ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:"

Transkrypt

1 ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy zastosować w danych okolicznościach? 3) Czy istnieje lepszy algorytm od rozważanego? Czy jest on optymalny? Konstruując algorytm należy zwracać uwagę na : - poprawność semantyczną - prostotę - czas działania - ilość zajmowanej pamięci - optymalność - okoliczności w jakich należy go używać, a w jakich nie Złożoność obliczeniową algorytmu definiuje się jako ilość zasobów komputerowych, potrzebnych do jego wykonania. Wyróżniamy złożoność pamięciową i czasową. Będziemy się zajmować głównie złożonością czasową. Miara złożoności musi być uniwersalna czyli oderwana od szczegółów natury "sprzętowej" tj. - Jaki komputer jest używany? - Jaka jest częstotliwość zegara taktującego procesor? - Czy program będzie jedynym wykonywanym na komputerze? Jeśli nie to jaki jest jego priorytet? - Jakiego kompilatora używamy? - Czy w kompilatorze włączono opcje optymalizacji kodu?... etc

2 Parametrem najczęściej decydującym o czasie wykonania algorytmu jest rozmiar danych, z którymi ma on do czynienia. Parametr ten może mieć różne znaczenie: - dla funkcji sortującej tablicę parametrem będzie rozmiar tablicy - dla funkcji liczącej n! będzie to wielkość danej wejściowej W algorytmie zawsze można wyróżnić tzw. operacje dominujące (najbardziej czasochłonne) - takie, że łączna ich liczba jest proporcjonalna do liczby wszystkich operacji jednostkowych w dowolnej realizacji algorytmu. Dla sortowania operacją tą będzie zwykle porównanie dwóch elementów, czasem także przestawienie elementów ciągu. Jednostką złożoności czasowej jest czas wykonania jednej operacji dominującej. Wyróżniamy: - złożoność pesymistyczną W(n) - zdefiniowaną jako ilość zasobów komputerowych, potrzebnych przy "najgorszych" danych wejściowych rozmiaru n - złożoność oczekiwaną A(n) - definiowaną jako ilość zasobów komputerowych, potrzebnych przy "typowych" danych wejściowych rozmiaru n Faktyczna/praktyczna złożoność czasowa algorytmu (czas działania) różni się od wyliczonej teoretycznie współczynnikiem proporcjonalności zależnym od konkretnej realizacji algorytmu. Istotną informacją zawarta w W(n), A(n) jest rząd wielkości, czyli zachowanie asymptotyczne, gdy n ->. Będziemy zatem szukać złożoności teoretycznej, tj. funkcji matematycznej występującej w T(n), która odgrywa w niej najważniejszą rolę, wpływając najsilniej na czas wykonania programu.

3 Najczęściej spotykane złożoności czasowe algorytmów: 1) log(n) - występuje, np. dla algorytmów, w których zadanie rozmiaru n zostaje sprowadzone do zadania rozmiaru n/2 + pewna stała liczba działań ( np. przeszukiwanie binarne uporządkowanego ciągu) 2) n - występuje, np. dla algorytmów, w których jest wykonywana pewna stała liczba działań dla każdego z n elementów danych wejściowych (np. algorytm Hornera wyznaczania wartości wielomianu) 3) n*log(n) - występuje, np. dla algorytmów, w których zadanie rozmiaru n zostaje sprowadzone do dwóch podzadań rozmiaru n/2 + pewna liczba działań liniowa w n (np. niektóre metody sortowania - quicksort ) 4) n 2 - występuje, np. dla algorytmów w których jest wykonywana pewna stała liczba działań dla każdej pary elementów danych wejściowych (podwójna instrukcja iteracyjna, np. operacje na tablicach) 5) 2 n - występuje, np. dla algorytmów, w których jest wykonywana stała liczba działań dla każdego podzbioru danych wejściowych 6) n! - występuje, np. dla algorytmów, w których jest wykonywana stała liczba działań dla każdej permutacji danych wejściowych Czas działania algorytmu/ programu o danym rozmiarze danych n silnie zależy od złożoności algorytmu ( T = 1µs ):

