Teoretyczne podstawy informatyki
|
|
- Justyna Orłowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji Prof. dr hab. Elżbieta Richter-Wąs 1
2 Czas działania programu Dla konkretnych danych wejściowych jest wyrażony liczba wykonanych prostych (elementarnych) operacji lub kroków. Jest dogodne zrobienie założenia że operacja elementarna jest maszynowo niezależna. Każde wykonanie i-tego wiersza programu jest równe c i, przy czym c i jest stałą. Kiedy algorytm zawiera rekurencyjne wywołanie samego siebie, jego czas działania można często opisać zależnością rekurencyjna (rekurencja) wyrażającą czas dla problemu rozmiaru n za pomocą czasu dla podproblemów mniejszych rozmiarów. Możemy wiec użyć narzędzi matematycznych aby rozwiązać rekurencje i w ten sposób otrzymać oszacowania czasu działania algorytmu. Prof. dr hab. Elżbieta Richter-Wąs 2
3 Rekurencja dla algorytmu typu dziel i zwyciezaj Rekurencja odpowiadającą czasowi działania algorytmu typu dziel i zwyciężaj opiera się na podziale jednego poziomu rekursji na trzy etapy. Niech T(n) będzie czasem działania dla jednego problemu rozmiaru n. Jeśli rozmiar problemu jest odpowiednio mały, powiedzmy n c dla pewnej stałej c, to jego rozwiązanie zajmuje stały czas, co zapiszemy jako Θ(1). Załóżmy ze dzielimy problem na a podproblemów, każdy rozmiaru n/b. Jeśli D(n) jest czasem dzielenia problemu na podproblemy, a C(n) czasem scalania rozwiązań podproblemow w pełne rozwiązanie dla oryginalnego problemu, to otrzymujemy rekurencje T(n) = Θ(1) jeśli n c T(n) = a T(n/b) + D(n) + C(n) w przeciwnym przypadku Prof. dr hab. Elżbieta Richter-Wąs 3
4 Rekurencja dla algorytmu typu dziel i zwyciężaj Przykład: algorytm sortowania przez scalanie dziel: znajdujemy środek przedziału, zajmuje to czas stały D(n)=Θ(1), zwyciężaj: rozwiązujemy rekurencyjnie dwa podproblemy, każdy rozmiaru n/2, co daje czas działania 2 T(n/2), połącz: działa w czasie Θ(n), a wiec C(n)=Θ(n). Ostatecznie: T(n) = Θ(1) jeśli n=1 T(n) = 2 T(n/2) + Θ(1) + Θ(n) jeśli n>1 Rozwiązaniem tej rekurencji jest T(n) = Θ(n log n). Prof. dr hab. Elżbieta Richter-Wąs 4
5 Metody rozwiązywania rekurencji Metoda podstawiania: zgadujemy oszacowanie, a następnie dowodzimy przez indukcję jego poprawność. Metoda iteracyjna: przekształcamy rekurencję na sumę, korzystamy z technik ograniczania sum. Metoda uniwersalna:: stosujemy oszacowanie na rekurencję mające postać T(n) = a T(n/b) + f(n), gdzie a 1, b>1, a f(n) jest daną funkcją. Prof. dr hab. Elżbieta Richter-Wąs 5
6 Metoda podstawiania Polega na zgadnięciu postaci rozwiązania, a następnie wykazaniu przez indukcję, że jest ono poprawne. Trzeba też znaleźć odpowiednie stałe. Bardzo skuteczna, stosowana tylko w przypadkach kiedy łatwo jest przewidzieć postać rozwiązania. Prof. dr hab. Elżbieta Richter-Wąs 6
7 Metoda podstawiania Przykład: Postać rekurencji: T(n) = 2T(n/2) + n Zgadnięte rozwiązanie: ( n T(n) = Θ(n log Podstawa: n=2; T(1)=1; T(2)=4; Indukcja: T(n) 2 (c(n/2)log(n/2)) + n c n log(n/2) + n T(n) c n log(n/2) + n = cn log(n) cn log(2) + n T(n) cn log(n) cn log(2) + n = cn log (n) cn + n T(n) cn log (n) cn + n cn log(n) spełnione dla c>=1; Prof. dr hab. Elżbieta Richter-Wąs 7
