Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS"

Transkrypt

1 MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0). Krok 1. Wstępna siatka Robimy wstępną (zwykle domyślną) siatkę, sprawdzamy jej jakość, przeprowadzamy obliczenia i robimy wstępną analizę wyników: 1. Sprawdzenie poprawności umocowania/obciążenia przez analizę reakcji oraz ogólnego wyglądu konstrukcji odkształconej. Jeżeli są błędy wracamy do kroku 0 2. Czy dalsza analiza ma sens? Jeżeli wynik (naprężenia, ugięcie, itp.) wyraźnie przekracza dopuszczalny poziom, to dalsza analiza traci sens i trzeba zmienić samą konstrukcję 3. Za pomocą wskaźników błędu oceniamy dokładność rozwiązania oraz wyznaczamy strefy, w których gęstość siatki ma być zmieniona 4. Decyzja czy dalsze obliczenia są konieczne i możliwe? Kroki 2-N. Osiągnięcie wyników zbieżnych o wysokiej dokładności Jednym z celów tych kroków jest eliminacja elementów modelu (np. karbów) powodujących rozbieżność wyników 1. Generujemy nową siatkę o zmienionej gęstości, sprawdzamy jej jakość, ew. zmieniamy siatkę 2. Przeprowadzamy obliczenia, oceniamy dokładność wyników (wskaźnik błędu, różnica pomiędzy wynikami po uśrednianiu węzłowym i elementowym, itp.) 3. W przypadku rozbieżności zmieniamy model, w przypadku osiągnięcia zbieżności kończymy obliczenia Część II Uproszczenia modelu 1. Elementy prostsze od 3D Typy modeli elementów konstrukcji Generalne zasady 1. Żyjemy w świecie 3D, każdy element konstrukcji ciało 3D 2. Czy musimy w MES wszystko modelować używając elementów 3D? Niekoniecznie. 3. Opis geometrii ciała zawsze wymaga 3 niezależnych wymiarów, opis pól naprężeń/odkształceń może być prostszy. W MES modelujemy fizykę, nie geometrię! Model MES model CAD. Jeżeli w jakieś części konstrukcji dominują naprężenia w jednym kierunku, to ją można modelować za pomocą prostych typów elementów. 4. Używanie elementów uproszczonych (wszystkie poza 3D) zawsze oznacza połączenie rozwiązania analitycznego z numerycznym. 5. Czy można uparcie używać tylko elementy 3D (a la SimulationXpress, DesignCheck)? Skutki: duży czas obliczeń, niska dokładność, brak uniwersalnych algorytmów generacji siatek 3D dla wszystkich typów elementów.

2 6. Podstawowe zasady modelowania w MES: 1) Upraszczamy; 2) Upraszczamy; 3) Upraszczamy... W literaturze angielskojęzycznej często rozróżnia się elementy skończone podobne do obiektów rzeczywistych (3D i płaskie) i niezawierające dziwnych stopni swobody (rotations) od bardziej sztucznych (pręty, belki, powłoki). Pierwsze noszą nazwę solid elements, czyli elementy-ciała, drugie structural elements, czyli elementy konstrukcyjne. Elementy fizyczne (Solid Elements) Element przestrzenny 1. Brak uproszczeń od strony równań równowagi. Elementy tego typu są autentycznymi elementami 3D 2. W każdym węźle mamy 3 stopnie swobody: przemieszczenia w kierunku X,Y,Z 3. Wyniki są w 100% wynikami numerycznymi 4. Wady tych elementów: bardzo długi czas obliczeń, duże wymagania sprzętowe 5. Zastosowanie: konstrukcję klockowate (trzy wymiary podobne), złącza 6. Dodatkowe uproszczenia: usuwanie zaokrągleń, faz, małych otworów, itp. Płaski stan naprężeń (plane stress) Obciążenie (ściskanie lub rozciąganie) działa tylko w jednej płaszczyźnie modelu W kierunku prostopadłym mamy zerowe naprężenia oraz niezerowe odkształcenia. To pozwala uprościć równania równowagi Wyniki są częściowo numeryczne (przemieszczenia i naprężenia w płaszczyźnie przekroju), częściowo analityczne (zerowe naprężenia normalne i styczne) W każdym węźle mamy 2 stopnie swobody: przemieszczenia w kierunku X,Y na płaszczyźnie Zastosowanie: bardzo ograniczone, często typowo naukowe, pojedyncze części Płaski stan odkształceń (plane strain) y x W płaskim stanie odkształceń mamy brak odkształceń w jednej z płaszczyzn modelu (w danym przypadku ε xx = 0). Odpowiednia składowa naprężeń (σ xx ) jest niezerowa. Obszar zastosowań jest bardzo podobny do p.s.n. Osiowa symetria (axisymmetric) I.Rokach,

