Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, Spis treści. Wprowadzenie 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, Spis treści. Wprowadzenie 2"

Transkrypt

1 Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, 2012 Spis treści Przedmowa XIII Część I Podstawy Wprowadzenie 2 1. Rola algorytmów w obliczeniach Algorytmy Algorytmy jako technologia Zaczynamy Sortowanie przez wstawianie Analiza algorytmów Projektowanie algorytmów Metoda dziel i zwycięŝaj" Analiza algorytmów typu dziel i zwycięŝaj" Rzędy wielkości funkcji Notacja asymptotyczna Standardowe notacje i typowe funkcje Metoda dziel i zwycięŝaj" Problem maksymalnej podtablicy Algorytm Strassena mnoŝenia macierzy Metoda podstawiania Metoda drzewa rekursji Metoda rekurencji uniwersalnej Dowód twierdzenia o rekurencji uniwersalnej Dowód dla dokładnych potęg Podłogi i sufity Analiza probabilistyczna i algorytmy randomizowane Problem zatrudnienia sekretarki Zmienne losowe wskaźnikowe Algorytmy randomizowane 120 *5.4. Analiza probabilistyczna i dalsze zastosowania zmiennych losowych wskaźnikowych Paradoks dnia urodzin Kule i urny Ciągi dobrej passy", czyli sukcesów Problem on-line zatrudnienia sekretarki 138 Część II Sortowanie i statystyki pozycyjne Wprowadzenie 146

2 6. Heapsort - sortowanie przez kopcowanie Kopce Przywracanie własności kopca Budowanie kopca Algorytm sortowania przez kopcowanie (heapsort) Kolejki priorytetowe Quicksort - sortowanie szybkie Opis algorytmu Czas działania algorytmu quicksort Randomizowana wersja algorytmu quicksort Analiza algorytmu quicksort Analiza przypadku pesymistycznego Analiza oczekiwanego czasu działania Sortowanie w czasie liniowym Dolne ograniczenia dla problemu sortowania Sortowanie przez zliczanie Sortowanie pozycyjne Sortowanie kubełkowe Mediany i statystyki pozycyjne Minimum i maksimum Wybór w oczekiwanym czasie liniowym Wybór w pesymistycznym czasie liniowym 217 Część III Struktury danych Wprowadzenie Elementarne struktury danych Stosy i kolejki Listy (z dowiązaniami) Reprezentowanie struktur wskaźnikowych za pomocą tablic Reprezentowanie drzew (ukorzenionych) Tablice z haszowaniem Tablice z adresowaniem bezpośrednim Tablice z haszowaniem Funkcje haszujące Haszowanie modularne Haszowanie przez mnoŝenie 263 * Haszowanie uniwersalne Adresowanie otwarte 269 * Haszowanie doskonałe Drzewa wyszukiwań binarnych Co to jest drzewo wyszukiwań binarnych? Wyszukiwanie w drzewie wyszukiwań binarnych Wstawianie i usuwanie 295 * Losowo skonstruowane drzewa wyszukiwań binarnych 300

3 13. Drzewa czerwono-czarne Własności drzew czerwono-czarnych Operacje rotacji Operacja wstawiania Operacja usuwania Wzbogacanie struktur danych Dynamiczne statystyki pozycyjne Jak wzbogacać strukturę danych Drzewa przedziałowe 351 Część IV Zaawansowane metody konstruowania i analizowania algorytmów Wprowadzenie Programowanie dynamiczne Rozcinanie pręta MnoŜenie ciągu macierzy Podstawy programowania dynamicznego NajdłuŜszy wspólny podciąg Optymalne drzewa wyszukiwań binarnych Algorytmy zachłanne Problem wyboru zajęć Podstawy strategii zachłannej Kody Huffmana 434 *16.4. Matroidy a strategie zachłanne 442 * Problem szeregowania zadań Analiza kosztu zamortyzowanego Metoda kosztu sumarycznego Metoda księgowania Metoda potencjału Tablice dynamiczne Powiększanie tablicy Powiększanie i zmniejszanie tablicy 474 Część V ZłoŜone struktury danych Wprowadzenie B-drzewa Definicja B-drzewa Podstawowe operacje na B-drzewach Usuwanie klucza z B-drzewa Kopce Fibonacciego Struktura kopców Fibonacciego Operacje kopca złączalnego Zmniejszanie wartości klucza i usuwanie węzła Oszacowanie maksymalnego stopnia 531

