[12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne).
|
|
- Maja Nowakowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 [12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne). Tworzenie projektów informatycznych opiera się w dużej mierze na formułowaniu i implementacji algorytmów, które mają za zadanie właściwe przetworzenie danych i rozwiązanie postawionych przed nami problemów. Algorytmy można sklasyfikować na kilka różnych sposobów,ale wśród nich najważniejszy jest podział ze względu na techniki ich konstruowania. Są pewne techniki tworzenia algorytmów, których zastosowanie prowadzi do efektywniejszego rozwiązywania problemów niż za pomocą algorytmów konstruowanych w sposób spontaniczny. Przedstawimy kilka z nich: Dziel i rządź prowadzi nierzadko do bardzo efektywnych rozwiązań polega na rekurencyjnym dzieleniu problemu na dwa mniejsze podproblemy dzielenie ma miejsce tak długo aż podproblemy stają się proste do bezpośredniego rozwiązania zwykle podproblemy są mniejszymi kopiami podproblemu z którego powstały oficjalnie pierwszy raz zastosowano tę metodą w 1960 roku Algorytm sprawdza czy w podanej, posortowanej tablicy znajduje się element o danej wartości. tablica jest dzielona na coraz mniejsze elementy (na pół) jako potencjalny element do wyszukania typuje się element środkowy w zależności od wartości elementu środkowego, kontynuuje się przeszukiwanie odpowiedniej części tablicy (zawężenie przedziału) podział kończy się gdy znajdziemy szukany element lub gdy przedział osiągnie długość 0
2 Dla tablicy elementów nie musimy sprawdzać każdego z nich - wystarczy tylko 20 kroków.
3 Programowanie dynamiczne stosowane głównie do rozwiązywanie problemów optymalizacyjnych alternatywa dla pewnych zagadnień rozwiązywanych metodami zachłannymi W odniesieniu do programowania opartego o dziel i zwyciężaj : Jeżeli podproblemy, na które został podzielony problem główny, nie są niezależne to w różnych podproblemach wykonywane są wiele razy te same obliczenia, warto jest wtedy zastosować ulepszenie tej metody jakim jest zastosowanie programowania dynamicznego Programowanie dynamiczne zasady wyniki poszczególnych obliczeń są zapamiętywane w pomocniczej tablicy tablica ta jest wykorzystywana w kolejnych krokach eliminuje to konieczność wielokrotnego powtarzania tych samych obliczeń Dla każdego podproblemu obliczenia są zatem wykonane tylko raz, a ich wynik jest zapamiętywany Programowanie dynamiczne zastosowanie automatach do kawy przy wydawaniu reszty w taki sposób, by monet było jak najmniej. algorytm Floyda-Warshalla (najkrótsze ścieżki między wszystkimi wierzchołkami w grafie)
4 Algorytmy zachłanne algorytm w każdym kroku dokonuje wyboru będącego na daną chwilę tym najlepszym (najbliższym końcowemu rozwiązaniu) podejmuje decyzje optymalne tylko lokalnie kontynuuje działania wynikające z poprzednich decyzji podejście często okazuje się nieoptymalne Algorytmy zachłanne przykład Algorytm Kruskala (MST) Algorytm Dijkstry (najkrótsza ścieżka w grafie o nieujemnych wagach)
5 [13] Elementarne i nieelementarne metody sortowania. Przyjęło się mówić że elementarne metody sortowania to te których czas działania jest równy O(n 2 ). Zaliczają się do nich następujące algorytmy sortowania : 1.1. Sortowanie przez selekcję(selection sort) Jest nieadaptacyjne, wewnętrzne i stabilne oraz nie wymaga dodatkowej pamięci. Jego czas działania jest określony z góry O(n 2 ). Sortowanie to jest najlepsze, spośród innych elementarnych, do sortowania elementów o małych kluczach i dużych polach, ponieważ wykonuje najmniej wstawień. W pierwszym przebiegu algorytm znajduje najmniejszy element w tablicy