3 1. W przypadku symetrii osiowej konstrukcji i obciążenia modelujemy połowę przekroju konstrukcji wzdłuż osi 2. W każdym węźle mamy 2 stopnie swobody: przemieszczenia w kierunku promieniowym i osiowym 3. Wyznaczamy odkształcenia i naprężenia w płaszczyźnie przekroju oraz obwodowe (prostopadłe do płaszczyzny przekroju) 4. Zastosowanie w technice: bardzo szerokie Cechy elementów fizycznych W elementach fizycznych płaskich występuje połączenie rozwiązania numerycznego z dodatkiem teoretycznym. p.s.n.: σ xx = σ xy = σ xz = 0; p.s.o.: ε xx = γ xy = γ xz = 0; osiowa symetria: ε θθ = u/r, γ rθ = γ zθ = 0 Jedynym typem obciążenia jest obciążenie realne: siła lub przemieszczenie przyłożone do powierzchni lub do całej objętości ciała. Brak obciążeń wypadkowych ( kumulacyjnych ) typowych dla elementów konstrukcyjnych (siła skupiona, moment, itp). Elementy konstrukcyjne (Structural Elements) Pręt (lina, kabel) Definicja 1. Element konstrukcji, w którym jeden z wymiarów (np x) jest wielokrotnie większy od pozostałych (x y, z) 2. Element jest raczej prostolinijny (wykrzywiony = belka), obciążenie rozciąganie lub (z ograniczeniami) ściskanie. 3. Element ten sprowadza obiekt 3D do obiektu 1D (osi). W najprostszym przypadku ma 1 stopień swobody w węźle (przemieszczenie osiowe). Uproszczenia dotyczące pola naprężeń Prawda W każdym przekroju prostopadłym do osi pręta działa tylko jeden typ obciążenia siła osiowa. Przy braku obciążenia rozłożonego siła osiowa jest jednakowa dla całego pręta. Ściema W każdym przekroju naprężenie = siła / pole (σ = F/A). O ile relacja σ = F/A nie jest warunkiem koniecznym do używania prętów, ona realnie dość często ma miejsce. Wtedy możemy powiedzieć, że rozkład naprężeń w pręcie faktycznie nie zależy od współrzędnych y, z. W takim przypadku nie ma sensu modelować pręt, jako ciało 3D. Fundamentalna cecha pręta sprowadzenie naprężeń w przekroju do siły osiowej. Równanie równowagi dla pręta zawiera tylko siłę osiową. Tylko ją wyznacza program MES i wyznacza dokładnie. Stałe naprężenie w każdym przekroju nie jest wymagane od elementu konstrukcji, który modelujemy prętem. To może być łańcuch, taśma perforowana, I.Rokach,

