pręt (lina, kabel) Definicja 1. Element konstrukcji, w którym jeden z wymiarów (np x) jest wielokrotnie większy od pozostałych (x y, z) 2. Element jest raczej prostolinijny (wykrzywiony = belka), obciążenie rozciąganie lub (z ograniczeniami) ściskanie. 3. Element ten sprowadza obiekt 3D do obiektu 1D (osi). W najprostszym przypadku ma 1 stopień swobody w węźle (przemieszczenie osiowe). Uproszczenia dotyczące pola naprężeń Prawda W każdym przekroju prostopadłym do osi pręta działa tylko jeden typ obciążenia siła osiowa. Przy braku obciążenia rozłożonego siła osiowa jest jednakowa dla całego pręta. Ściema W każdym przekroju naprężenie = siła / pole (σ = F/A). O ile relacja σ = F/A nie jest warunkiem koniecznym do używania prętów, ona realnie dość często ma miejsce. Wtedy możemy powiedzieć, że rozkład naprężeń w pręcie faktycznie nie zależy od współrzędnych y, z. W takim przypadku nie ma sensu modelować pręt, jako ciało 3D. Fundamentalna cecha pręta sprowadzenie naprężeń w przekroju do siły osiowej. Równanie równowagi dla pręta zawiera tylko siłę osiową. Tylko ją wyznacza program MES i wyznacza dokładnie. Stałe naprężenie w każdym przekroju nie jest wymagane od elementu konstrukcji, który modelujemy prętem. To może być łańcuch, taśma perforowana, I.Rokach,

4 Istotnym jest to, że modelowany element zachowuje się, jak pręt (kabel, lina) w skali całej konstrukcji. Wskaźnik błędu używany do oceny dokładności naprężeń (obliczanie różnicy naprężeń na granicach ES) w przypadku konstrukcji prętowych działa raczej jakościowo. Skok naprężeń na granicy pomiędzy grubym i cienkim prętami sugeruje raczej błąd samego modelu a nie błąd gęstości siatki. W złączu kilku prętów ani siły osiowe, ani naprężenia nie muszą być jednakowe. F F Modele 2D a szczególnie 3D mogą być sztucznie niestabilne Podsumowując można stwierdzić, że: Wybór elementów prętowych oznacza nasze przekonanie, że w tym elemencie konstrukcji dominuje siła osiowa MES w miarę poprawnie wyznacza tylko tę siłę. Wzór na naprężenia to już dodatek zewnętrzny. Belka Definicja 1. Element konstrukcji, w którym jeden z wymiarów (np x) jest wielokrotnie większy od pozostałych (x y, z). SWS zakłada x 10 max(y, z) 2. Dominujące obciążenie zginanie. Może być wykrzywiony. 3. W każdym węźle mamy 6 stopni swobody: 3 przemieszczenia i 3 obroty Uproszczenia dotyczące pola naprężeń Prawda W każdym przekroju prostopadłym do osi x obciążenie sprowadza się do: max 3 momentów, siły poprzecznej i siły osiowej. Ściema Przekrój belki po obciążeniu pozostaje prostopadły do osi obojętnej (tylko przy braku siły poprzecznej). Ściema Naprężenia normalne w przekroju zmieniają się liniowo. Realnie to jest najprostsza aproksymacja, czasem dość dokładna, czasem (belki mocno wykrzywione) nie. Podobnie jak w przypadku pręta, tu my zakładamy, że podstawową współrzędną, od której zależy pole naprężeń w belce jest x (kierunek wzdłuż osi). Zależności (bardzo uproszczone) naprężeń od pozostałych współrzędnych są brane z teorii. F σ sr = o + M Wnioski praktyczne 1. Przestrzenny rozkład naprężeń normalnych w belce sprowadza się do 1 siły osiowej F o (podobnie jak w pręcie reprezentuje czyste rozciąganie) i 1 (2D) lub 2 (3D) momentów M (reprezentują odchylenie naprężeń od średniej wartości i powstałe wskutek tego zginanie). 2. Analogicznie 1 (2D) lub 2 (3D) siły poprzeczne i moment skrętny reprezentują sumę (dokładniej 3 różne całki po powierzchni przekroju) naprężeń stycznych. 3. Fundamentalna cecha belki sprowadzenie naprężeń w przekroju do momentu(ów) gnącego(ych), momentu skrętnego, siły osiowej i sił(y) poprzecznej(ych). Równanie równowagi dla belki zawiera tylko te składowe. Tylko je wyznacza program MES i wyznacza (dla sił i momentów skupionych w węzłach) dokładnie I.Rokach,