4 20. Drzewa van Emde Boasa Wstępne koncepcje Struktura rekurencyjna Prototypowe struktury van Emde Boasa Operacje na prototypowej strukturze van Emde Boasa Drzewo van Emde Boasa Drzewa van Emde Boasa Operacje na drzewie van Emde Boasa Struktury danych dla zbiorów rozłącznych Operacje na zbiorach rozłącznych Listowa reprezentacja zbiorów rozłącznych Lasy zbiorów rozłącznych 579 * Analiza metody łączenia według rangi z kompresją ścieŝki 583 Część VI Algorytmy grafowe Wprowadzenie Podstawowe algorytmy grafowe Reprezentacja grafów Przeszukiwanie wszerz Przeszukiwanie w głąb Sortowanie topologiczne Silnie spójne składowe Minimalne drzewa rozpinające Rozrastanie się minimalnego drzewa rozpinającego Algorytmy Kruskala i Prima Najkrótsze ścieŝki z jednym źródtem Algorytm Bellmana-Forda Najkrótsze ścieŝki z jednym źródłem w acyklicznych grafach AlgorytmDijkstry Ograniczenia róŝnicowe i najkrótsze ścieŝki Dowody własności najkrótszych ścieŝek Najkrótsze ścieŝki między wszystkimi parami wierzchołków Najkrótsze ścieŝki i mnoŝenie macierzy Algorytm Floyda-Warshalla Algorytm Johnsona dla grafów rzadkich Maksymalny przepływ Sieci przepływowe Metoda Forda-Fulkersona Najliczniejsze skojarzenia w grafach dwudzielnych 747 * Algorytmy typu prześlij-przemianuj" 752 * Algorytm przemianuj i przesuń na początek" 766 Część VII Wybrane zagadnienia Wprowadzenie 788

5 27. Algorytmy wielowątkowe Podstawy dynamicznej wielowątkowości Wielowątkowe mnoŝenie macierzy Wielowątkowe sortowanie przez scalanie Operacje na macierzach Rozwiązywanie układów równań liniowych Odwracanie macierzy Symetryczne macierze dodatnio określone i metoda najmniejszych kwadratów Programowanie liniowe Postać standardowa i uzupełnieniowa Formułowanie problemów w postaci programów liniowych Algorytm sympleks Dualność Początkowe bazowe rozwiązanie dopuszczalne Wielomiany i FFT Reprezentacja wielomianów DFT i FFT Efektywne implementacje FFT Algorytmy teorioliczbowe Podstawowe pojęcia teorii liczb Największy wspólny dzielnik Arytmetyka modularna Rozwiązywanie modularnych równań liniowych Chińskie twierdzenie o resztach Potęgi elementu System kryptograficzny z kluczem publicznym RSA 981 *31.8. Sprawdzanie, czy dana liczba jest pierwsza 988 *31.9. Rozkład na czynniki pierwsze Wyszukiwanie wzorca Algorytm naiwny" wyszukiwania wzorca Algorytm Rabina-Karpa Wyszukiwanie wzorca z wykorzystaniem automatów skończonych 1019 *32.4. Algorytm Knutha-Morrisa-Pratta Geometria obliczeniowa Własności odcinków Sprawdzanie, czy jakakolwiek para odcinków się przecina Znajdowanie otoczki wypukłej Znajdowanie pary najmniej odległych punktów NP-zupełność Czas wielomianowy Weryfikacja w czasie wielomianowym NP-zupełność i redukowalność Dowodzenie NP-zupełności 1103