4 Istotnym jest to, że modelowany element zachowuje się, jak pręt (kabel, lina) w skali całej konstrukcji. Wskaźnik błędu używany do oceny dokładności naprężeń (obliczanie różnicy naprężeń na granicach ES) w przypadku konstrukcji prętowych działa raczej jakościowo. Skok naprężeń na granicy pomiędzy grubym i cienkim prętami sugeruje raczej błąd samego modelu a nie błąd gęstości siatki. W złączu kilku prętów ani siły osiowe, ani naprężenia nie muszą być jednakowe. F F Modele 2D a szczególnie 3D mogą być sztucznie niestabilne Podsumowując można stwierdzić, że: Wybór elementów prętowych oznacza nasze przekonanie, że w tym elemencie konstrukcji dominuje siła osiowa MES w miarę poprawnie wyznacza tylko tę siłę. Wzór na naprężenia to już dodatek zewnętrzny. Belka Definicja 1. Element konstrukcji, w którym jeden z wymiarów (np x) jest wielokrotnie większy od pozostałych (x y, z). SWS zakłada x 10 max(y, z) 2. Dominujące obciążenie zginanie. Może być wykrzywiony. 3. W każdym węźle mamy 6 stopni swobody: 3 przemieszczenia i 3 obroty Uproszczenia dotyczące pola naprężeń Prawda W każdym przekroju prostopadłym do osi x obciążenie sprowadza się do: max 3 momentów, siły poprzecznej i siły osiowej. Ściema Przekrój belki po obciążeniu pozostaje prostopadły do osi obojętnej (tylko przy braku siły poprzecznej). Ściema Naprężenia normalne w przekroju zmieniają się liniowo. Realnie to jest najprostsza aproksymacja, czasem dość dokładna, czasem (belki mocno wykrzywione) nie. Podobnie jak w przypadku pręta, tu my zakładamy, że podstawową współrzędną, od której zależy pole naprężeń w belce jest x (kierunek wzdłuż osi). Zależności (bardzo uproszczone) naprężeń od pozostałych współrzędnych są brane z teorii. F σ sr = o + M Wnioski praktyczne 1. Przestrzenny rozkład naprężeń normalnych w belce sprowadza się do 1 siły osiowej F o (podobnie jak w pręcie reprezentuje czyste rozciąganie) i 1 (2D) lub 2 (3D) momentów M (reprezentują odchylenie naprężeń od średniej wartości i powstałe wskutek tego zginanie). 2. Analogicznie 1 (2D) lub 2 (3D) siły poprzeczne i moment skrętny reprezentują sumę (dokładniej 3 różne całki po powierzchni przekroju) naprężeń stycznych. 3. Fundamentalna cecha belki sprowadzenie naprężeń w przekroju do momentu(ów) gnącego(ych), momentu skrętnego, siły osiowej i sił(y) poprzecznej(ych). Równanie równowagi dla belki zawiera tylko te składowe. Tylko je wyznacza program MES i wyznacza (dla sił i momentów skupionych w węzłach) dokładnie I.Rokach,

5 Wypaczenie lub deplanacja (warping) przekroju przy skręcaniu Rys z TMG-A_89 Zjawisko to dotyczy tylko profili otwartych (ceownik, teownik, itp.), szczególnie cienkościennych. W wyniku jego kąt skrętu przekroju zmienia się nieliniowo wzdłuż osi belki. Nie dotyczy profili wypełnionych i zamkniętych Moment M pokazany na rysunku powodujący deplanację nazywa się bimomentem i ma nietypowy wymiar (w SI Nm 2 ) Naprężenia w elementach belkowych Można zmusić program MES do obliczenia naprężeń w belkach (SWS robi to), ale będą to naprężenia wyznaczone ze wzorów analitycznych ( obcych dla MES). Wskaźniki błędu używana do oceny dokładności rozwiązania ponownie nie pracują w przypadku połączenia belek. M M Ostateczne podsumowanie Element belkowy jest nieporównanie bardziej skomplikowanym (ale i znacznie dokładniejszym) niż element prętowy Używanie elementów wymaga od inżyniera sporej wiedzy i doświadczenia. Jeżeli program nie pomaga projektantowi (np. w obliczaniu offsetów), to pomylić się bardzo łatwo. W takiej sytuacji warto jeszcze raz przeliczyć konstrukcję, używając jakościowo inny model (np. powłokowy). Powłoka shell lub płyta plate Definicja 1. Element konstrukcji, w którym dwa z wymiary (np x, y) są większe od trzeciego (x, y z) 2. Dominujące obciążenie zginanie. W przypadku dominacji rozciągania (cienkie powłoki) zamiast terminu powłoka używa się membrana. Zwykle membrana płaski stan naprężeń I.Rokach,