5 Wypaczenie lub deplanacja (warping) przekroju przy skręcaniu Rys z TMG-A_89 Zjawisko to dotyczy tylko profili otwartych (ceownik, teownik, itp.), szczególnie cienkościennych. W wyniku jego kąt skrętu przekroju zmienia się nieliniowo wzdłuż osi belki. Nie dotyczy profili wypełnionych i zamkniętych Moment M pokazany na rysunku powodujący deplanację nazywa się bimomentem i ma nietypowy wymiar (w SI Nm 2 ) Naprężenia w elementach belkowych Można zmusić program MES do obliczenia naprężeń w belkach (SWS robi to), ale będą to naprężenia wyznaczone ze wzorów analitycznych ( obcych dla MES). Wskaźniki błędu używana do oceny dokładności rozwiązania ponownie nie pracują w przypadku połączenia belek. M M Ostateczne podsumowanie Element belkowy jest nieporównanie bardziej skomplikowanym (ale i znacznie dokładniejszym) niż element prętowy Używanie elementów wymaga od inżyniera sporej wiedzy i doświadczenia. Jeżeli program nie pomaga projektantowi (np. w obliczaniu offsetów), to pomylić się bardzo łatwo. W takiej sytuacji warto jeszcze raz przeliczyć konstrukcję, używając jakościowo inny model (np. powłokowy). Powłoka shell lub płyta plate Definicja 1. Element konstrukcji, w którym dwa z wymiary (np x, y) są większe od trzeciego (x, y z) 2. Dominujące obciążenie zginanie. W przypadku dominacji rozciągania (cienkie powłoki) zamiast terminu powłoka używa się membrana. Zwykle membrana płaski stan naprężeń I.Rokach,

6 3. Płyta jest płaska, powłoka wykrzywiona (powierzchnia rury). W większości programów MES używa tylko elementów powłokowych. W wielu programach plate oznacza uproszczony element, w którym działają tylko momenty i brak sił osiowych. 4. W każdym węźle 6 stopni swobody (3 przemieszczenia, 3 obroty) Uproszczenia dotyczące pola naprężeń Prawda W każdym przekroju prostopadłym do płaszczyzny środkowej obciążenie sprowadza się do momentu gnącego, siły poprzecznej i siły osiowej. Ściema Naprężenia normalne w przekroju zmieniają się liniowo. Podobnie jak w przypadku belek to jest najprostsza aproksymacja, czasem dość dokładna, czasem nie. Uwagi praktyczne W odróżnieniu od belek, dla powłok w wielu programach da się policzyć naprężenia w dowolnym punkcie i wyświetlić ich rozkład w 3D. Podobnie jak w prętach i belkach równania równowagi powłok nie zawierają naprężeń. Podstawowe parametry: momenty i siły. Ich program wyznacza bezpośrednio, naprężenia nie. Podsumowanie dla najbardziej opornych Elementy fizyczne Nazwa Do elementów fizycznych (ang. solid element) należą elementy płaskie, które modelują płaski stan naprężeń, płaski stan odkształceń oraz symetrię osiową Cechy Tylko 2 stopnia swobody w każdym węźle Dlaczego nie 3D Rozwiązanie odpowiedniego zagadnienia za pomocą modelu 3D nie da żadnej nowej informacji w porównaniu do wyników modelu uproszczonego Zalety Upraszczają model, przyspieszają obliczenia Wady Połączenie elementów różnych typów (np. płaskich i 3D) w ramach jednego modelu jest skomplikowane lub niemożliwe Elementy konstrukcyjne Nazwa Do elementów konstrukcyjnych (ang. structural element) należą pręty, belki i powłoki Cechy Elementy belkowe i powłokowe mają 6 stopni swobody w każdym węźle, prętowe 3 stopnie Dlaczego nie 3D Rozwiązanie odpowiedniego zagadnienia za pomocą modelu 3D zwykle jest bardzo czasochłonne lub praktycznie niemożliwe Zalety Bardzo upraszczają model, drastycznie przyspieszają obliczenia lub je umożliwiają, relatywnie łatwo Wady Joints hell, wieloznaczne warunki umocowania i obciążenia Wykład został opracowany w LATEXe za pomocą klasy BEAMER, graficznego pakietu PGF/TikZ i pakietu do tworzenia wykresów PGFPLOTS I.Rokach,