6 34.5. Problemy NP-zupełne Problem kliki Problem pokrycia wierzchołkowego Problem cyklu Hamiltona Problem komiwojaŝera Problem sumy podzbioru Algorytmy aproksymacyjne Problem pokrycia wierzchołkowego Problem komiwojaŝera Problem komiwojaŝera z nierównością trójkąta Ogólny problem komiwojaŝera Problem pokrycia zbioru Randomizacja i programowanie liniowe Problem sumy podzbioru 1153 Część VIII Dodatek: Podstawy matematyczne Wprowadzenie 1168 A. Sumy 1170 A.1. Wzory i własności dotyczące sum 1170 A.2. Szacowanie sum 1174 B. Zbiory i nie tylko 1183 B.1. Zbiory 1183 B.2. Relacje 1188 B.3. Funkcje 1190 B.4. Grafy 1193 B.5. Drzewa 1197 B.5.1. Drzewa wolne 1198 B.5.2. Drzewa ukorzenione i uporządkowane 1200 B.5.3. Drzewa binarne i pozycyjne 1201 C. Zliczanie i prawdopodobieństwo 1206 C.1. Zliczanie 1206 C.2. Prawdopodobieństwo 1212 C.3. Dyskretne zmienne losowe 1219 C.4. Rozkłady: geometryczny i dwumianowy 1224 * C.5. Krańce rozkładu dwumianowego 1230 D. Macierze 1239 D.1. Macierze i operacje na macierzach 1239 D.2. Podstawowe własności macierzy 1244 Bibliografia 1252 Skorowidz 1269 oprac. BPK

Egzamin, AISDI, I termin, 18 czerwca 2015 r.

Egzamin, AISDI, I termin, 18 czerwca 2015 r. Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Kierunek: INFORMATYKA Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW. Tryb studiów: NIESTACJONARNE PIERWSZEGO STOPNIA

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2

Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2 Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: ALGORYTMY I STRUKTURY DANYCH 2 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Andrzej Szepietowski Matematyka dyskretna Wydawnictwo Uniwersytetu Gdańskiego Gdańsk 2018 Recenzja prof. dr hab. Marek Zaionc Redakcja wydawnicza Dorota Zgaińska Projekt okładki i

Bardziej szczegółowo

Grafy i sieci w informatyce - opis przedmiotu

Grafy i sieci w informatyce - opis przedmiotu Grafy i sieci w informatyce - opis przedmiotu Informacje ogólne Nazwa przedmiotu Grafy i sieci w informatyce Kod przedmiotu 11.9-WI-INFD-GiSwI Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki

Bardziej szczegółowo

Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147

Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147 Spis treści Przedmowa 9 Rozdział 1. Zanim wystartujemy 17 Jak to wcześniej bywało, czyli wyjątki z historii maszyn algorytmicznych 18 Jak to się niedawno odbyło, czyli o tym, kto wymyślił" metodologię

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Kod przedmiotu: ASD Rodzaj przedmiotu: Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Algorytmy i struktury danych. kierunkowy ; obowiązkowy Poziom studiów: pierwszego stopnia

Bardziej szczegółowo

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w

Bardziej szczegółowo

Spis treści. Rozdział 2. Rekurencja Definicja rekurencji Ilustracja pojęcia rekurencji Jak wykonują się programy rekurencyjne?...

Spis treści. Rozdział 2. Rekurencja Definicja rekurencji Ilustracja pojęcia rekurencji Jak wykonują się programy rekurencyjne?... Spis treści Przedmowa...... 9 Co odróżnia tę książkę od innych podręczników?......... 9 Dlaczego C++?... IO Jak należy czytać tę książkę?........................ 11 Co zostało opisane w tej książce?...........