4 Wychodzenie z labiryntu i pakowanie plecaka. Zadania te nazywane są problemami optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych rozwiązań spełniających pewne warunki. Rozwiązania powyższych zadań są jednocześnie przykładem metod heurystycznych, wykorzystujących intuicyjne sposoby otrzymania możliwie najlepszych rozwiązań - metody te są szybkie i mają duże znaczenie praktyczne. Znajdowanie wyjścia z labiryntu. Labirynt jest zamknięty w prostokącie, ma tylko jedno wyjście/wejście i wszystkie ściany wewnętrzne są równoległe do zewnętrznych. W labiryncie nie ma zamkniętych obszarów, tzn. z każdego pola istnieje droga prowadząca do wyjścia. Pola labiryntu można ponumerować/nazwać jak na szachownicy. Naszym celem jest podanie algorytmu, który z każdego punktu labiryntu zaprowadzi nas do wyjścia, bez zbędnego kluczenia. W algorytmie takim zawsze można wyróżnić dwa elementy: - regułę gwarantującą, że żadnego odcinka drogi w labiryncie nie przechodzimy więcej niż jeden raz - strategię jak najszybszego wyjścia z labiryntu Metoda po omacku (z ręką na ścianie ). Po wybraniu kierunku poruszamy się, trzymając cały czas jedną (ale tę samą ) rękę na ścianie - idziemy wzdłuż ścian. Poruszając się w ten sposób albo trafimy do wyjścia, albo wrócimy do punktu, w którym już byliśmy.

5 Metoda z nawrotami: W każdym punkcie (polu) labiryntu są co najwyżej cztery możliwości występowania następnego kroku: { w górę, w lewo, w prawo, w dół } - {G,L,P,D} Opis metody: 1) w polu w którym jesteśmy wybieramy z listy kierunków pierwszy, jeszcze nie zbadany kierunek przejścia z tego pola, taki że: - w tym kierunku istnieje pole nie oddzielone ścianą od "naszego" - dotychczas jeszcze nie odwiedziliśmy tego pola 2) przechodzimy na to pole 3) jeśli z danego pola nie można już przejść w żadnym kierunku, to wracamy do pola z którego przyszliśmy i kontynuujemy postępowanie

6 Krok będący powrotem oznaczymy B, a każdy ruch możemy opisać nazwą kroku (kierunku) i nazwą pola np. G-2b, B-3a etc. Kierunek poruszania się po labiryncie określamy w zależności od naszego ustawienia i przyjmujemy, że cały czas poruszamy się "twarzą" do przodu oprócz ruchów B. Metoda z nawrotami zawsze znajduje wyjście, ale jej szybkość nie jest zadowalająca i droga wyjścia nie jest nakrótsza. Metoda ta jest przykładem przeszukiwania w głąb, gdzie w kolejnych krokach przeszukiwanie zagłębia się coraz bardziej, tak daleko jak to możliwe - teoria grafów. Metody powyższe można stosować w sytuacji, gdy znajdujemy się w labiryncie i nie znamy jego schematu, tzn. możemy korzystać tylko z lokalnych informacji, które jesteśmy w stanie zgromadzić, rozglądając się wokół siebie.

7

8 Metoda z nawrotami - zapis rekurencyjny: Dane: Labirynt, czyli prostokąt z jednym wyjściem, wypełniony ścianami, które są równoległe do zewnętrznych ścian i nie tworzą zamkniętych obszarów. Dany jest punkt ν wewnątrz labiryntu. Wynik: Droga w labiryncie, która prowadzi z punktu ν do wyjścia. Krok 1. Dla każdego kolejnego kierunku (G,L,P,D) poruszania się z punktu ν, jeśli istnieje w tym kierunku nieodwiedzone pole w i nie jest ono odgrodzone od pola ν ścianą, to przejdź do kroku 2, a w przeciwnym razie zakończ to wywołanie algorytmu. Krok2. Jeśli wyjście z labiryntu jest w jednej ze ścian pola w, to zakończ algorytm. W przeciwnym razie oznacz pole w jako odwiedzone i wywołaj ten algorytm dla tego pola w. W zapisie tym pozornie nie ma ruchu do tyłu B. W praktyce ruch ten jest wykonywany zawsze, gdy w wyniku wywołań rekurencyjnych docieramy do miejsca, w którym nie możemy przejść do nowego pola labiryntu i przechodzimy do drugiego etapu rekurencji - powrotu z kolejnych wywołań. Znajdowanie najkrótszej drogi wyjścia z labiryntu - generowanie pól. Metoda z nawrotami zawsze znajduje drogę wyjścia z labiryntu, ale nie można być zadowolonym z szybkości wykonania zadania - długo trzeba krążyć, aby trafić do wyjścia. Należy pamiętać, że zarówno metoda po omacku, jak metoda z nawrotami może służyć do znajdowania wyjścia z labiryntu którego układ jest nieznany. Metoda generacji pól będzie działać dla labiryntu, którego schemat znamy.