6 3. Płyta jest płaska, powłoka wykrzywiona (powierzchnia rury). W większości programów MES używa tylko elementów powłokowych. W wielu programach plate oznacza uproszczony element, w którym działają tylko momenty i brak sił osiowych. 4. W każdym węźle 6 stopni swobody (3 przemieszczenia, 3 obroty) Uproszczenia dotyczące pola naprężeń Prawda W każdym przekroju prostopadłym do płaszczyzny środkowej obciążenie sprowadza się do momentu gnącego, siły poprzecznej i siły osiowej. Ściema Naprężenia normalne w przekroju zmieniają się liniowo. Podobnie jak w przypadku belek to jest najprostsza aproksymacja, czasem dość dokładna, czasem nie. Uwagi praktyczne W odróżnieniu od belek, dla powłok w wielu programach da się policzyć naprężenia w dowolnym punkcie i wyświetlić ich rozkład w 3D. Podobnie jak w prętach i belkach równania równowagi powłok nie zawierają naprężeń. Podstawowe parametry: momenty i siły. Ich program wyznacza bezpośrednio, naprężenia nie. Podsumowanie dla najbardziej opornych Elementy fizyczne Nazwa Do elementów fizycznych (ang. solid element) należą elementy płaskie, które modelują płaski stan naprężeń, płaski stan odkształceń oraz symetrię osiową Cechy Tylko 2 stopnia swobody w każdym węźle Dlaczego nie 3D Rozwiązanie odpowiedniego zagadnienia za pomocą modelu 3D nie da żadnej nowej informacji w porównaniu do wyników modelu uproszczonego Zalety Upraszczają model, przyspieszają obliczenia Wady Połączenie elementów różnych typów (np. płaskich i 3D) w ramach jednego modelu jest skomplikowane lub niemożliwe Elementy konstrukcyjne Nazwa Do elementów konstrukcyjnych (ang. structural element) należą pręty, belki i powłoki Cechy Elementy belkowe i powłokowe mają 6 stopni swobody w każdym węźle, prętowe 3 stopnie Dlaczego nie 3D Rozwiązanie odpowiedniego zagadnienia za pomocą modelu 3D zwykle jest bardzo czasochłonne lub praktycznie niemożliwe Zalety Bardzo upraszczają model, drastycznie przyspieszają obliczenia lub je umożliwiają, relatywnie łatwo Wady Joints hell, wieloznaczne warunki umocowania i obciążenia Wykład został opracowany w LATEXe za pomocą klasy BEAMER, graficznego pakietu PGF/TikZ i pakietu do tworzenia wykresów PGFPLOTS I.Rokach,

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74 Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

WYKORZYSTANIE MSC.MARC DLA ANALIZY WSPÓŁPRACY KONTAKTOWEJ KOŁA I SZYNY

WYKORZYSTANIE MSC.MARC DLA ANALIZY WSPÓŁPRACY KONTAKTOWEJ KOŁA I SZYNY WYKORZYSTANIE MSC.MARC DLA ANALIZY WSPÓŁPRACY KONTAKTOWEJ KOŁA I SZYNY Aleksander Sładkowski Tomasz Kuminek Politechnika Śląska (Katowice) 1. Wstęp Modelowanie współpracy kontaktowej systemu koło szyna

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę

Bardziej szczegółowo

ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29

ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29 ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29 1.3. Płyta żelbetowa Ten przykład przedstawia definicję i analizę prostej płyty żelbetowej z otworem. Jednostki danych: (m)