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74 Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli

Bardziej szczegółowo

Modelowanie Wspomagające Projektowanie Maszyn

Modelowanie Wspomagające Projektowanie Maszyn Modelowanie Wspomagające Projektowanie Maszyn TEMATY ĆWICZEŃ: 1. Metoda elementów skończonych współczynnik kształtu płaskownika z karbem a. Współczynnik kształtu b. MES i. Preprocesor ii. Procesor iii.

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca Kod przedmiotu: PLPILA02-IPMIBM-I-2p7-2012-S Pozycja planu: B7 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Wytrzymałość materiałów I 2 Rodzaj przedmiotu Podstawowy/obowiązkowy 3 Kierunek

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

PRZEPISY PUBLIKACJA NR 19/P ANALIZA STREFOWEJ WYTRZYMAŁOŚCI KADŁUBA ZBIORNIKOWCA

PRZEPISY PUBLIKACJA NR 19/P ANALIZA STREFOWEJ WYTRZYMAŁOŚCI KADŁUBA ZBIORNIKOWCA PRZEPISY PUBLIKACJA NR 19/P ANALIZA STREFOWEJ WYTRZYMAŁOŚCI KADŁUBA ZBIORNIKOWCA 2010 Publikacje P (Przepisowe) wydawane przez Polski Rejestr Statków są uzupełnieniem lub rozszerzeniem Przepisów i stanowią

Bardziej szczegółowo

WYKORZYSTANIE MSC.MARC DLA ANALIZY WSPÓŁPRACY KONTAKTOWEJ KOŁA I SZYNY

WYKORZYSTANIE MSC.MARC DLA ANALIZY WSPÓŁPRACY KONTAKTOWEJ KOŁA I SZYNY WYKORZYSTANIE MSC.MARC DLA ANALIZY WSPÓŁPRACY KONTAKTOWEJ KOŁA I SZYNY Aleksander Sładkowski Tomasz Kuminek Politechnika Śląska (Katowice) 1. Wstęp Modelowanie współpracy kontaktowej systemu koło szyna

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę

Bardziej szczegółowo

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Wyjaśnienie w sprawie różnic wyników obliczeń statycznych otrzymanych z programu TrussCon Projekt 2D i innych programów

Wyjaśnienie w sprawie różnic wyników obliczeń statycznych otrzymanych z programu TrussCon Projekt 2D i innych programów Wyjaśnienie w sprawie różnic wyników obliczeń statycznych otrzymanych z programu TrussCon Projekt 2D i innych programów Szanowni Państwo! W związku z otrzymywanymi pytaniami dlaczego wyniki obliczeń uzyskanych

Bardziej szczegółowo

9. Mimośrodowe działanie siły

9. Mimośrodowe działanie siły 9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29

ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29 ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29 1.3. Płyta żelbetowa Ten przykład przedstawia definicję i analizę prostej płyty żelbetowej z otworem. Jednostki danych: (m)

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW.

