EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

Wielkość: px
Rozpocząć pokaz od strony:

Download "EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew"

Transkrypt

1 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0; while(i!=n){ suma+=i; i+=; Czy powyższy algorytm jest: poprawny całkowicie, poprawny częściowo, nie jest poprawny ani całkowicie ani częściowo. (3 pkt) Dane są trzy funkcje: f 1 (n) = 0,01 4 n + 100n, f (n) = logn n + 0,1n, f 3 (n) = log n + logn 100 oraz następujące rzędy funkcji: (n), (logn), ( n ), (4 n ), (n ), (n 1/ ), (nlogn), (n 100 ), (n!), (n n ) Przyporządkuj każdej z funkcji odpowiedni rząd: f 1 n = f n = f 3 n = 3. ( pkt) Dana jest następująca funkcja: int F(int n){ if(n==0 n==1) return 1; return F(n-1)+F(n-); Jaki jest co do rzędu, pesymistyczny koszt czasowy powyższej funkcji. Zakładamy, że rozmiarem zadania jest n, a operacją elementarną dodawanie. 4. ( pkt) Dana jest następująca funkcja: int G(int n, int k){ if(n==k k==0) return 1; return G(n-1, k-1)+g(n-1,k); Ile razy wywoła się powyższa funkcja dla danych n=4 i k=? 5. ( pkt) Z którymi elementami poniższego ciągu uporządkowanego będzie porównany element x=1 w algorytmie wyszukiwania binarnego. Wynik zapisz w kolejności wykonywanych porównao. Ciąg: 1, 5, 0, 5, 30, 50, 80, 100, 00 Strona 1

2 6. ( pkt) Pewien problem o rozmiarze n został rozwiązany przy użyciu strategii dziel i zwyciężaj. Jego czasowa złożonośd pesymistyczna została następnie zapisana w postaci poniższego równania rekurencyjnego: dla n T max n = T n max + n dla n > Jaki jest rząd funkcji kosztu tego algorytmu: (nlogn) (n ) (logn) Inny koszt. Jak?: 7. (3 pkt) Dany jest zbiór n przedmiotów o wagach wyrażonych w kg będących liczbami naturalnymi. Chcemy załadowad możliwie najpełniej przyczepę o ładowności m kg. Czy tak zdefiniowany problem można rozwiązad strategią zachłanną, stosując w pierwszym kroku algorytmu sortowanie przedmiotów nierosnąco po wagach? Tak. Nie. Podaj kontrprzykład (tzn. przykład danych wejściowych, dla których rozwiązanie algorytmem zachłannym nie będzie optymalne): 8. (1 pkt) Które z poniższych zdao są prawdziwe? Wszystkie problemy posiadające własnośd optymalnej podstruktury można optymalnie rozwiązad strategią zachłanną Wszystkie problemy posiadające własnośd wyboru zachłannego można rozwiązad optymalnie strategią zachłanną Problemy posiadające obie własności: optymalnej podstruktury i wyboru zachłannego, można rozwiązad optymalnie strategią zachłanną. 9. (1 pkt) Wskaż algorytmy wykorzystujące programowanie dynamiczne: Algorytm Dijkstry Algorytm Forda-Bellmana Algorytm wyszukiwania binarnego Żaden z powyższych algorytmów nie wykorzystuje techniki programowania dynamicznego 10. ( pkt) W tablicy liczb został zbudowany kopiec zupełny. Zawartośd kopca jest następująca: 10, 8, 7, 5, 3, 6. Do kopca dodano następnie liczbę 9. Jaka jest kolejnośd liczb w kopcu po dodaniu tej wartości: 11. ( pkt) Która z metod wykona najmniej porównao na ciągu uporządkowanym: sortowanie szybkie, sortowanie przez wstawianie, sortowanie przez wybieranie, każda z podanych metod wykona tyle samo porównao. Strona