9 Metoda taka mogłaby polegać na wygenerowaniu wszystkich dróg prowadzących do wyjścia i wybraniu najkrótszej. Dróg wyjścia może być jednak bardzo dużo, choć ich liczba jest skończona, a zatem najkrótsza droga zawsze istnieje. Aby skonstruować algorytm według, którego z danego pola podążamy bezpośrednio do wyjścia, oprzemy się prostej obserwacji - każdy fragment najkrótszej drogi między dowolnymi jej punktami jest również najkrótszą drogą między tymi punktami. Metoda znajdowania najkrótszej drogi z pola s : - generujemy pola odległe od s o jedno pole (pola przyległe) - generujemy pola odległe od s o dwa pola (które oddzielone są od s polem przyległym) - generujemy pola odległe od s o trzy pola etc., aż do osiągnięcia wyjścia {metodę tą nazywamy bliższe najpierw, wynikiem jej działania jest labirynt wypełniony liczbami} - odczytujemy od strony wyjścia pola od ległe od s o L pól, później pole odległe o L-1, następnie L-2 etc., postępujemy tak, aż do osiągnięcia pola s Aby zapisać algorytm musimy podać sposób zapamię-tywania kolejno odwiedzanych i przeglądanych pól. Zakładamy, że na początku algorytmu wszystkie pola są nieodwiedzone. Aby mieć pewność, że pola przechodzimy w kolejności ich odległości od s, umieszczamy je w kolejności osiągania, jedno po drugim w ciągu. W tej samej kolejności opuszczają one ten ciąg, gdy przechodzimy na nowe pola, leżące o jedno pole dalej od s.

10 Do zapamiętywania pól nadaje się tradycyjna kolejka, którą nazwiemy Q. Algorytm: Krok 0. Przyjąć, że na początku wszystkie pola są nie-odwiedzone. Krok 1. Umieścić w kolejce Q pole s. W polu s umieścić liczbę 0. Krok 2. Dopóki kolejka Q nie jest pusta, wykonywać kroki 3-5. Krok 3. Usuń z kolejki Q jej pierwszy element (pole v). Krok 4. Dla każdego pola sąsiedniego względem v i nie oddzielonego od niego ścianą wykonaj krok 5. Krok 5. Jeśli pole w nie było jeszcze odwiedzone, to umieścić w nim liczbę o jeden większą od liczby w polu v. Jeśli pole w zawiera wyjście, to przejdź do kroku 6, a w przeciwnym razie dołącz pole w na końcu kolejki Q. Krok 6. {Budujemy od końca listę pól tworzących najkrótszą drogę z pola s do pola w na którym zakończył działanie krok 5. } Dopóki w nie jest polem s : za kolejne (od końca ) pole drogi przyjąć w i za nową wartość w przyjąć pole sąsiednie względem w, w którym znajduje się liczba o jeden mniejsza od liczby znajdującej się w obecnym polu w. Algorytm ten jest szczególnym przypadkiem algorytmu Dijkstry wyznaczania najkrótszej drogi w dowolnej sieci połączeń, w której odległości między punktami są nieujemne (np. problem komiwojażera).