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. 1 Wiadomości wstępne 1.1 Zakres zastosowania stali do konstrukcji 1.2 Korzyści z zastosowania stali do konstrukcji 1.3 Podstawowe części i elementy

Bardziej szczegółowo

Pale wbijane z rur stalowych zamkniętych

Pale wbijane z rur stalowych zamkniętych Pale Atlas Pale Omega Pale TUBEX Pale wbijane z rur stalowych zamkniętych Pale wbijane z rur stalowych otwartych Pale wbijane z rur stalowych otwartych Mikropale Mikropale są przydatne do wzmacniania fundamentów,

Bardziej szczegółowo

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Szybkobieżne Pojazdy Gąsienicowe (16) nr 2, 2002 Alicja ZIELIŃSKA ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Streszczenie: W artykule przedstawiono wyniki obliczeń sprawdzających poprawność zastosowanych

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

CZĘŚĆ II PARAMETRYCZNE PROJEKTOWANIE 2D

CZĘŚĆ II PARAMETRYCZNE PROJEKTOWANIE 2D CZĘŚĆ II PARAMETRYCZNE PROJEKTOWANIE 2D Projektowanie parametryczne jest możliwe wyłącznie za pomocą pełnej wersji programu AutoCAD. AutoCAD LT ma bardzo ograniczone możliwości w tym zakresie. Pozwala

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński r inż. Janusz ębiński Mechanika teoretyczna zastosowanie metody prac wirtualnych 1. Metoda prac wirtualnych zadanie 1 1.1. Zadanie 1 Na rysunku 1.1 przedstawiono belkę złożoną z pionowym prętem F, na którą

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji

Bardziej szczegółowo

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA Wykorzystanie pakietu MARC/MENTAT do modelowania naprężeń cieplnych Spis treści Pole temperatury Przykład

Bardziej szczegółowo

Hale o konstrukcji słupowo-ryglowej

Hale o konstrukcji słupowo-ryglowej Hale o konstrukcji słupowo-ryglowej SCHEMATY KONSTRUKCYJNE Elementy konstrukcji hal z transportem podpartym: - prefabrykowane, żelbetowe płyty dachowe zmonolityzowane w sztywne tarcze lub przekrycie lekkie

Bardziej szczegółowo

TOLERANCJE WYMIAROWE SAPA

TOLERANCJE WYMIAROWE SAPA TOLERANCJE WYMIAROWE SAPA Tolerancje wymiarowe SAPA zapewniają powtarzalność wymiarów w normalnych warunkach produkcyjnych. Obowiązują one dla wymiarów, dla których nie poczyniono innych ustaleń w trakcie

Bardziej szczegółowo

Advance Design 2015 / SP2

Advance Design 2015 / SP2 Advance Design 2015 / SP2 Service Pack 2 do ADVANCE Design 2015 przynosi ponad 150 ulepszeń i poprawek. POLSKIE ZAŁĄCZNIKI KRAJOWE DO EUROKODÓW Advance Design 2015 SP2 umożliwia prowadzenie obliczeń z

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM ZESP1 (12.91) Autor programu: Zbigniew Marek Michniowski Program do analizy wytrzymałościowej belek stalowych współpracujących z płytą żelbetową. PRZEZNACZENIE I OPIS PROGRAMU Program służy do

Bardziej szczegółowo

MES1pr 02 Konstrukcje szkieletowe 2. Belki

MES1pr 02 Konstrukcje szkieletowe 2. Belki MES1pr 02 Kontrukcje zkieletowe 2. Belki Kiedy używamy modeli belkowe? Elementy kontrukcyjne, w których jeden z wymiarów jet wielokrotnie (> 4 razy) więkzy od innych i zginanie lub kręcanie ma wpływ na

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

R2D2-Rama 2D - moduł obliczeniowy

R2D2-Rama 2D - moduł obliczeniowy R2D2-Rama 2D - moduł obliczeniowy Program R2D2-Rama 2D przeznaczony jest dla konstruktorów budowlanych. Służy do przeprowadzania obliczeń statycznych i wymiarowania płaskich układów prętowych. Dzięki wygodnemu