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

9. Mimośrodowe działanie siły

9. Mimośrodowe działanie siły 9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.

Bardziej szczegółowo

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie

Bardziej szczegółowo

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Szybkobieżne Pojazdy Gąsienicowe (16) nr 2, 2002 Alicja ZIELIŃSKA ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Streszczenie: W artykule przedstawiono wyniki obliczeń sprawdzających poprawność zastosowanych

Bardziej szczegółowo

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

R2D2-Rama 2D - moduł obliczeniowy

R2D2-Rama 2D - moduł obliczeniowy R2D2-Rama 2D - moduł obliczeniowy Program R2D2-Rama 2D przeznaczony jest dla konstruktorów budowlanych. Służy do przeprowadzania obliczeń statycznych i wymiarowania płaskich układów prętowych. Dzięki wygodnemu

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

Hale o konstrukcji słupowo-ryglowej

Hale o konstrukcji słupowo-ryglowej Hale o konstrukcji słupowo-ryglowej SCHEMATY KONSTRUKCYJNE Elementy konstrukcji hal z transportem podpartym: - prefabrykowane, żelbetowe płyty dachowe zmonolityzowane w sztywne tarcze lub przekrycie lekkie

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA Wykorzystanie pakietu MARC/MENTAT do modelowania naprężeń cieplnych Spis treści Pole temperatury Przykład

Bardziej szczegółowo

BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie

BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie 1. Materiał budowlany "drewno" 1.1. Budowa drewna 1.2. Anizotropia drewna 1.3. Gęstość drewna 1.4. Szerokość słojów rocznych 1.5. Wilgotność drewna 1.6.

Bardziej szczegółowo

MES1pr 02 Konstrukcje szkieletowe 2. Belki

MES1pr 02 Konstrukcje szkieletowe 2. Belki MES1pr 02 Kontrukcje zkieletowe 2. Belki Kiedy używamy modeli belkowe? Elementy kontrukcyjne, w których jeden z wymiarów jet wielokrotnie (> 4 razy) więkzy od innych i zginanie lub kręcanie ma wpływ na

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU. Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PROJEKTOWANIA Z CAD 2. Kod przedmiotu: Ko 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn

Bardziej szczegółowo

ANALIZA RAMY PRZESTRZENNEJ W SYSTEMIE ROBOT. Adam Wosatko Tomasz Żebro

ANALIZA RAMY PRZESTRZENNEJ W SYSTEMIE ROBOT. Adam Wosatko Tomasz Żebro ANALIZA RAMY PRZESTRZENNEJ W SYSTEMIE ROBOT Adam Wosatko Tomasz Żebro v. 0.1, marzec 2009 2 1. Typ zadania i materiał Typ zadania. Spośród możliwych zadań(patrz rys. 1(a)) wybieramy statykę ramy przestrzennej

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:

Bardziej szczegółowo

10 powodów przemawiających za wyborem oprogramowania Moldex3D

10 powodów przemawiających za wyborem oprogramowania Moldex3D 10 powodów przemawiających za wyborem oprogramowania Moldex3D 1. CORETECH jest jednym z największych niezależnych światowych dostawców rozwiązań CAE Około 30 lat doświadczeń na rynku symulacji wtrysku.

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonej kratownicy

Bardziej szczegółowo

CZĘŚĆ II PARAMETRYCZNE PROJEKTOWANIE 2D

CZĘŚĆ II PARAMETRYCZNE PROJEKTOWANIE 2D CZĘŚĆ II PARAMETRYCZNE PROJEKTOWANIE 2D Projektowanie parametryczne jest możliwe wyłącznie za pomocą pełnej wersji programu AutoCAD. AutoCAD LT ma bardzo ograniczone możliwości w tym zakresie. Pozwala

Bardziej szczegółowo

Metoda Elementów skończonych PROJEKT. COMSOL Multiphysics 3.4

Metoda Elementów skończonych PROJEKT. COMSOL Multiphysics 3.4 POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA MECHANIKA I BUDOWA MASZYN KONSTRUCJA MASZYN I URZĄDZEŃ Rok akademicki 2013/14, sem VII Metoda Elementów skończonych PROJEKT COMSOL Multiphysics