Bardziej szczegółowo

KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4

KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

KARTA KURSU. Algorytmy, struktury danych i techniki programowania. Algorithms, Data Structures and Programming Techniques

KARTA KURSU. Algorytmy, struktury danych i techniki programowania. Algorithms, Data Structures and Programming Techniques KARTA KURSU Nazwa Nazwa w j. ang. Algorytmy, struktury danych i techniki programowania Algorithms, Data Structures and Programming Techniques Kod Punktacja ECTS* 3 Koordynator dr Paweł Pasteczka Zespół

Bardziej szczegółowo

IZ2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki niestacjonarne

IZ2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki niestacjonarne KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Sortowanie - wybrane algorytmy

Sortowanie - wybrane algorytmy Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010.

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010. 01.10.009r. 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 009/010 Kierunek: INFORMATYKA AiSD/NSMW Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW Tryb studiów: NIESTACJONARNE

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel.

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel. WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk 01-447 Warszawa, ul. Newelska 6, tel. 22 3486544 Wydział Informatyki Kierunek studiów Profil Stopień studiów Forma

Bardziej szczegółowo

Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)

Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2018/2019 (semestr zimowy) Spis

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z zagadnień dotyczących analizy i syntezy algorytmów z uwzględnieniem efektywności

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algorytmy i Struktury Danych Nazwa w języku angielskim : Algorithms adn Data Structures Kierunek studiów

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Andrzej Szepietowski Matematyka dyskretna Wydawnictwo Uniwersytetu Gdańskiego Gdańsk 2018 Recenzja prof. dr hab. Marek Zaionc Redakcja wydawnicza Dorota Zgaińska Projekt okładki i

Bardziej szczegółowo

Zagadnienia na egzamin licencjacki

Zagadnienia na egzamin licencjacki Zagadnienia na egzamin licencjacki Kierunek: matematyka, specjalność: nauczanie matematyki i informatyki w zakresie zajęć komputerowych Zaleca się, by egzamin dyplomowy składał się z co najmniej trzech

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015 2019 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Algorytmy i struktury danych Metody programowania Języki i paradygmaty programowania Nazwa jednostki prowadzącej przedmiot Instytut Matematyki

Algorytmy i struktury danych Metody programowania Języki i paradygmaty programowania Nazwa jednostki prowadzącej przedmiot Instytut Matematyki OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) Nazwa modułu/ przedmiotu Przedmiot/y Algorytmy i metody Algorytmy i struktury danych Metody Języki i paradygmaty Nazwa jednostki prowadzącej przedmiot

Bardziej szczegółowo

Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)

Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2019/2020 (semestr zimowy) Spis

Bardziej szczegółowo

Sprawozdanie do zadania numer 2

Sprawozdanie do zadania numer 2 Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Algorytmy i struktury danych

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Algorytmy i struktury danych Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 2012/2013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne

Bardziej szczegółowo

Prawie 25 lat Olimpiady Informatycznej

Prawie 25 lat Olimpiady Informatycznej Instytut Informatyki Uniwersytetu Wrocławskiego 8 października 2016 Ostrzeżenie Nie znam zadań na OI, więc zagadnienia podawane jako podstawowe/zaawansowane nie są w żaden sposób wskazówką n.t. przyszłych

Bardziej szczegółowo

koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013

koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013 Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!

Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy

Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: MATEMATYKA DYSKRETNA Discrete mathematics Forma studiów: Stacjonarne Poziom kwalifikacji: Kod przedmiotu: A_06 Rok: I obowiązkowy w ramach treści

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA INFORMATYKA. KLASA 2F

PRZEDMIOTOWY SYSTEM OCENIANIA INFORMATYKA. KLASA 2F PRZEDMIOTOWY SYSTEM OCENIANIA INFORMATYKA. KLASA 2F I. Główne założenia PSO Ocenianie uczniów na lekcjach informatyki: spełnia założenia wewnątrzszkolnego systemu oceniania; powinno być systematyczne;

Bardziej szczegółowo

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne

Bardziej szczegółowo

Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony

Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony I. Cele kształcenia wymagania ogólne 1. Bezpieczne posługiwanie się komputerem i jego

Bardziej szczegółowo

Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia

Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu

Bardziej szczegółowo

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 01/013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Sortowanie przez scalanie