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne PROJEKT WYBRANYCH ELEMENTÓW KONSTRUKCJI ŻELBETOWEJ BUDYNKU BIUROWEGO DESIGN FOR SELECTED

Bardziej szczegółowo

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonej kratownicy

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

OBLICZANIE KÓŁK ZĘBATYCH

OBLICZANIE KÓŁK ZĘBATYCH OBLICZANIE KÓŁK ZĘBATYCH koło podziałowe linia przyporu P R P N P O koło podziałowe Najsilniejsze zginanie zęba następuje wówczas, gdy siła P N jest przyłożona u wierzchołka zęba. Siłę P N można rozłożyć

Bardziej szczegółowo

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH PROJEKT METODA ELEMENTÓW SKOŃCZONYCH z wykorzystaniem programu COMSOL Multiphysics 3.4 Prowadzący: Dr hab. prof. Tomasz Stręk Wykonali: Nieścioruk Maciej Piszczygłowa Mateusz MiBM IME rok IV sem.7 Spis

Bardziej szczegółowo

Metoda Elementów Brzegowych LABORATORIUM

Metoda Elementów Brzegowych LABORATORIUM Akademia Techniczno-Humanistyczna W Bielsku-Białej Metoda Elementów Brzegowych LABORATORIUM INSTRUKCJE DO ĆWICZEŃ Ćwiczenie 1. Zapoznanie z obsługą systemu BEASY Celem ćwiczenia jest zapoznanie się z obsługą

Bardziej szczegółowo

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów) Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania

Bardziej szczegółowo

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1.1.1. Człon mechanizmu Człon mechanizmu to element konstrukcyjny o dowolnym kształcie, ruchomy bądź nieruchomy, zwany wtedy podstawą, niepodzielny w aspekcie

Bardziej szczegółowo

Przedmiot: Mechanika z Wytrzymałością materiałów

Przedmiot: Mechanika z Wytrzymałością materiałów Przedmiot: Mechanika z Wytrzymałością materiałów kierunek: ZARZĄDZANIE i INŻYNIERIA PRODUKCJI studia niestacjonarne pierwszego stopnia - N1 rok 2, semestr letni Kurs obejmuje: Wykłady (12 h) Ćwiczenia

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie

BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie 1. Materiał budowlany "drewno" 1.1. Budowa drewna 1.2. Anizotropia drewna 1.3. Gęstość drewna 1.4. Szerokość słojów rocznych 1.5. Wilgotność drewna 1.6.

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Wymiarowanie sztywnych ław i stóp fundamentowych

Wymiarowanie sztywnych ław i stóp fundamentowych Wymiarowanie sztywnych ław i stóp fundamentowych Podstawowe zasady 1. Odpór podłoża przyjmuje się jako liniowy (dla ławy - trapez, dla stopy graniastosłup o podstawie B x L ścięty płaszczyzną). 2. Projektowanie

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:

Bardziej szczegółowo

1.1. Przykład projektowania konstrukcji prętowej z wykorzystaniem ekranów systemu ROBOT Millennium

1.1. Przykład projektowania konstrukcji prętowej z wykorzystaniem ekranów systemu ROBOT Millennium ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 3 1. PRZYKŁADY UWAGA: W poniższych przykładach została przyjęta następująca zasada oznaczania definicji początku i końca pręta

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU. Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PROJEKTOWANIA Z CAD 2. Kod przedmiotu: Ko 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM WALL1 (10.92) Autor programu: Zbigniew Marek Michniowski Program do wyznaczania głębokości posadowienia ścianek szczelnych. PRZEZNACZENIE I OPIS PROGRAMU Program służy do wyznaczanie minimalnej