11

12 Problem komiwojażera Należy wskazać najkrótsza drogę odwiedzenia stolic wszystkich województw wyruszając z Warszawy i wracając do Warszawy

13

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Zadanie do wykonania 1) Utwórz na pulpicie katalog w formacie Imię nazwisko, w którym umieść wszystkie pliki związane z

Bardziej szczegółowo

Algorytmy przeszukiwania

Algorytmy przeszukiwania Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy

Bardziej szczegółowo

Programowanie w VB Proste algorytmy sortowania

Programowanie w VB Proste algorytmy sortowania Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

Algorytmy ewolucyjne (3)

Algorytmy ewolucyjne (3) Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera

Bardziej szczegółowo

Podstawowe struktury danych

Podstawowe struktury danych Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym

Bardziej szczegółowo

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:

Bardziej szczegółowo

PROBLEMY NIEROZSTRZYGALNE

PROBLEMY NIEROZSTRZYGALNE PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne. Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Profil pracy wariant konfiguracji programu obejmujący m.in język, walutę, konto allegro, szablon aukcji, zdefiniowane koszty wysyłki itp.

Profil pracy wariant konfiguracji programu obejmujący m.in język, walutę, konto allegro, szablon aukcji, zdefiniowane koszty wysyłki itp. KQS ALLEGRO PRZYGOTOWYWANIE I WYSTAWIANIE AUKCJI Pojęcia użyte w instrukcji: Profil pracy wariant konfiguracji programu obejmujący m.in język, walutę, konto allegro, szablon aukcji, zdefiniowane koszty

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Język ludzki kod maszynowy

Język ludzki kod maszynowy Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

UWAGA!!! Przed przystąpieniem do zamknięcia roku proszę zrobić kopie bezpieczeństwa

UWAGA!!! Przed przystąpieniem do zamknięcia roku proszę zrobić kopie bezpieczeństwa UWAGA!!! Przed przystąpieniem do zamknięcia roku proszę zrobić kopie bezpieczeństwa Następnie należy sprawdzić czy w KOLFK w Słownik i-> Dokumenty-> znajduje się dokument BO- Bilans Otwarcia (w grupie

Bardziej szczegółowo

Wprowadzenie do programowania

Wprowadzenie do programowania do programowania ITA-104 Wersja 1 Warszawa, Wrzesień 2009 ITA-104 do programowania Informacje o kursie Zakres tematyczny kursu Opis kursu Kurs przeznaczony jest do prowadzenia przedmiotu do programowania

Bardziej szczegółowo

znajdowały się różne instrukcje) to tak naprawdę definicja funkcji main.

znajdowały się różne instrukcje) to tak naprawdę definicja funkcji main. Część XVI C++ Funkcje Jeśli nasz program rozrósł się już do kilkudziesięciu linijek, warto pomyśleć o jego podziale na mniejsze części. Poznajmy więc funkcje. Szybko się przekonamy, że funkcja to bardzo

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Rekurencja (rekursja)

Rekurencja (rekursja) Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy

Bardziej szczegółowo

Polcode Code Contest PHP-10.09

Polcode Code Contest PHP-10.09 Polcode Code Contest PHP-10.09 Przedmiotem konkursu jest napisanie w języku PHP programu, którego wykonanie spowoduje rozwiązanie zadanego problemu i wyświetlenie rezultatu. Zadanie konkursowe Celem zadania

Bardziej szczegółowo

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/ STL, czyli o co tyle hałasu W świecie programowania C++, hasło STL pojawia się nieustannie i zawsze jest o nim głośno... często początkujące osoby, które nie znają STL-a pytają się co to jest i czemu go

Bardziej szczegółowo

Metodyki i techniki programowania

Metodyki i techniki programowania Metodyki i techniki programowania dr inż. Maciej Kusy Katedra Podstaw Elektroniki Wydział Elektrotechniki i Informatyki Politechnika Rzeszowska Elektronika i Telekomunikacja, sem. 2 Plan wykładu Sprawy

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

1 Moduł Modbus ASCII/RTU 3

1 Moduł Modbus ASCII/RTU 3 Spis treści 1 Moduł Modbus ASCII/RTU 3 1.1 Konfigurowanie Modułu Modbus ASCII/RTU............. 3 1.1.1 Lista elementów Modułu Modbus ASCII/RTU......... 3 1.1.2 Konfiguracja Modułu Modbus ASCII/RTU...........