Sortowanie przez scalanie Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie

Bardziej szczegółowo

Algorytmy dynamiczne. Piotr Sankowski. - p. 1/14

Algorytmy dynamiczne. Piotr Sankowski. - p. 1/14 Algorytmy dynamiczne Piotr Sankowski - p. 1/14 Dynamiczne: drzewa wyszukiwanie wzorca w tekście spójność grafu problemy algebraiczne (FFT i inne) domknięcie przechodnie oraz dynamiczne macierze najkrótsze

Bardziej szczegółowo

Algorytmy i Struktury Danych, 9. ćwiczenia

Algorytmy i Struktury Danych, 9. ćwiczenia Algorytmy i Struktury Danych, 9. ćwiczenia 206-2-09 Plan zajęć usuwanie z B-drzew join i split na 2-3-4 drzewach drzepce adresowanie otwarte w haszowaniu z analizą 2 B-drzewa definicja każdy węzeł ma następujące

Bardziej szczegółowo

Kierunek: Informatyka. Przedmiot:

Kierunek: Informatyka. Przedmiot: Kierunek: Informatyka Przedmiot: ALGORYTMY I Z LOŻONOŚĆ Czas trwania: Przedmiot: Jezyk wyk ladowy: semestr III obowiazkowy polski Rodzaj zaj eć Wyk lad Laboratorium Prowadzacy Prof. dr hab. Wojciech Penczek

Bardziej szczegółowo

Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania

Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania Grafy i Grafy i 5: Rozpinające Spis zagadnień Grafy i i lasy cykle fundamentalne i własności cykli i rozcięć przestrzenie cykli i rozcięć* : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*

Bardziej szczegółowo

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n

Bardziej szczegółowo

Spis treści. Przedmowa. Wprowadzenie 0.1 Czym jest matematyka dyskretna?... XIII 0.2 Podstawowa literatura... XIV

Spis treści. Przedmowa. Wprowadzenie 0.1 Czym jest matematyka dyskretna?... XIII 0.2 Podstawowa literatura... XIV Spis treści Przedmowa XI Wprowadzenie XIII 0.1 Czym jest matematyka dyskretna?............... XIII 0.2 Podstawowa literatura...................... XIV 1 Rekurencja 1 1.1 Wieże Hanoi...........................

Bardziej szczegółowo

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na

Bardziej szczegółowo

Złożoność algorytmów. Wstęp do Informatyki

Złożoność algorytmów. Wstęp do Informatyki Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Haszowanie. dr inż. Urszula Gałązka

Haszowanie. dr inż. Urszula Gałązka Haszowanie dr inż. Urszula Gałązka Problem Potrzebujemy struktury do Wstawiania usuwania wyszukiwania Liczb, napisów, rekordów w Bazach danych, sieciach komputerowych, innych Rozwiązanie Tablice z haszowaniem

Bardziej szczegółowo

Techniki konstruowania algorytmów. Metoda dziel i zwyciężaj

Techniki konstruowania algorytmów. Metoda dziel i zwyciężaj Techniki konstruowania algorytmów Metoda dziel i zwyciężaj Technika dziel i zwyciężaj Aby rozwiązać problem techniką dziel i zwyciężaj musi on wykazywać własność podstruktury rozwiązanie problemu można

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

Szczegółowy program kursów szkoły programowania Halpress

Szczegółowy program kursów szkoły programowania Halpress Szczegółowy program kursów szkoły programowania Halpress Lekcja A - Bezpłatna lekcja pokazowa w LCB Leszno "Godzina kodowania - Hour of Code (11-16 lat) Kurs (B) - Indywidualne przygotowanie do matury

Bardziej szczegółowo

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Programowanie dynamiczne cz. 2

Programowanie dynamiczne cz. 2 Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Matematyka dyskretna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy

Bardziej szczegółowo

Spis treści. Przedmowa... 9

Spis treści. Przedmowa... 9 Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie

Bardziej szczegółowo

Zadania do wykładu ALGORYTMY I STRUKTURY DANYCH

Zadania do wykładu ALGORYTMY I STRUKTURY DANYCH Zadania do wykładu ALGORYTMY I STRUKTURY DANYCH Szacowanie tempa wzrostu funkcji Wprowadzenie: Do szacowania złożoności obliczeniowej algorytmów wykorzystuje się następujące pojęcia analizy matematycznej:

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Matematyka Dyskretna Nazwa w języku angielskim : Discrete Mathematics Kierunek studiów : Informatyka Specjalność

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel.