i zamienia go z pierwszym. W drugim przebiegu algorytm znajduje najmniejszy element w podtablicy [2..r] i zamienia go z drugim. I tak aż do zamiany r-tego elementu z r-1 elementem Przez wstawianie Sortowanie przez wstawienie (insertion sort) to algorytm, którego czas działania wynosi O(n 2 ). Jest on skuteczny dla małej ilości danych. Jest to jeden z prostszych i jeden z bardziej znanych algorytmów sortowania. Jest on stabilny i nie wymaga dodatkowej pamięci (działa w miejscu). Najważniejszą operacją w opisywanym algorytmie sortowania jest wstawianie wybranego elementu na listę uporządkowaną. Zasady są następujące: 1) Na początku sortowania lista uporządkowana zawiera tylko jeden, ostatni element zbioru. Jednoelementowa lista jest zawsze uporządkowana. 2) Ze zbioru zawsze wybieramy element leżący tuż przed listą uporządkowaną. Element ten zapamiętujemy w zewnętrznej zmiennej. Miejsce, które zajmował, możemy potraktować jak puste. 3) Wybrany element porównujemy z kolejnymi elementami listy uporządkowanej. 4) Jeśli natrafimy na koniec listy, element wybrany wstawiamy na puste miejsce - lista rozrasta się o nowy element. 5) Jeśli element listy jest większy od wybranego, to element wybrany wstawiamy na puste miejsce - lista rozrasta się o nowy element. 6) Jeśli element listy nie jest większy od wybranego, to element listy przesuwamy na puste miejsce. Dzięki tej operacji puste miejsce wędruje na liście przed kolejny element. Kontynuujemy porównywanie, aż wystąpi sytuacja z punktu 4 lub Sortowanie bąbelkowe Jest to algorytm nieadaptacyjny, wewnętrzny i stabilny oraz nie wymagający dodatkowej pamięci. Jego czas działania jest określony z góry przez wynosi O(n 2 ) algorytm wykonuje w najgorszym i średnim przypadku około porównao i zamian. Zasada działania opiera się na cyklicznym porównywaniu par sąsiadujących elementów i zamianie ich kolejności w przypadku niespełnienia kryterium porządkowego zbioru. Operację tę wykonujemy dotąd, aż cały zbiór zostanie posortowany.
6 Lista kroków 1: Dla j = 1,2,...,n - 1: wykonuj Krok 2 2: Dla i = 1,2,...,n - 1: jeśli d[i] > d[i + 1], to d[i] d[i + 1] 3: Zakończ gdzie: n- liczba elementów w sortowanym zbiorze d[ ]- zbiór n- elementowy, który będzie sortowany. Elementy zbioru mają indeksy od 1 do n. Do nieelementarnych algorytmów sortowania zaliczamy : 1.4. Sortowanie szybkie(quicksort) Algorytm sortowania szybkiego opiera się na strategii "dziel i zwyciężaj" (ang. divide and conquer), którą możemy krótko scharakteryzować w trzech punktach: DZIEL - problem główny zostaje podzielony na podproblemy ZWYCIĘŻAJ - znajdujemy rozwiązanie podproblemów POŁĄCZ - rozwiązania podproblemów zostają połączone w rozwiązanie problemu głównego Idea sortowania szybkiego jest następująca: DZIEL: najpierw sortowany zbiór dzielimy na dwie części w taki sposób, aby wszystkie elementy leżące w pierwszej części (zwanej lewą partycją) były mniejsze lub równe od wszystkich elementów drugiej części zbioru (zwanej prawą partycją). ZWYCIĘŻAJ : każdą z partycji sortujemy rekurencyjnie tym samym algorytmem. POŁĄCZ : połączenie tych dwóch partycji w jeden zbiór daje w wyniku zbiór posortowany. W przypadku typowym algorytm ten jest najszybszym algorytmem sortującym z klasy złożoności obliczeniowej O(n log n) - stąd pochodzi jego popularność w zastosowaniach. Musimy jednak pamiętać, iż w pewnych sytuacjach (zależnych od sposobu wyboru piwotu oraz niekorzystnego ułożenia danych wejściowych) klasa złożoności obliczeniowej tego algorytmu może się degradować do O(n 2 ), co więcej, poziom wywołao rekurencyjnych może spowodować przepełnienie stosu i zablokowanie komputera. Z tych powodów