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

Lista bezpłatnych aktualizacji programów SPECBUD

Lista bezpłatnych aktualizacji programów SPECBUD Lista bezpłatnych programów SPECBUD Opis aktualizacje dla programów Pakietu SPECBUD v.11 124 2014.12.04 SPS 1.1.8.100 124 2014.12.04 BŻ 4.0.20.2196 124 2014.12.04 SP 3.0.24.2100 2. Wprowadzono drobne usprawnienia

Bardziej szczegółowo

Mechanika ogólna statyka

Mechanika ogólna statyka Mechanika ogóna statyka kierunek Budownictwo, sem. II materiały pomocnicze do ćwiczeń opracowanie: dr inż. iotr Dębski, dr inż. Irena Wagner TREŚĆ WYKŁADU ojęcia podstawowe, działy mechaniki. ojęcie punktu

Bardziej szczegółowo

Projektowanie 3D Tworzenie modeli przez wyciągnięcie profilu po krzywej SIEMENS NX Sweep Along Guide

Projektowanie 3D Tworzenie modeli przez wyciągnięcie profilu po krzywej SIEMENS NX Sweep Along Guide Projektowanie 3D Narzędzie do tworzenia modeli bryłowych lub powierzchniowych o stałym przekroju opartych na krzywoliniowym profilu otwartym. Okno dialogowe zawiera następujące funkcje: Section wybór profilu

Bardziej szczegółowo

10 powodów przemawiających za wyborem oprogramowania Moldex3D

10 powodów przemawiających za wyborem oprogramowania Moldex3D 10 powodów przemawiających za wyborem oprogramowania Moldex3D 1. CORETECH jest jednym z największych niezależnych światowych dostawców rozwiązań CAE Około 30 lat doświadczeń na rynku symulacji wtrysku.

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge Rok szkolny 2014/2015r.

Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge Rok szkolny 2014/2015r. Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge - Definicja geodezji, jej podział i zadania. - Miary stopniowe. - Miary długości. - Miary powierzchni pola. - Miary gradowe.

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11

1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11 SPIS TREŚCI 1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11 1. ZARYS DYNAMIKI MASZYN 13 1.1. Charakterystyka ogólna 13 1.2. Drgania mechaniczne 17 1.2.1. Pojęcia podstawowe

Bardziej szczegółowo

1. Płyta: Płyta Pł1.1

1. Płyta: Płyta Pł1.1 Plik: Płyta Pł1.1.rtd Projekt: Płyta Pł1.1 1. Płyta: Płyta Pł1.1 1.1. Zbrojenie: Typ : Przedszk Kierunek zbrojenia głównego : 0 Klasa zbrojenia głównego : A-III (34GS); wytrzymałość charakterystyczna =

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

4. Czyste zginanie. 4.1 Podstawowe definicje M P. Rys. 4.1. Moment statyczny siły względem punktu.

4. Czyste zginanie. 4.1 Podstawowe definicje M P. Rys. 4.1. Moment statyczny siły względem punktu. 4. CZYSTE ZGINNIE 1 4. 4. Czyste zginanie 4.1 odstawowe definicje Momentem M siły względem punktu O nazywamy iloczyn wektorowy wektora wodzącego r oraz wektora siły. M= r. (4.1) Wektor r jest promieniem

Bardziej szczegółowo

Badanie wpływu plastyczności zbrojenia na zachowanie się dwuprzęsłowej belki żelbetowej. Opracowanie: Centrum Promocji Jakości Stali

Badanie wpływu plastyczności zbrojenia na zachowanie się dwuprzęsłowej belki żelbetowej. Opracowanie: Centrum Promocji Jakości Stali Badanie wpływu plastyczności zbrojenia na zachowanie się dwuprzęsłowej belki żelbetowej Opracowanie: Spis treści Strona 1. Cel badania 3 2. Opis stanowiska oraz modeli do badań 3 2.1. Modele do badań 3