3 1. ( pkt) Jaki jest koszt pesymistyczny wyszukiwania elementu w następujących strukturach danych, zawierających w momencie wyszukiwania n elementów? Wystarczy podad rząd funkcji kosztu. Lista nieuporządkowana: Tablica posortowana: Drzewo BST: Drzewo AVL: 13. ( pkt) Ile co najwyżej elementów może zawierad drzewo binarne składające się z n poziomów? Zakładamy, że drzewo posiadające tylko jeden element składa się z jednego poziomu. Podaj dokładny wynik. 14. ( pkt) Zbuduj drzewo BST wstawiając kolejno elementy: 8, 1, 5, 1, 6, 0, 10. Jaki element może zastąpid wartośd 8 w procesie usuwania tej wartości z drzewa. 15. ( pkt) Do początkowo pustego drzewa AVL wstawiono kolejno elementy: 15, 5, 10, 5, 35, 1. Etykietą korzenia utworzonego w ten sposób drzewa jest: Żadna z wartości. Podaj poprawną odpowiedź: (1 pkt) Jaki jest optymalny koszt algorytmu wyświetlającego zawartośd drzewa BST w porządku rosnącym? 17. (1 pkt) Które z poniższych zdao są prawdziwe: Algorytm Dijkstry zawsze działa skutecznie w grafach o ujemnych wagach. Algorytm Forda-Bellmana można zastosowad tylko do grafów z wagami dodatnimi. Algorytm Floyda-Warshalla służy do wyznaczania najkrótszych ścieżek między wszystkimi odległościami wierzchołków. Żaden z powyższych algorytmów nie daje dobrych wyników w grafach z cyklami o ujemnych wagach. 18. ( pkt) Dany jest graf o następujących listach incydencji: 1:, 4 : 1, 3, 5 3:, 5, 6 4: 1 5:, 6 6: 3, 7 7: 6 Wypisz kolejno odwiedzane wierzchołki w wyniku przeglądania tego grafu wszerz rozpoczynając od wierzchołka nr 1. Strona 3

4 19. (3 pkt) Określ kolory poszczególnych wierzchołków ustalone w algorytmie aproksymacyjnym kolorowania opartym o maksymalne zbiory niezależne dla grafu o następujących listach incydencji: 1:, 3, 4 : 1, 3, 4 3: 1,, 6 4: 1,, 6 5: 6 6: 3, 4, 5 Zakładamy, że jeżeli w trakcie realizacji algorytmu dochodzi do wyboru wierzchołków według ustalonego kryterium i kilka wierzchołków spełnia to kryterium to wybierany jest wierzchołek o najniższym numerze. nr wierzchołka nr koloru 0. (3 pkt) Ustal zawartośd tabeli odległości d (tabeli odległości minimalnych) po każdym kroku algorytmu Dijkstry dla następującego grafu. Wierzchołek startowy s= tablica d d[1] d[] d[3] d[4] po inicjalizacji po I kroku po II kroku ostatecznie 1. ( pkt) Mamy dany problem maksymalnego wypełnienia różnymi towarami windy o ładowności 1000 kilogramów. W rozwiązaniu optymalnym udało się wypełnid kabinę windy maksymalnie. Algorytm przybliżony (bazujący na strategii zachłannej) posiada ograniczenie względne błędu aproksymacyjnego równe. Oznacza to, że: Algorytm ten zdoła zapełnid windę przynajmniej 998 kilogramami towaru. Algorytm ten zdoła zapełnid windę przynajmniej do połowy jej ładowności. Algorytm ten zdoła zapełnid windę co najwyżej do połowy jej ładowności. Algorytm ten załaduje do windy jedynie kg towaru. Żadna z powyższych odpowiedzi nie jest poprawna.. (1 pkt) Które z poniższych zdao jest prawdziwe: Każdy problem NP-zupełny posiada rozwiązanie działające w czasie wielomianowym. Żaden problem NP-zupełny nie posiada rozwiązania działającego w czasie wielomianowym. Nie wiadomo, czy problemy NP-zupełne mają rozwiązanie działające w czasie wielomianowym. Strona 4

5 3. ( pkt) Który z poniższych problemów jest NP-zupełny? problem domina problem sortowania topologicznego grafu problem cyklu Hamiltona problem komiwojażera Żaden z powyższych problemów 4. ( pkt) Który z cykli Hamiltona wygeneruje się jako pierwszy dla grafu z zadania nr 19. Wierzchołek startowy cyklu ma numer (3 pkt) Do tablicy z haszowaniem T o długości m=11 wstawiamy kolejno klucze 11, 3, 34, 4, 15, 5,, używając adresowania otwartego typu liniowego do rozwiązywania problemu kolizji. Funkcja haszująca ma wzór x, i = x + i %m, gdzie x = x%m. Wyznacz zawartośd tablicy T. T = [ ] Strona 5

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania: ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

PODSTAWY INFORMATYKI wykład 6.