algorytmu sortowania szybkiego nie można stosować bezmyślnie w każdej sytuacji tylko dlatego, iż jest uważany za jeden z najszybszych algorytmów sortujących - zawsze należy przeprowadzić analizę możliwych danych wejściowych właśnie pod kątem przypadku niekorzystnego Sortowanie przez łączenie(scalanie) Jest nieadaptacyjne, zewnętrzne i stabilne oraz wymaga dodatkowej pamięci proporcjonalnej do n. Jego czas działania jest określony z góry przez O(n log(n)). Sortowanie przez scalanie jest nieadaptacyjne, ale jest za to relatywnie szybkie niezależnie od układu danych. W związku z tym algorytm ten stosuje się, gdy jednocześnie ważna jest szybkość algorytmu i nie akceptowana jest wydajność najgorszego przypadku innych sortowao, a do tego możemy jeszcze pozwolić sobie na poświęcenie trochę pamięci na operację sortownia. Ideą działania algorytmu jest dzielenie zbioru danych na mniejsze zbiory, aż do uzyskania n zbiorów jednoelementowych, które same z siebie są posortowane, następnie zbiory te są
7 łączone w coraz większe zbiory posortowane, aż do uzyskania jednego, posortowanego zbioru nelementowego. Etap dzielenia nie jest skomplikowany, dzielenie następuje bez sprawdzania jakichkolwiek warunków. Dzięki temu, w przeciwieostwie do algorytmu sortowania szybkiego, następuje pełne rozwinięcie wszystkich gałęzi drzewa. Z kolei łączenie zbiorów posortowanych wymaga odpowiedniego wybierania poszczególnych elementów z łączonych zbiorów z uwzględnieniem faktu, że wielkość zbioru nie musi być równa (parzysta i nieparzysta ilość elementów), oraz tego, iż wybieranie elementów z poszczególnych zbiorów nie musi następować naprzemiennie, przez co jeden zbiór może osiągać swój koniec wcześniej niż drugi. Robi sie to w następujący sposób. Kopiujemy zawartość zbioru głównego do struktury pomocniczej. Następnie, operując wyłącznie na kopii, ustawiamy wskaźniki na początki kolejnych zbiorów i porównujemy wskazywane wartości. Mniejszą wartość wpisujemy do zbioru głównego i przesuwamy odpowiedni wskaźnik o 1 i czynności powtarzamy, aż do momentu, gdy jeden ze wskaźników osiągnie koniec zbioru. Wówczas mamy do rozpatrzenia dwa przypadki, gdy zbiór 1 osiągnął koniec i gdy zbiór 2 osiągnął koniec. W przypadku pierwszym nie będzie problemu, elementy w zbiorze głównym są już posortowane i ułożone na właściwych miejscach. W przypadku drugim trzeba skopiować pozostałe elementy zbioru pierwszego po kolei na koniec. Po zakooczeniu wszystkich operacji otrzymujemy posortowany zbiór główny Sortowanie pozycyjne Algorytm sortowania porządkujący stabilnie ciągi wartości (liczb, słów) względem konkretnych cyfr, znaków itp, kolejno od najmniej znaczących do najbardziej znaczących pozycji. Złożoność obliczeniowa jest równa O(d(n + k)), gdzie k to liczba różnych cyfr, a d liczba cyfr w kluczach. Wymaga O(n + k) dodatkowej pamięci. Pozycją (ang. radix) nazywamy miejsce cyfry w zapisie liczby.. Algorytm sortujący musi być stabilny, tzn. nie może zmieniać kolejności elementów równych, w przeciwnym razie efekty poprzednich sortowao zostaną utracone. Sortowanie pozycyjne możemy także zastosować do sortowania rekordów baz danych. Na przykład chcemy posortować książkę telefoniczną według nazwisk, a w razie gdyby się one powtarzały to według imion, a w przypadku identyczności imion i nazwisk według numeru telefonu. Aby otrzymać taki wynik powinniśmy tą książkę telefoniczną posortować najpierw według numeru telefonu, potem według imion, a na koocu według nazwisk. Złożoność obliczeniowa takiego sortowania pozycyjnego na pewno nie będzie O(n). Wynika to z tego, że do posortowania np. nazwisk trudno jest użyć sortowania przez zliczanie.