8 Metoda iteracyjna Polega na rozwijaniu (iterowaniu) rekurencji i wyrażanie jej jako sumy składników zależnych tylko od n warunków brzegowych. Następnie mogą być użyte techniki sumowania do oszacowania rozwiązania. Prof. dr hab. Elżbieta Richter-Wąs 8
9 Metoda iteracyjna Przykład: Postać rekurencji: T(n) = 3T(n/4) + n Iterujemy: T(n) = n + 3T(n/4) = n + 3((n/4) +3T(n/16)) = n + 3 (n/4) + 9T(n/16) ( T(n/64 T(n) = n + 3 (n/4) + 9T(n/16) = n + 3 n/4 + 9 n/ Iterujemy tak długo aż osiągniemy warunki brzegowe. Składnik i-ty w ciągu wynosi 3 i n/4 i. Iterowanie kończymy, gdy n=1 lub n/4 i = 1 (czyli i > log 4 (n)). T(n) n +3n/4 + 9n/ n/ log 4 n Θ(1) T(n) 4n + 3 log 4 n Θ(1) = Θ(n) Prof. dr hab. Elżbieta Richter-Wąs 9
10 Metoda iteracyjna Metoda iteracyjna jest zazwyczaj związana z dużą ilością przekształceń algebraicznych, więc zachowanie prostoty nie jest łatwe. Punkt kluczowy to skoncentrowanie się na dwóch parametrach: liczbie iteracji koniecznych do osiągnięcia warunku brzegowego oraz sumie składników pojawiających się w każdej iteracji. Prof. dr hab. Elżbieta Richter-Wąs 10
11 Drzewa rekursji Pozwalają w dogodny sposób zilustrować rozwijanie rekurencji, jak również ułatwia stosowanie aparatu algebraicznego służącego do rozwiązywania tej rekurencji. Szczególnie użyteczne gdy rekurencja opisuje algorytm typu dziel i zwyciężaj. Prof. dr hab. Elżbieta Richter-Wąs 11
12 Drzewo rekursji dla algorytmu dziel i zwyciężaj T(n) = 2 T(n/2) + n 2 n 2 n 2 n 2 (n/2) 2 (n/2) 2 ½ n 2 ( T(n/4 ( T(n/4 ( T(n/4 ( T(n/4 ( T(n/2 ( T(n/2 1/4 n 2 ostateczny wynik: T(n) = Θ(n 2 ) w sumie: Θ(n 2 ) Prof. dr hab. Elżbieta Richter-Wąs 12
13 T(n) = T(n/3) + T(2n/3) + n Drzewa rekursji log 3/2 n n n n/3 2n/3 n n/9 2n/9 2n/9 4n/9 n wysokość drzewa: log 3/2 (n) = log 3/2 (2) *log(n) w sumie Θ(n log(n)) ostateczny wynik: T(n) = Θ(n log(n)) Prof. dr hab. Elżbieta Richter-Wąs 13
14 Metoda rekurencji uniwersalnej Metoda rekurencji uniwersalnej podaje uniwersalny przepis rozwiązywania równania rekurencyjnego postaci: ( f(n T(n) = a T(n/b) + gdzie a 1 i b>1 są stałymi, a f(n) jest funkcja asymptotycznie dodatnia. Za wartość (n/b) przyjmujemy najbliższą liczbę całkowitą (mniejsza lub większą od wartości dokładnej). Prof. dr hab. Elżbieta Richter-Wąs 14
15 Metoda rekurencji uniwersalnej Rekurencja opisuje czas działania algorytmu, który dzieli problem rozmiaru n na a problemów, każdy rozmiaru n/b, gdzie a i b są dodatnimi stałymi. Każdy z a problemów jest rozwiązywany rekurencyjnie w czasie T(n/b). Koszt dzielenia problemu oraz łączenia rezultatów częściowych jest opisany funkcja f(n). Prof. dr hab. Elżbieta Richter-Wąs 15
16 Twierdzenie o rekurencji uniwersalnej Niech a 1 i b>1 będą stałymi, niech f(n) będzie pewną funkcją i niech T(n) będzie zdefiniowane dla nieujemnych liczb całkowitych przez rekurencje ( f(n T(n) = a T(n/b) + gdzie (n/b) oznacza najbliższą liczbę całkowitą do wartości dokładnej n/b. Wtedy funkcja T(n) może być ograniczona asymptotycznie w następujący sposób: Jeśli f(n) = O(n log b a-ε ) dla pewnej stałej ε>0, to T(n) = Θ(n log b a ). Jeśli f(n) = Θ(n log b a ) to T(n) = Θ(n log b a log n). Jeśli f(n) = n log b a+ε ) dla pewnej stałej ε>0 i jeśli af(n/b) cf(n) dla pewnej stałej c<1 i wszystkich dostatecznie dużych n, to T(n) = Q(f(n)). Prof. dr hab. Elżbieta Richter-Wąs 16