PODSTAWY INFORMATYKI wykład 6. PODSTAWY INFORMATYKI wykład 6. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach

Bardziej szczegółowo

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany , 1 2 3, czas zamortyzowany zajęcia 3. Wojciech Śmietanka, Tomasz Kulczyński, Błażej Osiński rozpinajace, 1 2 3 rozpinajace Mamy graf nieskierowany, ważony, wagi większe od 0. Chcemy wybrać taki podzbiór

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Przeglad podstawowych pojęć (3) Podstawy informatyki (3) dr inż. Sebastian Pluta. Instytut Informatyki Teoretycznej i Stosowanej

Przeglad podstawowych pojęć (3) Podstawy informatyki (3) dr inż. Sebastian Pluta. Instytut Informatyki Teoretycznej i Stosowanej Przeglad podstawowych pojęć (1) Podstawy informatyki (3) dr inż. Sebastian Pluta pluta@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Program komputerowy to sekwencja instrukcji wykonywanych

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Zad. 1. Systemy Baz Danych przykładowe zadania egzaminacyjne

Zad. 1. Systemy Baz Danych przykładowe zadania egzaminacyjne Zad. 1 Narysuj schemat związków encji dla przedstawionej poniżej rzeczywistości. Oznacz unikalne identyfikatory encji. Dla każdego związku zaznacz jego opcjonalność/obowiązkowość oraz stopień i nazwę związku.

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 INFORMATYKA

EGZAMIN MATURALNY 2011 INFORMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2011 INFORMATYKA POZIOM PODSTAWOWY MAJ 2011 2 Zadanie 1. a) (0 1) Egzamin maturalny z informatyki poziom podstawowy CZĘŚĆ I Obszar standardów

Bardziej szczegółowo

Zadania przykładowe do kolokwium z AA2

Zadania przykładowe do kolokwium z AA2 1 Zadania przykładowe do kolokwium z AA2 Zadanie 1 Dla tekstu ALA MA KOTA ALE ON MA ALERGIĘ zilustruj działanie algorytmów: a) LZ77, b) LZ78, c) LZSS. Załóż, że maksymalna długość dopasowania to 4, rozmiar

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Algorytmy funkcjonalne i struktury danych

Algorytmy funkcjonalne i struktury danych Algorytmy funkcjonalne i struktury danych Lista zadań nr 4 5 listopada 2009 Zadanie 1. Zaprogramuj strukturę Deque o sygnaturze signature DEQUE = sig type a Queue val empty : a Queue val isempty : a Queue

Bardziej szczegółowo

Wojna morska algorytmy przeszukiwania

Wojna morska algorytmy przeszukiwania Temat 6 Wojna morska algorytmy przeszukiwania Streszczenie Wyszukiwanie informacji w wielkich zbiorach danych wymagają często użycia komputerów. Wymaga to ciągłego doskonalenia szybkich i efektywnych metod

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu.

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu. Wymagania edukacyjne z informatyki poziom rozszerzony w klasie 2 Społecznego Liceum Ogólnokształcącego Splot im. Jana Karskiego w Nowym Sączu 1. Algorytmika TREŚCI NAUCZANIA WPROWADZENIE DO ALGORYTMIKI

Bardziej szczegółowo

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3 Analiza Algorytmów Informatyka, WPPT, Politechnika Wroclawska 1 Zadania teoretyczne (ćwiczenia) Zadanie 1 Niech k będzie dodatnią liczbą całkowitą. Rozważ następującą zmienną losową Pr[X = k] = (6/π 2

Bardziej szczegółowo

Algorytmy przeszukiwania

Algorytmy przeszukiwania Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy

Bardziej szczegółowo

Algorytmy sortujące 1

Algorytmy sortujące 1 Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Matematyka podstawowa V. Ciągi

Matematyka podstawowa V. Ciągi Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE

Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE Różnice między podstawą programową z przedmiotu Technologia informacyjna", a standardami wymagań będącymi podstawą przeprowadzania egzaminu maturalnego z przedmiotu Informatyka" I.WIADOMOŚCI I ROZUMIENIE