8 [14] Elementarne metody wyszukiwania. Haszowanie Wyszukiwanie liniowe/sekwencyjne Wyszukiwanie liniowe (ang. linear search), zwane również sekwencyjnym (ang. sequential search) polega na przeglądaniu kolejnych elementów zbioru Z. Jeśli przeglądany element posiada odpowiednie własności (np. jest liczbą o poszukiwanej wartości), to zwracamy jego pozycję w zbiorze i kooczymy. W przeciwnym razie kontynuujemy poszukiwania aż do przejrzenia wszystkich pozostałych elementów zbioru Z. W przypadku pesymistycznym, gdy poszukiwanego elementu nie ma w zbiorze lub też znajduje się on na samym koocu zbioru, algorytm musi wykonać przynajmniej n obiegów pętli sprawdzającej poszczególne elementy. Wynika z tego, iż pesymistyczna klasa złożoności obliczeniowej jest równa O(n), czyli jest liniowa - stąd pochodzi nazwa metody wyszukującej. Często chcemy znaleźć wszystkie wystąpienia w zbiorze poszukiwanej wartości elementu. W takim przypadku algorytm na wejściu powinien otrzymywać dodatkowo pozycję (indeks) elementu, od którego ma rozpocząd wyszukiwanie. Pozycję tę przy kolejnym przeszukiwaniu podajemy zawsze o 1 większą od ostatnio znalezionej. Dzięki temu nowe poszukiwanie rozpocznie się tuż za poprzednio znalezionym elementem. Schemat algorytmu: n - liczba elementów w tablicy Z* +, n N Z[ ]- tablica zawierająca elementy do przeszukania. Indeksy elementów rozpoczynają się od 0, a kooczą na n-1 p - indeks pierwszego elementu Z* +, od którego rozpoczniemy poszukiwania. p C k - poszukiwana wartość, czyli tzw. klucz, wg którego wyszukujemy elementy w Z* + 01: Dla i = p,p+1,...,n-1: wykonuj krok 2 ; przeglądamy kolejne elementy w zbiorze 02: Jeśli Z[i] = k, to zakoocz zwracając i ; jeśli napotkamy poszukiwany element, zwracamy jego pozycję 03: Zakończ zwracając -1 ; jeśli elementu nie ma w tablicy, zwracamy Wyszukiwanie binarne Wyszukiwanie binarne jest algorytmem opierającym się na metodzie dziel i zwyciężaj, który w czasie logarytmicznym stwierdza, czy szukany element znajduje się w uporządkowanej tablicy i jeśli się znajduje, podaje jego indeks. Np. jeśli tablica zawiera milion elementów, wyszukiwanie binarne musi sprawdzić maksymalnie 20 elementów () w celu znalezienia żądanej wartości. Dla porównania wyszukiwanie liniowe wymaga w najgorszym przypadku przeglądnięcia wszystkich elementów tablicy. Zasada działania : Jeśli zbiór jest pusty, to kooczymy algorytm z wynikiem negatywnym. W przeciwnym razie wyznaczamy element leżący w środku zbioru. Porównujemy poszukiwany element z elementem środkowym. Jeśli są sobie równe, to zadanie wyszukania elementu jest wypełnione i kooczymy algorytm. W przeciwnym razie element środkowy dzieli zbiór na dwie partycje - lewą z elementami mniejszymi od środkowego oraz prawą z elementami większymi. Jeśli porównywany element jest mniejszy od środkowego elementu zbioru, to za nowy zbiór poszukiwao przyjmujemy lewą partycję. W przeciwnym razie za nowy zbiór przyjmujemy prawą partycję. W obu przypadkach rozpoczynamy poszukiwania od początku, ale w nowo wyznaczonym zbiorze.