17 Twierdzenie o rekurencji uniwersalnej Intuicyjnie : W każdym z trzech przypadków porównujemy funkcje f(n) z funkcją n log b a. Rozwiązanie rekurencji zależy od większej z dwóch funkcji. Jeśli funkcja n log b a jest większa, to rozwiązaniem rekurencji jest: T(n) = Θ(n log b a ). Jeśli f(n) jest większa, to rozwiązaniem jest: T(n) = Θ(f(n)). Jeśli funkcje są tego samego rzędu, to mnożymy przez log n i rozwiązaniem jest: T(n) = Θ(n log b a log n) = T(n) = Θ(f(n) log n). Prof. dr hab. Elżbieta Richter-Wąs 17
18 Przykład T(n) = 9 T(n/3) + n a=9, b=3, f(n)=n, a zatem n log b a = n log 3 9 = Θ(n 2 ). Ponieważ f(n)=o(n log 3 9-ε ), gdzie ε=1, możemy zastosować przypadek 1 z twierdzeniai wnioskować że rozwiązaniem jest T(n) = Θ(n 2 ). Prof. dr hab. Elżbieta Richter-Wąs 18
19 Przykład T(n) = T(2n/3) + 1 a=1, b=3/2, f(n)=1, a zatem n log b a = n log 3/2 1 = n 0 = 1. Stosujemy przypadek 2, gdyż f(n) = Θ(n log b a ) = Θ(1), a zatem rozwiązaniem rekurencji jest T(n) = Θ(log n). Prof. dr hab. Elżbieta Richter-Wąs 19
20 Przykład T(n) = 3T(n/4) + n log n a=3, b=4, f(n)=n log n, a zatem n log b a = n log 4 3 = Ο(n0,793). Ponieważ f(n) = Ω(n log 4 3+ε ), gdzie ε 0.2, wiec stosuje się tutaj przypadek 3, jeśli możemy pokazać ze dla f(n) zachodzi warunek regularności. Dla dostatecznie dużych n: af(n/b) = 3(n/4)log(n/4) (3/4)nlog(n) = c f(n) dla c=3/4. Warunek jest spełniony i możemy napisaćże rozwiązaniem rekurencji jest T(n) = Θ(nlog n). Prof. dr hab. Elżbieta Richter-Wąs 20
21 Przykład T(n) = 2T(n/2) + n log n a=2, b=2, f(n)=n log n, a zatem n log b a = n. Wydaje się że powinien to być przypadek 3, gdyż f(n)=n log n jest asymptotycznie większe niż n log b a = n, ale nie wielomianowo większy. Stosunek f(n)/ n log b a = (n log n)/n = log n jest asymptotycznie mniejszy niż n ε dla każdej dodatniej stałej ε. W konsekwencji rekurencja ta wpada w lukę miedzy przypadkiem 2 i 3. Prof. dr hab. Elżbieta Richter-Wąs 21
22 Rekurencja Rekurencje były badane już w 1202 roku przez L. Fibonacciego, od którego nazwiska pochodzi nazwa liczb Fibonacciego. A. De Moivre w 1730 roku wprowadził pojęcie funkcji tworzących do rozwiązywania rekurencji. Prof. dr hab. Elżbieta Richter-Wąs 22
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
Wykład 4: Iteracja, indukcja i rekurencja
Teoretyczne podstawy informatyki Wykład 4: Iteracja, indukcja i rekurencja Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Iteracja, indukcja i rekurencja to podstawowe zagadnienia pojawiające się przy
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 5 część I 2 Iteracja Rekurencja Indukcja Iteracja Rekurencja Indukcja Algorytmy sortujące Rozwiazywanie
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Krzysztof Gniłka. Twierdzenie o rekurencji uniwersalnej
Krzysztof Gniłka Twierdzenie o rekurencji uniwersalnej Spis treści Wstęp 3 Rozdział 1 Definicje i pomocnicze lematy 4 1 Części całkowite liczb 4 2 Logarytmy 9 3 Notacja asymptotyczna 12 Rozdział 2 Metoda
Sortowanie przez scalanie
Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie
Rekurencja. Matematyka dyskretna
Rekurencja Matematyka dyskretna Rekurencja Definicja rekurencyjna (indukcyjna) nieformalnie: taka definicja, która odwołuje się do samej siebie, ale trzeba tu uważać, by odwołanie było do instancji o mniejszej
i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) =