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

Laboratorium Metod Optymalizacji

Laboratorium Metod Optymalizacji Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena

Bardziej szczegółowo

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne. Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Badania operacyjne- programowanie liniowe

Badania operacyjne- programowanie liniowe Justyna Kosakowska i Piotr Malicki Badania operacyjne- programowanie liniowe (lista zadań) Materiały dydaktyczne dla studentów matematyki (specjalność: matematyka w ekonomii i finansach) Wydział Matematyki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami

1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami 1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami Celem tych zajęć jest zrozumienie i oswojenie z technikami programowania przy pomocy wskaźników w języku C++. Proszę przeczytać rozdział 8.

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Krok 1.Chcemy napisać dowolny tekst na ekranie, np. Witaj świecie

Krok 1.Chcemy napisać dowolny tekst na ekranie, np. Witaj świecie Laboratorium nr 1 programowanie Pythonie Krok 1.Chcemy napisać dowolny tekst na ekranie, np. Witaj świecie Efekt kompilacji (klawisz F5) będzie następujący: Krok 2. A teraz chcemy zapytać użytkownika o

Bardziej szczegółowo

PODRĘCZNIK UŻYTKOWNIKA SYSTEMU MaxeBiznes MODUŁ KANCELARIA-Elektroniczny obieg faktury

PODRĘCZNIK UŻYTKOWNIKA SYSTEMU MaxeBiznes MODUŁ KANCELARIA-Elektroniczny obieg faktury PODRĘCZNIK UŻYTKOWNIKA SYSTEMU MaxeBiznes MODUŁ KANCELARIA-Elektroniczny obieg faktury 1.1. Uruchomienie aplikacji Aplikacja uruchamiana jest przez uruchomienie skrótu umieszczonego na pulpicie ekranu

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Programowanie równoległe

Programowanie równoległe Programowanie równoległe ELEMENTARNE ALGORYTMY (PODSTAWA: Z.CZECH. WPROWADZENIE DO OBLICZEŃ RÓWNOLEGŁYCH. PWN, 2010) Andrzej Baran baran@kft.umcs.lublin.pl Charakterystyka ilościowa algorytmów Przez algorytm

Bardziej szczegółowo

SCENARIUSZ TEMATYCZNY. Programowanie liniowe problem decyzyjny rozwiązywanie przy pomocy komputera

SCENARIUSZ TEMATYCZNY. Programowanie liniowe problem decyzyjny rozwiązywanie przy pomocy komputera SCENARIUSZ TEMATYCZNY OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Prezentacja rozwiązań zadań 26 października 2014 a d c k e b g j i f h Adwokat Autor zadania: Jakub Łącki Zgłoszenia: 118 z 857 (13%) Zaakceptowane

Bardziej szczegółowo

Egzamin z Podstaw informatyki i programowania 2007/2008

Egzamin z Podstaw informatyki i programowania 2007/2008 Egzamin z Podstaw informatyki i programowania 2007/2008 Imię i nazwisko:... 1 2 3 4 5 6 7 8 9 10 11 12 13 14 suma 1. Napisz funkcję logiczną, która dla zadanej parametrem wartości rzeczywistej x, oblicza

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny

Bardziej szczegółowo

Rozkład materiału z informatyki w klasie III gimnazjum

Rozkład materiału z informatyki w klasie III gimnazjum Rozkład materiału z informatyki w klasie III gimnazjum. Zbieranie i opracowywanie danych arkusz kalkulacyjny. Wymagania edukacyjne i kryteria oceniania. BHP i regulamin szkolnej pracowni komputerowej.,

Bardziej szczegółowo

Ubogi kartograf Kolorowanie grafu

Ubogi kartograf Kolorowanie grafu Temat 13 Ubogi kartograf Kolorowanie grafu Streszczenie Wiele problemów optymalizacyjnych dotyczy sytuacji, gdy dwa zdarzenia nie mogą wystąpić w tym samym momencie lub gdy pewne obiekty nie mogą do siebie.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka 1. Kompilacja aplikacji konsolowych w środowisku programistycznym Microsoft Visual Basic. Odszukaj w menu startowym systemu

Bardziej szczegółowo

Profil pracy wariant konfiguracji programu obejmujący m.in język, walutę, konto allegro, szablon aukcji, zdefiniowane koszty wysyłki itp.