9 1.3. Wyszukiwanie max lub min Zadanie znajdowania elementu maksymalnego lub minimalnego jest typowym zadaniem wyszukiwania, które rozwiązujemy przy pomocy algorytmu wyszukiwania liniowego. Za tymczasowy maksymalny (minimalny) element przyjmujemy pierwszy element zbioru. Następnie element tymczasowy porównujemy z kolejnymi elementami. Jeśli któryś z porównywanych elementów jest większy (mniejszy) od elementu tymczasowego, to za nowy tymczasowy element maksymalny (minimalny) przyjmujemy porównywany element zbioru. Gdy cały zbiór zostanie przeglądnięty, w elemencie tymczasowym otrzymamy element maksymalny (minimalny) w zbiorze. Poniżej podajemy algorytm wyszukiwania max. Wyszukiwanie min wykonuje się identycznie, zmianie ulega tylko warunek porównujący element tymczasowy z elementem zbioru Schemat algorytmu: n - liczba elementów w tablicy Z* +, n N Z[ ] - tablica zawierająca elementy do zliczania. Indeksy elementów rozpoczynają się od 0, a kooczą na n maxz - tymczasowy element maksymalny 1: maxz Z[0] ; za tymczasowy element maksymalny bierzemy pierwszy element 2: Dla i = 1,2,...,n-1 wykonuj K03 ; przeglądamy następne elementy zbioru 3: Jeśli Z[i] > maxz, to maxz Z[i] ; jeśli natrafimy na większy od maxz, to zapamiętujemy go w maxz 4: Zakoocz zwracając maxz 2.4. Naiwne wyszukiwanie wzorca w tekście Algorytm N - naiwny - ustawia okno o długości wzorca p na pierwszej pozycji w łańcuchu s. Następnie sprawdza, czy zawartość tego okna jest równa wzorcowi p. Jeśli tak, pozycja okna jest zwracana jako wynik, po czym okno przesuwa się o jedną pozycję w prawo i cała procedura powtarza się. Algorytm kończymy, gdy okno wyjdzie poza koniec łańcucha. Klasa pesymistycznej złożoności obliczeniowej algorytmu N jest równa O(n m), gdzie n oznacza liczbę znaków tekstu, a m liczbę znaków wzorca. Jednakże w typowych warunkach algorytm pracuje w czasie O(n), ponieważ zwykle wystarczy porównanie kilku początkowych znaków okna z wzorcem, aby stwierdzić, iż są one niezgodne Alogorytm Karpa-Rabina Danemu wzorcu możemy przyporządkować odpowiadającą mu wartość dziesiętną - klucz. Dla danego tekstu obliczamy wartości dziesiętne kolejnych podsłów długości wzorca zaczynając od początku tekstu uzyskujemy różne klucze. Teraz wystarczy porównać wartość dziesiętną odpowiadającą wzorcu z wartościami dziesiętnymi odpowiadającymi kolejnym podsłowom czyli sprawdzamy czy klucze są identyczne. Jeżeli są one równe możemy podejrzewać, że wzorzec występuje w tekście. 2.6 Haszowanie Haszowanie jest to pewna technika rozwiązywania ogólnego problemu słownika. Przez problem słownika rozumiemy tutaj takie zorganizowanie struktur
10 danych i algorytmów, aby można było w miarę efektywnie przechowywać i wyszukiwać elementy należące do pewnego dużego zbioru danych (uniwersum). Przykładem takiego uniwersum mogą być liczby lub napisy (wyrazy) zbudowane z liter jakiegoś alfabetu.
Sortowanie przez wstawianie Insertion Sort
Sortowanie przez wstawianie Insertion Sort Algorytm sortowania przez wstawianie można porównać do sposobu układania kart pobieranych z talii. Najpierw bierzemy pierwszą kartę. Następnie pobieramy kolejne,
Strategia "dziel i zwyciężaj"
Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania
Sortowanie przez scalanie
Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie
Algorytmy sortujące i wyszukujące
Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.
Egzamin, AISDI, I termin, 18 czerwca 2015 r.
Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Sortowanie. LABORKA Piotr Ciskowski
Sortowanie LABORKA Piotr Ciskowski main Zaimplementuj metody sortowania przedstawione w następnych zadaniach Dla każdej metody osobna funkcja Nagłówek funkcji wg uznania ale wszystkie razem powinny być
(3 kwiecień 2014) Marika Pankowska Kamila Pietrzak
(3 kwiecień 2014) Marika Pankowska Kamila Pietrzak Wyszukiwanie liniowe (ang. linear search), zwane również sekwencyjnym (ang. sequential search) polega na przeglądaniu kolejnych elementów zbioru Z. Jeśli
Sortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Definicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Sortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Struktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 2 Algorytmy wyszukiwania, sortowania i selekcji Sortowanie bąbelkowe Jedna z prostszych metod sortowania, sortowanie w miejscu? Sortowanie bąbelkowe Pierwsze
Programowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Wstęp do programowania
Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Anna Sobocińska Sylwia Piwońska
Anna Sobocińska Sylwia Piwońska Problem Wyszukiwanie liniowe W n-elementowym zbiorze Z wyszukać element posiadający pożądane własności. Wyszukiwanie liniowe (ang. linear search), zwane również sekwencyjnym
Sortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Podstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
PODSTAWY INFORMATYKI wykład 5.
PODSTAWY INFORMATYKI wykład 5. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,
Algorytmy sortujące. sortowanie kubełkowe, sortowanie grzebieniowe
Algorytmy sortujące sortowanie kubełkowe, sortowanie grzebieniowe Sortowanie kubełkowe (bucket sort) Jest to jeden z najbardziej popularnych algorytmów sortowania. Został wynaleziony w 1956 r. przez E.J.