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Do czego służy SafeCase ( Sejfik )

Do czego służy SafeCase ( Sejfik ) Do czego służy SafeCase ( Sejfik ) SafeCase- Informacja Strona 1 / 9 SafeCase ( Sejfik ) to program działający na telefonach komórkowych i innych urządzeniach mobilnych, umożliwiający przechowywanie i

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Dla tego magazynu dodajemy dokument "BO remanent", który definiuje faktyczny, fizyczny stan magazynu:

Dla tego magazynu dodajemy dokument BO remanent, który definiuje faktyczny, fizyczny stan magazynu: Remanent w Aptece Spis treści 1 Omówienie mechanizmu 2 Dokument BO jako remanent 2.1 Dodawanie dokumentu 2.2 Generowanie pozycji remanentu 2.3 Generowanie stanów zerowych 2.4 Raporty remanentowe 3 Raport

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

5.4. Tworzymy formularze

5.4. Tworzymy formularze 5.4. Tworzymy formularze Zastosowanie formularzy Formularz to obiekt bazy danych, który daje możliwość tworzenia i modyfikacji danych w tabeli lub kwerendzie. Jego wielką zaletą jest umiejętność zautomatyzowania

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

1 Moduł Modbus ASCII/RTU

1 Moduł Modbus ASCII/RTU 1 Moduł Modbus ASCII/RTU Moduł Modbus ASCII/RTU daje użytkownikowi Systemu Vision możliwość komunikacji z urządzeniami za pomocą protokołu Modbus. Moduł jest konfigurowalny w taki sposób, aby umożliwiał

Bardziej szczegółowo

EKSPEDYCJA. Odczyt danych z recept za pomocą czytnika kodów kreskowych

EKSPEDYCJA. Odczyt danych z recept za pomocą czytnika kodów kreskowych EKSPEDYCJA Odczyt danych z recept za pomocą czytnika kodów kreskowych Udoskonalony został mechanizm wczytywania danych z recept za pomocą czytnika kodów kreskowych. Obecnie program niezależnie od tego,

Bardziej szczegółowo

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Obszar Logistyka/Zamówienia Publiczne

Obszar Logistyka/Zamówienia Publiczne Obszar Logistyka/Zamówienia Publiczne Plany Zamówień Publicznych EG_LOG Plany Zamówień Publicznych Instrukcja Użytkownika. Instrukcja użytkownika 2 Spis treści SPIS TREŚCI... 3 NAWIGACJA PO SYSTEMIE...

Bardziej szczegółowo

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.

Bardziej szczegółowo

Matematyka, kl. 5. Konieczne umiejętności

Matematyka, kl. 5. Konieczne umiejętności Matematyka, kl. 5 Liczby i działania Program Matematyka z plusem Ocena Konieczne umiejętności Opanowane algorytmy pisemnego dodawania, odejmowania, mnożenia i dzielenia liczb naturalnych. Prawidłowe wykonywanie

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

1. Cel ćwiczenia. 2. Podłączenia urządzeń zewnętrznych w sterowniku VersaMax Micro

1. Cel ćwiczenia. 2. Podłączenia urządzeń zewnętrznych w sterowniku VersaMax Micro 1. Cel ćwiczenia Celem ćwiczenia jest zaprojektowanie sterowania układem pozycjonowania z wykorzystaniem sterownika VersaMax Micro oraz silnika krokowego. Do algorytmu pozycjonowania wykorzystać licznik

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Instrukcja użytkownika. Aplikacja dla WF-Mag

Instrukcja użytkownika. Aplikacja dla WF-Mag Instrukcja użytkownika Aplikacja dla WF-Mag Instrukcja użytkownika Aplikacja dla WF-Mag Wersja 1.0 Warszawa, Kwiecień 2015 Strona 2 z 13 Instrukcja użytkownika Aplikacja dla WF-Mag Spis treści 1. Wstęp...4

Bardziej szczegółowo

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 6 Podstawy programowania 2 Temat: Funkcje i procedury rekurencyjne Przygotował: mgr inż. Tomasz Michno Wstęp teoretyczny Rekurencja (inaczej nazywana rekursją, ang. recursion)