Bardziej szczegółowo

TOLERANCJE WYMIAROWE SAPA

TOLERANCJE WYMIAROWE SAPA TOLERANCJE WYMIAROWE SAPA Tolerancje wymiarowe SAPA zapewniają powtarzalność wymiarów w normalnych warunkach produkcyjnych. Obowiązują one dla wymiarów, dla których nie poczyniono innych ustaleń w trakcie

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Badanie wpływu plastyczności zbrojenia na zachowanie się dwuprzęsłowej belki żelbetowej. Opracowanie: Centrum Promocji Jakości Stali

Badanie wpływu plastyczności zbrojenia na zachowanie się dwuprzęsłowej belki żelbetowej. Opracowanie: Centrum Promocji Jakości Stali Badanie wpływu plastyczności zbrojenia na zachowanie się dwuprzęsłowej belki żelbetowej Opracowanie: Spis treści Strona 1. Cel badania 3 2. Opis stanowiska oraz modeli do badań 3 2.1. Modele do badań 3

Bardziej szczegółowo

2.1. Wyznaczenie nośności obliczeniowej przekroju przy jednokierunkowym zginaniu

2.1. Wyznaczenie nośności obliczeniowej przekroju przy jednokierunkowym zginaniu Obliczenia statyczne ekranu - 1 - dw nr 645 1. OBLICZENIE SŁUPA H = 4,00 m (wg PN-90/B-0300) wysokość słupa H 4 m rozstaw słupów l o 6.15 m 1.1. Obciążenia 1.1.1. Obciążenia poziome od wiatru ( wg PN-B-0011:1977.

Bardziej szczegółowo

SAS 670/800. Zbrojenie wysokiej wytrzymałości

SAS 670/800. Zbrojenie wysokiej wytrzymałości SAS 670/800 Zbrojenie wysokiej wytrzymałości SAS 670/800 zbrojenie wysokiej wytrzymałości Przewagę zbrojenia wysokiej wytrzymałości SAS 670/800 nad zbrojeniem typowym można scharakteryzować następująco:

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

1. Płyta: Płyta Pł1.1

1. Płyta: Płyta Pł1.1 Plik: Płyta Pł1.1.rtd Projekt: Płyta Pł1.1 1. Płyta: Płyta Pł1.1 1.1. Zbrojenie: Typ : Przedszk Kierunek zbrojenia głównego : 0 Klasa zbrojenia głównego : A-III (34GS); wytrzymałość charakterystyczna =

Bardziej szczegółowo

Definiowanie układu - czyli lekcja 1.

Definiowanie układu - czyli lekcja 1. Definiowanie układu - czyli lekcja 1. Ten krótki kurs obsługi programu chciałbym zacząć od prawidłowego zdefiniowania układu, ponieważ jest to pierwsza czynność jaką musimy wykonać po zetknięciu się z

Bardziej szczegółowo

PORÓWNANIE WYNIKÓW OBLICZEŃ WYTRZYMAŁOŚCI KONSTRUKCJI Z BADANIAMI STANOWISKOWYMI

PORÓWNANIE WYNIKÓW OBLICZEŃ WYTRZYMAŁOŚCI KONSTRUKCJI Z BADANIAMI STANOWISKOWYMI Szybkobieżne Pojazdy Gąsienicowe (30) nr 2, 2012 Alicja ZIELIŃSKA PORÓWNANIE WYNIKÓW OBLICZEŃ WYTRZYMAŁOŚCI KONSTRUKCJI Z BADANIAMI STANOWISKOWYMI Streszczenie: W artykule opisano proces weryfikacji wyników

Bardziej szczegółowo

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2 Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2 Jan Bródka, Aleksander Kozłowski (red.) SPIS TREŚCI: 7. Węzły kratownic (Jan Bródka) 11 7.1. Wprowadzenie 11 7.2. Węzły płaskich