Sortowanie Shella Shell Sort
Sortowanie Shella Shell Sort W latach 50-tych ubiegłego wieku informatyk Donald Shell zauważył, iż algorytm sortowania przez wstawianie pracuje bardzo efektywnie w przypadku gdy zbiór jest w dużym stopniu
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Laboratorium nr 7 Sortowanie
Laboratorium nr 7 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) Materiały Wyróżniamy następujące metody sortowania: 1. Przez prostą zamianę
Porównanie Heap Sort, Counting Sort, Shell Sort, Bubble Sort. Porównanie sortowao: HS, CS, Shs, BS
Czas sortowania w milisekundach Czas sortowania w milisekundach Sortowanie Porównanie, Counting Sort, Shell Sort, Bubble Sort 4 Porównanie sortowao: HS, CS, Shs, BS 35 3 25 2 15 5 Counting Sort Shell Sort
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
Algorytmy przeszukiwania wzorca
Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Algorytmy przeszukiwania wzorca 1 Wstęp Algorytmy
Efektywna metoda sortowania sortowanie przez scalanie
Efektywna metoda sortowania sortowanie przez scalanie Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Metoda dziel i zwycięŝaj Dzielimy
Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,
Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa
Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane
Algorytmy i struktury danych Wykład 4 Tablice nieporządkowane i uporządkowane Tablice uporządkowane Szukanie binarne Szukanie interpolacyjne Tablice uporządkowane Szukanie binarne O(log N) Szukanie interpolacyjne
INFORMATYKA SORTOWANIE DANYCH.
INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Algorytmy sortujące. Sortowanie bąbelkowe
Algorytmy sortujące Sortowanie bąbelkowe Sortowanie bąbelkowe - wstęp Algorytm sortowania bąbelkowego jest jednym z najstarszych algorytmów sortujących. Zasada działania opiera się na cyklicznym porównywaniu
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Algorytmy i struktury danych
Algorytmy i struktury danych Proste algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Pojęcie sortowania Sortowaniem nazywa się proces ustawiania zbioru obiektów w określonym porządku Sortowanie
znalezienia elementu w zbiorze, gdy w nim jest; dołączenia nowego elementu w odpowiednie miejsce, aby zbiór pozostał nadal uporządkowany.
Przedstawiamy algorytmy porządkowania dowolnej liczby elementów, którymi mogą być liczby, jak również elementy o bardziej złożonej postaci (takie jak słowa i daty). Porządkowanie, nazywane również często
Złożoność algorytmów. Wstęp do Informatyki
Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów
Drzewa poszukiwań binarnych
1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie
Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
Sortowanie bąbelkowe
1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym
Sortowanie bąbelkowe - wersja nr 1 Bubble Sort
Sortowanie bąbelkowe - wersja nr 1 Bubble Sort Algorytm Algorytm sortowania bąbelkowego jest jednym z najstarszych algorytmów sortujących. Można go potraktować jako ulepszenie opisanego w poprzednim rozdziale
Temat 7. Najlżejsze i najcięższe algorytmy sortowania
Temat 7 Najlżejsze i najcięższe algorytmy sortowania Streszczenie Komputery są często używane porządkowania różnych danych, na przykład nazwisk (w porządku alfabetycznym), terminów spotkań lub e-maili
Jeszcze o algorytmach
Jeszcze o algorytmach Przykłady różnych, podstawowych algorytmów 11.01.2018 M. Rad Plan Powtórka Znajdowanie najmniejszego elementu Segregowanie Poszukiwanie przez połowienie Wstawianie Inne algorytmy
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP
Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Wstęp 2 Metody proste 3 Szybkie metody sortowania 4 Algorytmy hybrydowe Sortowanie hybrydowe Sortowanie introspektywne
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5.
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Schemat Hornera. Wyjaśnienie: Zadanie 1. Pozycyjne reprezentacje
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Metodyki i Techniki Programowania 2
Metodyki i Techniki Programowania 2 zajęcia nr 5 algorytmy cz.1: sortowanie Elektronika i Telekomunikacja, semestr III rok akademicki 2009/2010 mgr inż.. Paweł Myszkowski Plan dzisiejszych zajęć 1. Sortowanie
Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.
Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9
Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Luty 2001 Algorytmy (4) 2000/2001
Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest
Zasady analizy algorytmów
Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania
Podstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Algorytmy sortujące 1
Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na
Algorytm selekcji Hoare a. Łukasz Miemus
Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Algorytmy przeszukiwania
Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
WYŻSZA SZKOŁA IFORMATYKI STOSOWAEJ I ZARZĄDZAIA Złożoność algorytmów Złożoność pamięciowa algorytmu wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie. Złożoność czasowa algorytmu
Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy
1 Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
Algorytmy i struktury danych
Algorytmy i struktury danych ĆWICZENIE 2 - WYBRANE ZŁOŻONE STRUKTURY DANYCH - (12.3.212) Prowadząca: dr hab. inż. Małgorzata Sterna Informatyka i3, poniedziałek godz. 11:45 Adam Matuszewski, nr 1655 Oliver
Haszowanie (adresowanie rozpraszające, mieszające)
Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy
Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15
Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:
ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Wyszukiwanie binarne
Wyszukiwanie binarne Wyszukiwanie binarne to technika pozwalająca na przeszukanie jakiegoś posortowanego zbioru danych w czasie logarytmicznie zależnym od jego wielkości (co to dokładnie znaczy dowiecie
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 9. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 9 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Zasada dziel i zwyciężaj Przykłady znajdowanie
Techniki konstruowania algorytmów. Metoda dziel i zwyciężaj
Techniki konstruowania algorytmów Metoda dziel i zwyciężaj Technika dziel i zwyciężaj Aby rozwiązać problem techniką dziel i zwyciężaj musi on wykazywać własność podstruktury rozwiązanie problemu można
Podstawy Informatyki. Metody dostępu do danych
Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Temat: Algorytmy wyszukiwania wzorca w tekście
Temat: Algorytmy wyszukiwania wzorca w tekście 1. Sformułowanie problemu Dany jest tekst T oraz wzorzec P, będące ciągami znaków o długości równej odpowiednio n i m (n m 1), nad pewnym ustalonym i skończonym
Kolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.
Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność
Podstawy Programowania 1 Sortowanie tablic jednowymiarowych. Plan. Sortowanie. Sortowanie Rodzaje sortowania. Notatki. Notatki. Notatki.
Podstawy Programowania 1 Sortowanie tablic jednowymiarowych Arkadiusz Chrobot Zakład Informatyki 12 listopada 20 1 / 35 Plan Sortowanie Wartość minimalna i maksymalna w posortowanej tablicy Zakończenie
Algorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.)
egzamin podstawowy 7 lutego 2017 r. wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.) Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek imię, nazwisko i nr indeksu:..............................................................
Algorytmy i struktury danych
Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania
B.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:
Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka
PODSTAWY INFORMATYKI wykład 10.
PODSTAWY INFORMATYKI wykład 10. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutniacza w Krakowie WEAIiE,
Wykład 3. Metoda dziel i zwyciężaj
Wykład 3 Metoda dziel i zwyciężaj 1 Wprowadzenie Technika konstrukcji algorytmów dziel i zwyciężaj. przykładowe problemy: Wypełnianie planszy Poszukiwanie (binarne) Sortowanie (sortowanie przez łączenie
Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa
Łukasz Przywarty 171018 Data utworzenia: 24.03.2010r. Mariusz Kacała 171058 Prowadzący: prof. dr hab. inż. Adam Janiak oraz dr inż. Tomiasz Krysiak Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa
Sortowanie zewnętrzne
Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Sortowanie zewnętrzne 1 Wstęp Bardzo często
Tablice z haszowaniem
Tablice z haszowaniem - efektywna metoda reprezentacji słowników (zbiorów dynamicznych, na których zdefiniowane są operacje Insert, Search i Delete) - jest uogólnieniem zwykłej tablicy - przyspiesza operacje
Algorytmy sztucznej inteligencji
www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego
Informatyka A. Algorytmy
Informatyka A Algorytmy Spis algorytmów 1 Algorytm Euklidesa....................................... 2 2 Rozszerzony algorytm Euklidesa................................ 2 3 Wyszukiwanie min w tablicy..................................
Systemy liczbowe używane w technice komputerowej
Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.
Problemy porządkowe zadania
Problemy porządkowe Problemy porządkowe zadania Problemy porządkowe to zbiór różnych zadań obliczeniowych związanych z porządkowaniem zbioru danych i wyszukiwaniem informacji na takim zbiorze. Rodzaje