Bardziej szczegółowo

Rejestr Personelu Medycznego

Rejestr Personelu Medycznego Rejestr Personelu Medycznego Rejestr personelu medycznego W systemie SZOI pojawiäa siå nowa funkcjonalnoçé zwiñzana z rejestrem personelu medycznego. Zanim przystñpiñ PaÖstwo do wypeäniania oferty muszñ

Bardziej szczegółowo

QUERY język zapytań do tworzenia raportów w AS/400

QUERY język zapytań do tworzenia raportów w AS/400 QUERY język zapytań do tworzenia raportów w AS/400 Dariusz Bober Katedra Informatyki Politechniki Lubelskiej Streszczenie: W artykule przedstawiony został język QUERY, standardowe narzędzie pracy administratora

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne

LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne

Bardziej szczegółowo

Przeglad podstawowych pojęć (3) Podstawy informatyki (3) dr inż. Sebastian Pluta. Instytut Informatyki Teoretycznej i Stosowanej

Przeglad podstawowych pojęć (3) Podstawy informatyki (3) dr inż. Sebastian Pluta. Instytut Informatyki Teoretycznej i Stosowanej Przeglad podstawowych pojęć (1) Podstawy informatyki (3) dr inż. Sebastian Pluta pluta@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Program komputerowy to sekwencja instrukcji wykonywanych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

Instrukcja szybkiej obsługi

Instrukcja szybkiej obsługi Instrukcja szybkiej obsługi Uwaga!!! Dla prawidłowego działania wymagany jest program Excel 2003 lub nowszy. Program należy ściągnąć ze strony internetowej i zapisać na dysku twardym. Wyjście z programu

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Spis treści. spis treści wygenerowany automatycznie

Spis treści. spis treści wygenerowany automatycznie Spis treści Rozdział 2.Wymagania edytorskie 2 2.1. Wymagania ogólne 2 2.2. Tytuły rozdziałów i podrozdziałów 2 2.3. Rysunki, tabele i wzory 3 2.3.1. Rysunki 3 2.3.2. Tabele 4 2.3.3. Wzory 4 2.4. Odsyłacze

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Zarządzanie korespondencją

Zarządzanie korespondencją Zarządzanie korespondencją Aby korzystać z systemu należy: mieć dostęp do internetu uruchomić przeglądarkę internetową (Firefox) Informację od konsultanta EAT adres internetowy login hasło startowe adres

Bardziej szczegółowo

Kilometrówki24.pl to system służący do ewidencjonowania przejazdów pojazdów wykorzystywanych w przedsiębiorstwach.

Kilometrówki24.pl to system służący do ewidencjonowania przejazdów pojazdów wykorzystywanych w przedsiębiorstwach. Czym są Kilometrówki24.pl? Kilometrówki24.pl to system służący do ewidencjonowania przejazdów pojazdów wykorzystywanych w przedsiębiorstwach. Dla kogo skierowany jest ten system? Kilometrówki24.pl skierowany

Bardziej szczegółowo

Kodu z klasą. Skarb w zatrutej wodzie, cz. 2. Scenariusz 6

Kodu z klasą. Skarb w zatrutej wodzie, cz. 2. Scenariusz 6 W scenariuszu nr 6 kontynuujemy pracę rozpoczętą na poprzednich zajęciach i ukończymy cały scenariusz. Dzisiaj przygotujemy zdarzenia, gdzie fabryka zatruwa wodę i zwierzęta stają się agresywne oraz zaprogramujemy

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Rozdział ten zawiera informacje na temat zarządzania Modułem Modbus TCP oraz jego konfiguracji.