Profil pracy wariant konfiguracji programu obejmujący m.in język, walutę, konto allegro, szablon aukcji, zdefiniowane koszty wysyłki itp. KQS ALLEGRO PRZYGOTOWYWANIE I WYSTAWIANIE AUKCJI Pojęcia użyte w instrukcji: Profil pracy wariant konfiguracji programu obejmujący m.in język, walutę, konto allegro, szablon aukcji, zdefiniowane koszty

Bardziej szczegółowo

E S - uniwersum struktury stosu

E S - uniwersum struktury stosu Temat: Struktura stosu i kolejki Struktura danych to system relacyjny r I r i i I U,, gdzie U to uniwersum systemu, a i i - zbiór relacji (operacji na strukturze danych). Uniwersum systemu to zbiór typów

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. I. Liczby rzeczywiste oś liczbowa i przedziały liczbowe. 1. Definicja liczb: naturalnych całkowitych wymiernych niewymiernych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Sposoby wykrywania i usuwania błędów. Tomasz Borzyszkowski

Sposoby wykrywania i usuwania błędów. Tomasz Borzyszkowski Sposoby wykrywania i usuwania błędów Tomasz Borzyszkowski Mylić się jest rzeczą ludzką Typy błędów: błędy specyfikacji: źle określone wymagania błędy projektowe: nieodpowiednie struktury danych i algorytmy

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Prezentacja rozwiązań zadań 30 października 2011 c h k f e j i a b d g Czy się zatrzyma? Autor zadania: Jakub Łącki Zgłoszenia: 104 z 914 (11%)

Bardziej szczegółowo

Nowa podstawa programowa IV etap edukacyjny szkoła ponadgimnazjalna

Nowa podstawa programowa IV etap edukacyjny szkoła ponadgimnazjalna Nowa podstawa programowa IV etap edukacyjny szkoła ponadgimnazjalna Fragmenty rozporządzenia MEN z dnia 23 grudnia 2008 r. w sprawie podstawy programowej (...) w poszczególnych typach szkół, opublikowanego

Bardziej szczegółowo

3.1. Na dobry początek

3.1. Na dobry początek Klasa I 3.1. Na dobry początek Regulamin pracowni i przepisy BHP podczas pracy przy komputerze Wykorzystanie komputera we współczesnym świecie Zna regulamin pracowni i przestrzega go. Potrafi poprawnie

Bardziej szczegółowo

Szkoły ponadgimnazjalne, PODSTAWA PROGRAMOWA. Cele kształcenia wymagania ogólne

Szkoły ponadgimnazjalne, PODSTAWA PROGRAMOWA. Cele kształcenia wymagania ogólne Strona1 Podstawa programowa kształcenia ogólnego dla gimnazjów i szkół ponadgimnazjalnych, (str. 185 191 i 254) Załącznik nr 4 do: rozporządzenia Ministra Edukacji Narodowej z dnia 23 grudnia 2008 r. w

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Programowanie, algorytmy i struktury danych

Programowanie, algorytmy i struktury danych 1/44 Programowanie, algorytmy i struktury danych materiały do wykładu: http://cez.wipb.pl/moodle/ email: m.tabedzki@pb.edu.pl strona: http://aragorn.pb.bialystok.pl/~tabedzki/ Marek Tabędzki Wymagania

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1-082 EGZAMIN MATURALNY Z INORMATYKI MAJ ROK 2008 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Operatory logiczne. Podstawowe operatory logiczne, składanie wyrażeń z użyciem operatorów logicznych

Operatory logiczne. Podstawowe operatory logiczne, składanie wyrażeń z użyciem operatorów logicznych Materiał pomocniczy do kursu Podstawy programowania Autor: Grzegorz Góralski ggoralski.com Operatory logiczne Podstawowe operatory logiczne, składanie wyrażeń z użyciem operatorów logicznych Podstawowe

Bardziej szczegółowo

MS Excel 2007 Kurs zaawansowany Obsługa baz danych. prowadzi: Dr inż. Tomasz Bartuś. Kraków: 2008 04 25