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel. WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk 01-447 Warszawa, ul. Newelska 6, tel. 22 3486544 Wydział Informatyki Kierunek studiów Profil Stopień studiów Forma

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Grafy

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE Egzamin maturalny z INFORMATYKI

WYMAGANIA EGZAMINACYJNE Egzamin maturalny z INFORMATYKI WYMAGANIA EGZAMINACYJNE Egzamin maturalny z INFORMATYKI 1. Cele ogólne Podstawowym celem kształcenia informatycznego jest przekazanie wiadomości i ukształtowanie umiejętności w zakresie analizowania i

Bardziej szczegółowo

[12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne).

[12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne). [12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne). Tworzenie projektów informatycznych opiera się w dużej mierze na formułowaniu i implementacji algorytmów,

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Wykład 5. Sortowanie w czasie liniowologarytmicznym

Wykład 5. Sortowanie w czasie liniowologarytmicznym Wykład 5 Sortowanie w czasie liniowologarytmicznym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n 2 Zestawienie

Bardziej szczegółowo

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 2 godz., Projekt 1 godz.. Strona kursu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html Struktury

Bardziej szczegółowo

Sortowanie danych. Jolanta Bachan. Podstawy programowania

Sortowanie danych. Jolanta Bachan. Podstawy programowania Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000

Bardziej szczegółowo

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu.

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu. Wymagania edukacyjne z informatyki poziom rozszerzony w klasie 2 Społecznego Liceum Ogólnokształcącego Splot im. Jana Karskiego w Nowym Sączu 1. Algorytmika TREŚCI NAUCZANIA WPROWADZENIE DO ALGORYTMIKI

Bardziej szczegółowo

Zadania z egzaminów z Algorytmiki

Zadania z egzaminów z Algorytmiki Zadania z egzaminów z Algorytmiki 1 Geometria obliczeniowa Zadanie 1 Zaprojektuj efektywny algorytm dla następującego problemu. Dany jest zbior n prostokątów na płaszczyźnie (o bokach niekoniecznie równoległych

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Złożoność obliczeniowa, efektywność i algorytmy sortowania

WSTĘP DO INFORMATYKI. Złożoność obliczeniowa, efektywność i algorytmy sortowania Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Złożoność obliczeniowa, efektywność i algorytmy sortowania www.agh.edu.pl

Bardziej szczegółowo

Rok akademicki: 2018/2019 Kod: ITE s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2018/2019 Kod: ITE s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Algorytmy i struktury danych Rok akademicki: 2018/2019 Kod: ITE-1-201-s Punkty ECTS: 3 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Teleinformatyka Specjalność: Poziom studiów:

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE

Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE Różnice między podstawą programową z przedmiotu Technologia informacyjna", a standardami wymagań będącymi podstawą przeprowadzania egzaminu maturalnego z przedmiotu Informatyka" I.WIADOMOŚCI I ROZUMIENIE

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Luty 2001 Algorytmy (4) 2000/2001

Luty 2001 Algorytmy (4) 2000/2001 Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest

Bardziej szczegółowo

Zbigniew Talaga Konsultacja: Janusz Mazur. Rozkład materiału propozycja

Zbigniew Talaga Konsultacja: Janusz Mazur. Rozkład materiału propozycja Zbigniew Talaga Konsultacja: Janusz Mazur Rozkład materiału propozycja Warszawa 2019 Lp. Temat Liczba godzin Zapisy podstawy programowej 1 Systemy operacyjne w środowisku sieciowym 2 III.3, V.3 2 Nowe

Bardziej szczegółowo