Rozdział ten zawiera informacje na temat zarządzania Modułem Modbus TCP oraz jego konfiguracji. 1 Moduł Modbus TCP Moduł Modbus TCP daje użytkownikowi Systemu Vision możliwość zapisu oraz odczytu rejestrów urządzeń, które obsługują protokół Modbus TCP. Zapewnia on odwzorowanie rejestrów urządzeń

Bardziej szczegółowo

Matematyka od zaraz zatrudnię

Matematyka od zaraz zatrudnię Uniwersytet Jagielloński Gdzie jest matematyka? Soczewka, 26-28 listopada 2010 Kolorowanie grafów Dobre kolorowanie wierzchołków grafu, to nadanie im kolorów w taki sposób, że każde dwa wierzchołki połaczone

Bardziej szczegółowo

Instrukcja zgłaszania błędu

Instrukcja zgłaszania błędu Instrukcja zgłaszania błędu 1 Kanały zgłaszania Do dyspozycji są trzy kanały zgłoszeń: A. AnswerTrack 2 aby skorzystać z tego kanału należy posiadać założone konto użytkowania AT2 (pkt.3), wypełnić formularz

Bardziej szczegółowo

Instrukcja konfigurowania sieci WiFi w Akademii Leona Koźmińskiego dla telefonów komórkowych z systemem Symbian

Instrukcja konfigurowania sieci WiFi w Akademii Leona Koźmińskiego dla telefonów komórkowych z systemem Symbian Instrukcja konfigurowania sieci WiFi w Akademii Leona Koźmińskiego dla telefonów komórkowych z systemem Symbian (wersja dla telefonów bez ekranu dotykowego) Niniejsza instrukcja została przygotowana na

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Instrukcja do programu DoUPS 1.0

Instrukcja do programu DoUPS 1.0 Instrukcja do programu DoUPS 1.0 Program DoUPS 1.0 pozwala w prosty sposób wykorzystać dane z systemu sprzedaży Subiekt GT do generowania listów przewozowych dla firmy kurierskiej UPS w połączeniu z bezpłatnym

Bardziej szczegółowo

ALGORYTMY I PROGRAMY

ALGORYTMY I PROGRAMY ALGORYTMY I PROGRAMY Program to ciąg instrukcji, zapisanych w języku zrozumiałym dla komputera. Ten ciąg instrukcji realizuje jakiś algorytm. Algorytm jest opisem krok po kroku jak rozwiązać problem, czy

Bardziej szczegółowo

Modułowy programowalny przekaźnik czasowy firmy Aniro.

Modułowy programowalny przekaźnik czasowy firmy Aniro. Modułowy programowalny przekaźnik czasowy firmy Aniro. Rynek sterowników programowalnych Sterowniki programowalne PLC od wielu lat są podstawowymi systemami stosowanymi w praktyce przemysłowej i stały

Bardziej szczegółowo

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Raport Robot mobilny klasy micromouse. Adrian Gałęziowski Paweł Urbaniak

Raport Robot mobilny klasy micromouse. Adrian Gałęziowski Paweł Urbaniak Raport Robot mobilny klasy micromouse Adrian Gałęziowski Paweł Urbaniak Wrocław, 12 marca 2013 Spis treści 1. Założenia projektu.................................... 2 2. Model w programie Autodeksk Inventor.......................

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Instrukcja do programu DoGLS 1.0

Instrukcja do programu DoGLS 1.0 Instrukcja do programu DoGLS 1.0 Program DoGLS 1.0 pozwala w prosty sposób wykorzystać dane z systemu sprzedaży Subiekt GT do generowania listów przewozowych dla firmy kurierskiej GLS w połączeniu z bezpłatnym

Bardziej szczegółowo

Część III końcowa - to uspokojenie organizmu czynności porządkowe, omówienie lekcji.

Część III końcowa - to uspokojenie organizmu czynności porządkowe, omówienie lekcji. PIŁKA RĘCZNA W SZKOLE. Piłka ręczna powinna odgrywać istotną rolę w systemie wychowania fizycznego ze względu na swoje niezaprzeczalne walory zdrowotne. Jest to gra dla wszystkich kategorii wieku, ponieważ

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach

Bardziej szczegółowo

LEKCJA TEMAT: Zasada działania komputera.

LEKCJA TEMAT: Zasada działania komputera. LEKCJA TEMAT: Zasada działania komputera. 1. Ogólna budowa komputera Rys. Ogólna budowa komputera. 2. Komputer składa się z czterech głównych składników: procesor (jednostka centralna, CPU) steruje działaniem

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001. KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych

Bardziej szczegółowo

Algorytmy sortujące 1

Algorytmy sortujące 1 Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na

Bardziej szczegółowo