MS Excel 2007 Kurs zaawansowany Obsługa baz danych. prowadzi: Dr inż. Tomasz Bartuś. Kraków: 2008 04 25 MS Excel 2007 Kurs zaawansowany Obsługa baz danych prowadzi: Dr inż. Tomasz Bartuś Kraków: 2008 04 25 Bazy danych Microsoft Excel 2007 udostępnia szereg funkcji i mechanizmów obsługi baz danych (zwanych

Bardziej szczegółowo

MATERIAŁY - udostępnianie materiałów dydaktycznych w sieci SGH

MATERIAŁY - udostępnianie materiałów dydaktycznych w sieci SGH MATERIAŁY - udostępnianie materiałów dydaktycznych w sieci SGH SPIS TREŚCI i EKRANÓW WSTĘP Ekran1: Wstęp. Logowanie Ekran2: Strona początkowa UDOSTEPNIONE MATERIAŁY Ekran3: Dostępne materiały Ekran4: Zawartość

Bardziej szczegółowo

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Mariusz Juszczyk 16 marca 2010 Seminarium badawcze Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Wstęp Systemy przekazywania wiadomości wymagają wprowadzenia pewnych podstawowych

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

Fakultet Informatyczny Algorytmy i ProgramowanIe (API)

Fakultet Informatyczny Algorytmy i ProgramowanIe (API) Fakultet Informatyczny Algorytmy i ProgramowanIe (API) Program autorski fakultetu informatycznego dla uczniów gimnazjum do realizacji na zajęcia pozalekcyjne z komputerem w klasach II Autor: mgr Rafał

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia roku Instrukcja dla ucznia W zadaniach o numerach od do są podane cztery warianty odpowiedzi: A, B, C, D Dokładnie jeden z nich jest poprawny

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny

Bardziej szczegółowo

Rozwiązywanie programów matematycznych

Rozwiązywanie programów matematycznych Rozwiązywanie programów matematycznych Program matematyczny składa się z następujących elementów: 1. Zmiennych decyzyjnych:,,, 2. Funkcji celu, funkcji-kryterium, która informuje o jakości rozwiązania

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Przeliczanie cen walutowych na dokumentach

Przeliczanie cen walutowych na dokumentach Przeliczanie cen walutowych na dokumentach (wersja 1.0) Soneta Sp z o.o. ul. Wadowicka 8a, wejście B 31-415 Kraków tel./fax +48 (12) 261 36 41 http://www.enova.pl e-mail: handel@enova.pl 1 Spis treści

Bardziej szczegółowo

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie! Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:

Bardziej szczegółowo

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego.

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego. Firma produkująca płatki śniadaniowe rozważa wypuszczenie na rynek nowego produktu. Ma to być mieszanka pszenicy, ryżu i kukurydzy. Normy zawartości przedstawia tabela: Dane Pszenica Ryż Kukurydza Zawartość

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

1 Wskaźniki i listy jednokierunkowe

1 Wskaźniki i listy jednokierunkowe 1 Wskaźniki i listy jednokierunkowe 1.1 Model pamięci komputera Pamięć komputera możemy wyobrażać sobie tak, jak na rysunku: Zawartość:... 01001011 01101010 11100101 00111001 00100010 01110011... adresy:

Bardziej szczegółowo

Badania Statystyczne

Badania Statystyczne Statystyka Opisowa z Demografią oraz Biostatystyka Badania Statystyczne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Jak tworzyd filtry? W jaki sposób odbywa się filtrowanie w systemie pokaż/ukryj pytania?

Jak tworzyd filtry? W jaki sposób odbywa się filtrowanie w systemie pokaż/ukryj pytania? Jak tworzyd filtry? Spis treści O czym warto pamiętad przed stworzeniem pytania filtrującego:... 1 Warunki badawcze... 2 Definicja elementów filtru... 3 Tworzenie filtrów dla pytao prostych... 4 Tworzenie

Bardziej szczegółowo

Rozdział 4 KLASY, OBIEKTY, METODY

Rozdział 4 KLASY, OBIEKTY, METODY Rozdział 4 KLASY, OBIEKTY, METODY Java jest językiem w pełni zorientowanym obiektowo. Wszystkie elementy opisujące dane, za wyjątkiem zmiennych prostych są obiektami. Sam program też jest obiektem pewnej

Bardziej szczegółowo