Druga zasada inducji matematycznej Niech m będzie liczbą całowitą, niech p(n) będzie ciągiem zdań zdefiniowanych na zbiorze {n Z: n m} oraz niech l będzie nieujemną liczbą całowitą. Jeśli (P) wszystie
Strategia "dziel i zwyciężaj"
Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania
Efektywna metoda sortowania sortowanie przez scalanie
Efektywna metoda sortowania sortowanie przez scalanie Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Metoda dziel i zwycięŝaj Dzielimy
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
Wykład 3. Metoda dziel i zwyciężaj
Wykład 3 Metoda dziel i zwyciężaj 1 Wprowadzenie Technika konstrukcji algorytmów dziel i zwyciężaj. przykładowe problemy: Wypełnianie planszy Poszukiwanie (binarne) Sortowanie (sortowanie przez łączenie
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
REKURENCJA W JĘZYKU HASKELL. Autor: Walczak Michał
REKURENCJA W JĘZYKU HASKELL Autor: Walczak Michał CZYM JEST REKURENCJA? Rekurencja zwana rekursją, polega na wywołaniu przez funkcję samej siebie. Algorytmy rekurencyjne zastępują w pewnym sensie iteracje.
Podstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Wykład 2. Poprawność algorytmów
Wykład 2 Poprawność algorytmów 1 Przegląd Ø Poprawność algorytmów Ø Podstawy matematyczne: Przyrost funkcji i notacje asymptotyczne Sumowanie szeregów Indukcja matematyczna 2 Poprawność algorytmów Ø Algorytm
O rekurencji i nie tylko
O rekurencji i nie tylko dr Krzysztof Bryś Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska 10 grudnia 2011 Intuicyjnie: rekurencja sprowadzenie rozwiązania danego problemu do rozwiązania
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Rekurencja (rekursja)
Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s].
Zadanie 1. Wiązka zadań Od szczegółu do ogółu Rozważmy następujący algorytm: Dane: Algorytm 1: k liczba naturalna, A[1...2 k ] tablica liczb całkowitych. n 1 dla i=1,2,,k wykonuj n 2n s 1 dopóki s
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4: Iteracja, indukcja i rekurencja http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Iteracja, indukcja
Rekurencja. Przykład. Rozważmy ciąg
Rekurencja Definicje rekurencyjne Definicja: Mówimy, iż ciąg jest zdefiniowany rekurencyjnie, jeżeli: (P) Określony jest pewien skończony zbiór wyrazów tego ciągu, zwykle jest to pierwszy wyraz tego ciągu
Techniki konstruowania algorytmów. Metoda dziel i zwyciężaj
Techniki konstruowania algorytmów Metoda dziel i zwyciężaj Technika dziel i zwyciężaj Aby rozwiązać problem techniką dziel i zwyciężaj musi on wykazywać własność podstruktury rozwiązanie problemu można
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Podstawy programowania. Wykład: 13. Rekurencja. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD
Podstawy programowania Wykład: 13 Rekurencja 1 dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD Podstawy programowania Rekurencja - pojęcie 2 Rekurencja - pojęcie Rekurencja (rekursja) wywołanie
Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku
Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Rekurencja 11 Wieże Hanoi Rekurencja jest to zdolność podprogramu (procedury lub funkcji) do wywoływania samego siebie Zacznijmy
Wstęp do programowania
Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział
Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).
Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)
Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,
Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ i KOMPUTEROWEJ Katedra Automatyki i Technik Informacyjnych Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 3 2 Złożoność obliczeniowa algorytmów Notacja wielkie 0 Notacja Ω i Θ Algorytm Hornera Przykłady rzędów
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 2/14 Funkcji podłogi z logarytmu można użyć do wyliczenia liczby cyfr liczby naturalnej k (k>0): w układzie dziesiętnym log 10 (k)
UNIWERSYTET GDAŃSKI MATERIAŁY DYDAKTYCZNE DO PRZEDMIOTU MATEMATYKA DYSKRETNA. pod redakcją: Hanna Furmańczyk Karol Horodecki Paweł Żyliński
UNIWERSYTET GDAŃSKI MATERIAŁY DYDAKTYCZNE DO PRZEDMIOTU MATEMATYKA DYSKRETNA pod redakcją: Hanna Furmańczyk Karol Horodecki Paweł Żyliński kierunek: Informatyka GDAŃSK 09 Niniejsze materiały powstały w
Poprawność semantyczna
Poprawność składniowa Poprawność semantyczna Poprawność algorytmu Wypisywanie zdań z języka poprawnych składniowo Poprawne wartościowanie zdań języka, np. w języku programowania skutki wystąpienia wyróżnionych
I. Liczby i działania
I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,
Sortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Analiza Algorytmów Moduł 3 Rekurencje
Analiza Algorytmów Moduł 3 Rekurencje Aleksandra Orpel Spis treści 1 Rekurencja - rozwiazania dokładne 2 1.1 Rekurencje pierwszego rzędu... 2 1.2 Rekurencje liniowe wyższych rzędów... 3 2 Rekurencje -
Programowanie dynamiczne
Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem
Matematyka dyskretna
Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka
Projektowanie i analiza algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
Definicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Wymagania eduka cyjne z matematyki
Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 9: Programowanie
Zadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
Algorytmy i Struktury Danych
Algorytmy i Struktury Danych Podstawowe informacje Prowadzący: Jan Tuziemski Email: jan.tuziemski@pg.edu.pl Konsultacje: pokój 412 GB (do ustalenia 412 GB) Podstawowe informacje literatura K. Goczyła Struktury
Wykład 8. Rekurencja. Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. L. Peter Deutsch
Wykład 8 Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. Smok podsuszony zmok (patrz: Zmok). Zmok zmoczony smok (patrz: Smok). L. Peter Deutsch Stanisław Lem Wizja lokalna J. Cichoń, P. Kobylański
Wstęp do programowania. Dziel i rządź. Piotr Chrząstowski-Wachtel
Wstęp do programowania Dziel i rządź Piotr Chrząstowski-Wachtel Divide et impera Starożytni Rzymianie znali tę zasadę Łatwiej się rządzi, jeśli poddani są podzieleni Nie chodziło im jednak bynajmniej o
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych
Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 3a: Złożoność obliczeniowa algorytmów http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Złożoność obliczeniowa i asymptotyczna
dr inż. Ryszard Rębowski 1 WPROWADZENIE
dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 9. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 9 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Zasada dziel i zwyciężaj Przykłady znajdowanie
Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d
C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Zasady analizy algorytmów
Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego
1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Wykład 5: Iteracja, indukcja i rekurencja Sortowanie
Teoretyczne podstawy informatyki Wykład 5: Iteracja, indukcja i rekurencja Sortowanie Prof. dr hab. Elżbieta Richter-Wąs 1 30.10.2012 Słowem wstępu Iteracja, indukcja i rekurencja to podstawowe zagadnienia
Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61
Metody numeryczne I Dokładność obliczeń numerycznych. Złożoność obliczeniowa algorytmów Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 ... the purpose of
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Sortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Matematyka dyskretna dla informatyków
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne
Algorytmy i struktury danych Matematyka III sem.
Algorytmy i struktury danych Matematyka III sem. 30 godz. wykł. / 15 godz. ćw. / 15 godz. projekt dr inŝ. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura T.H. Cormen i inni, Wprowadzenie
Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie
Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej
Wstęp do programowania
Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu
Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i
1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004
ANALIZA MATEMATYCZNA A dla I roku, 2004/2005 1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 Obliczyć sumy (postępów arytmetycznych i goemetrycznych):
Złożoność algorytmów. Wstęp do Informatyki
Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i