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

POMOCE NAUKOWE MODELOWANIE W PROGRAMIE ROBOT HALA PRZEMYSŁOWA O KONSTRUKCJI ŻELBETOWEJ EJ MONOLITYCZNEJ ROBOT MODELOWANIE W PROGRAMIE

POMOCE NAUKOWE MODELOWANIE W PROGRAMIE ROBOT HALA PRZEMYSŁOWA O KONSTRUKCJI ŻELBETOWEJ EJ MONOLITYCZNEJ ROBOT MODELOWANIE W PROGRAMIE HALA PRZEMYSŁOWA O KONSTRUKCJI ŻELBETOWEJ EJ MONOLITYCZNEJ MODELOWANIE W PROGRAMIE ROBOT 1 OPRACOWAŁ MGR INŻ. KAMIL DUBAŁA LISTOPAD 2010 1. Z okna selekcji typu konstrukcji wybieramy Ramę płaską 2. Z paska

Bardziej szczegółowo

JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW

JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW Z tego dokumentu dowiesz się jak wykorzystać wbudowane funkcje arkusza kalkulacyjnego

Bardziej szczegółowo

6. Organizacja dostępu do danych przestrzennych

6. Organizacja dostępu do danych przestrzennych 6. Organizacja dostępu do danych przestrzennych Duża liczba danych przestrzennych oraz ich specyficzny charakter sprawiają, że do sprawnego funkcjonowania systemu, przetwarzania zgromadzonych w nim danych,

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

TUTORIAL: wyciągni. gnięcia po wielosegmentowej ście. cieżce ~ 1 ~

TUTORIAL: wyciągni. gnięcia po wielosegmentowej ście. cieżce ~ 1 ~ ~ 1 ~ TUTORIAL: Sprężyna skrętna w SolidWorks jako wyciągni gnięcia po wielosegmentowej ście cieżce ce przykład Sprężyny występują powszechnie w maszynach, pojazdach, meblach, sprzęcie AGD i wielu innych

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Sieci obliczeniowe poprawny dobór i modelowanie

Sieci obliczeniowe poprawny dobór i modelowanie Sieci obliczeniowe poprawny dobór i modelowanie 1. Wstęp. Jednym z pierwszych, a zarazem najważniejszym krokiem podczas tworzenia symulacji CFD jest poprawne określenie rozdzielczości, wymiarów oraz ilości

Bardziej szczegółowo

Nowości w. Dlubal Software. Wersja 5.04.0058 / 8.04.0058

Nowości w. Dlubal Software. Wersja 5.04.0058 / 8.04.0058 Dlubal Software Spis treści Strona 1 Nowe moduły dodatkowe 2 2 Nowe funkcje głównych programów 4 3 Nowe funkcje dodatkowych modułów 5 Nowości w W marcu 2015 Wersja 5.04.0058 / 8.04.0058 Dlubal Software

Bardziej szczegółowo

Schöck Isokorb typu KF

Schöck Isokorb typu KF Schöck Isokorb typu Schöck Isokorb typu Spis treści Strona Konstrukcja/Właściwości/Wskazówki 54 Zbrojenie na budowie 55 Instrukcja montażu 56-59 Lista kontrolna 60 Klasy odporności ogniowej 20-21 53 Schöck

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH.

METODA ELEMENTÓW SKOŃCZONYCH. METODA ELEMENTÓW SKOŃCZONYCH. W programie COMSOL multiphisics 3.4 Wykonali: Łatas Szymon Łakomy Piotr Wydzał, Kierunek, Specjalizacja, Semestr, Rok BMiZ, MiBM, TPM, VII, 2011 / 2012 Prowadzący: Dr hab.inż.

Bardziej szczegółowo

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk)

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk) Zaprojektować słup ramy hali o wymiarach i obciążeniach jak na rysunku. DANE DO ZADANIA: Rodzaj stali S235 tablica 3.1 PN-EN 1993-1-1 Rozstaw podłużny słupów 7,5 [m] Obciążenia zmienne: Śnieg 0,8 [kn/m

Bardziej szczegółowo

Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge Rok szkolny 2014/2015r.

Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge Rok szkolny 2014/2015r. Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge - Definicja geodezji, jej podział i zadania. - Miary stopniowe. - Miary długości. - Miary powierzchni pola. - Miary gradowe.

Bardziej szczegółowo

INŻYNIERIA ŚRODOWISKA Mechanika techniczna i wytrzymałość materiałów. Wykład 2: Organizacja studiów

INŻYNIERIA ŚRODOWISKA Mechanika techniczna i wytrzymałość materiałów. Wykład 2: Organizacja studiów INŻYNIERIA ŚRODOWISKA Mechanika techniczna i wytrzymałość materiałów Wykład 2: Organizacja studiów Załączniki Zał. 1: mechanika.txt (spis zawartości FTP) Zał. 2: literatura.doc Zał. 3: Zalecenia 1. Ilości

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Modelowanie mikrosystemów - laboratorium Ćwiczenie 1 Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Zadania i cel ćwiczenia. Celem ćwiczenia jest dobranie

Bardziej szczegółowo

Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia

Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia MIKROSYSTEMY - laboratorium Ćwiczenie 1 Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia Zadania i cel ćwiczenia. Celem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Proces technologiczny. 1. Zastosowanie cech technologicznych w systemach CAPP

Proces technologiczny. 1. Zastosowanie cech technologicznych w systemach CAPP Pobożniak Janusz, Dr inż. Politechnika Krakowska, Wydział Mechaniczny e-mail: pobozniak@mech.pk.edu.pl Pozyskiwanie danych niegeometrycznych na użytek projektowania procesów technologicznych obróbki za

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

System do analiz geotechnicznych

System do analiz geotechnicznych System do analiz geotechnicznych 2015 Zintegrowany zoptymalizowany solwer dla platform 64-bitowych nowej generacji Rozwiązania Metody Elementów Skończonych dla geotechniki GTS NX? Zintegrowany solwer zoptymalizowany

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI Ocenę niedostateczną (1) otrzymuje uczeń, który nie spełnia wymagań na ocenę dopuszczającą, Wymagania na ocenę dopuszczającą (2) rozróżnia liczby pierwsze i

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Profile zimnogięte. Typu Z i C

Profile zimnogięte. Typu Z i C Profile zimnogięte Typu Z i C Profile zimnogięte Głównym zastosowaniem produkowanych przez nas profili zimnogiętych są płatwie dachowe oraz rygle ścienne. Na elementy te (jako stosunkowo mało obciążone

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PRAC INŻYNIERSKICH Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Komputerowe projektowanie maszyn i urządzeń Rodzaj zajęć:

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Biuletyn techniczny Inventor nr 27

Biuletyn techniczny Inventor nr 27 Biuletyn techniczny Inventor nr 27 Stosowanie kreatorów mechanicznych podczas projektowania w środowisku Autodesk Inventor 2012. Opracowanie: Tomasz Jędrzejczyk 2012, APLIKOM Sp. z o.o. Aplikom Sp. z o.o.

Bardziej szczegółowo

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy

Bardziej szczegółowo

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego Streszczenie Dobór elementów struktury konstrukcyjnej z warunku ustalonej niezawodności, mierzonej wskaźnikiem niezawodności β. Przykład liczbowy dla ramy statycznie niewyznaczalnej. Leszek Chodor, Joanna

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Grupa M3 Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonał: Miłek Mateusz 1 2 Spis

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

Strumień pola elektrycznego i prawo Gaussa

Strumień pola elektrycznego i prawo Gaussa Strumień pola elektrycznego i prawo Gaussa Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Strumień pola

Bardziej szczegółowo

WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA. Laboratorium MES projekt

WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA. Laboratorium MES projekt WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA Laboratorium MES projekt Wykonali: Tomasz Donarski Prowadzący: dr hab. Tomasz Stręk Maciej Dutka Kierunek: Mechanika i budowa maszyn Specjalność:

Bardziej szczegółowo