Bardziej szczegółowo

ANALIZA RAMY PRZESTRZENNEJ W SYSTEMIE ROBOT. Adam Wosatko Tomasz Żebro

ANALIZA RAMY PRZESTRZENNEJ W SYSTEMIE ROBOT. Adam Wosatko Tomasz Żebro ANALIZA RAMY PRZESTRZENNEJ W SYSTEMIE ROBOT Adam Wosatko Tomasz Żebro v. 0.1, marzec 2009 2 1. Typ zadania i materiał Typ zadania. Spośród możliwych zadań(patrz rys. 1(a)) wybieramy statykę ramy przestrzennej

Bardziej szczegółowo

2.1. Wyznaczenie nośności obliczeniowej przekroju przy jednokierunkowym zginaniu

2.1. Wyznaczenie nośności obliczeniowej przekroju przy jednokierunkowym zginaniu Obliczenia statyczne ekranu - 1 - dw nr 645 1. OBLICZENIE SŁUPA H = 4,00 m (wg PN-90/B-0300) wysokość słupa H 4 m rozstaw słupów l o 6.15 m 1.1. Obciążenia 1.1.1. Obciążenia poziome od wiatru ( wg PN-B-0011:1977.

Bardziej szczegółowo

BADANIA GRUNTU W APARACIE RC/TS.

BADANIA GRUNTU W APARACIE RC/TS. Str.1 SZCZEGÓŁOWE WYPROWADZENIA WZORÓW DO PUBLIKACJI BADANIA GRUNTU W APARACIE RC/TS. Dyka I., Srokosz P.E., InŜynieria Morska i Geotechnika 6/2012, s.700-707 III. Wymuszone, cykliczne skręcanie Rozpatrujemy

Bardziej szczegółowo

Rys. 29. Schemat obliczeniowy płyty biegowej i spoczników

Rys. 29. Schemat obliczeniowy płyty biegowej i spoczników Przykład obliczeniowy schodów wg EC-2 a) Zebranie obciąŝeń Szczegóły geometryczne i konstrukcyjne przedstawiono poniŝej: Rys. 28. Wymiary klatki schodowej w rzucie poziomym 100 224 20 14 9x 17,4/28,0 157

Bardziej szczegółowo

SAS 670/800. Zbrojenie wysokiej wytrzymałości

SAS 670/800. Zbrojenie wysokiej wytrzymałości SAS 670/800 Zbrojenie wysokiej wytrzymałości SAS 670/800 zbrojenie wysokiej wytrzymałości Przewagę zbrojenia wysokiej wytrzymałości SAS 670/800 nad zbrojeniem typowym można scharakteryzować następująco:

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych

Bardziej szczegółowo

Wyznaczanie koncentracji naprężeń w elemencie rurowym z otworem

Wyznaczanie koncentracji naprężeń w elemencie rurowym z otworem POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszyn Instrukcja do zajęć laboratoryjnych z przedmiotu: PODSTAWY KONSTRUKCJI MASZYN II Temat ćwiczenia: Wyznaczanie koncentracji

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Metoda Elementów skończonych PROJEKT. COMSOL Multiphysics 3.4

Metoda Elementów skończonych PROJEKT. COMSOL Multiphysics 3.4 POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA MECHANIKA I BUDOWA MASZYN KONSTRUCJA MASZYN I URZĄDZEŃ Rok akademicki 2013/14, sem VII Metoda Elementów skończonych PROJEKT COMSOL Multiphysics

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2 Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2 Jan Bródka, Aleksander Kozłowski (red.) SPIS TREŚCI: 7. Węzły kratownic (Jan Bródka) 11 7.1. Wprowadzenie 11 7.2. Węzły płaskich

Bardziej szczegółowo

Definiowanie układu - czyli lekcja 1.

Definiowanie układu - czyli lekcja 1. Definiowanie układu - czyli lekcja 1. Ten krótki kurs obsługi programu chciałbym zacząć od prawidłowego zdefiniowania układu, ponieważ jest to pierwsza czynność jaką musimy wykonać po zetknięciu się z

Bardziej szczegółowo