Algorytmika w bioinformatyce
|
|
- Iwona Staniszewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Algorytmika w bioinformatyce Kurs dla kierunku BIOINFORMATYKA 2016/2017 Prowadzący: Prof. Danuta Makowiec danuta.makowiec@gmail.com IFTiA, pok. 353, tel.: Motywacja 2 Cztery etapy rekonstrukcji genomu: cięcie DNA na fragmenty Fragmenty DNA są uzyskiwane poprzez enzymy restrykcyjne tworzenie milionów kopii każdego fragmentu Klonowanie Reakcja łańcuchowa polimerazy odczytanie każdej pary w każdym fragmencie Techniki sekwencjonowania Macierze DNA zestawienie wszystkich fragmentów we właściwym porządku Algorytmy bioinformatyki usiłują zrekonstruować oryginalne sekwencje. 1
2 Rozkład jazdy 3 XXX 153 Wykłady Czwartek, godz.: do Na stronie będą sukcesywnie pojawiać się materiały z wykładów Warunek uzyskania zaliczenia wykładu: pozytywne napisanie kolokwium zaliczającego. termin kolokwium: 25 stycznia 2016, godz. 11:15. Podręczniki Schemat omawianych treści: problem biologiczny algorytmiczna technika rozwiązania : ćwiczenia audytoryjne praktyczne kodowanie rozwiązania : laboratoria programistyczne analiza złożoności 2
3 WYKŁAD A: PODSTAWOWE TECHNIKI ALGORYTMICZNE Algorytmika dla bioinformatyki Prowadzący: Prof. Danuta Makowiec IFTiA, pok. 353, tel.: Algorytmika 6 Algorytm to zestaw dobrze zdefiniowanych instrukcji, które należy wykonać, aby rozwiązać określony problem. To, co decyduje o jakości algorytmu to jego poprawność i wydajność (złożoność) Mamy wypracowane różne strategie projektowania algorytmów takie jak na przykład: wyczerpująca, zachłanna, dynamiczna czy rekurencyjna Mamy wypracowany sposób oceny złożoności algorytmów: analiza asymptotyczna 3
4 Problem kasjera 7 wydać resztę optymalnie czyli wykorzystując możliwie najmniejszą liczbę monet przy zadanym zestawie monet. Wydawaj możliwie największą monetę z aktualnej reszty strategia zachłanna versus strategia wyczerpująca Strategia zachłanna: wydawaj resztę aktualnie największym nominałem Strategia wyczerpująca: kolejno rozważ wszystkie możliwe kombinacje monet Algorytm zawsze poprawny, ale też i zawsze niewydajny Ile tych możliwie najwiekszych monet można wypłacić Algorytm BetterChange jest niepoprawny. Źle oblicza resztę dla np.: M=40, c=(25, 20, 10, 5, 1) Algorytm mięśniaka 8 4
5 9 Strategia rekurencji Strategia rekurencji: rozwiąż dany problem zakładając, że znasz rozwiązanie jego prostszej wersji Wieże Hanoi (1883) Oblicz, ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: Lucas i legenda wieży Brahmy w Hanoi Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: Przypadek wieży zbudowanej z dwóch klocków Danuta Makowiec: Algorytmika, wykład iv [10] 5
6 Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: Przypadek wieży zbudowanej z dwóch klocków Danuta Makowiec: Algorytmika, wykład iv [11] Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: Przypadek wieży zbudowanej z trzech klocków Danuta Makowiec: Algorytmika, wykład iv [12] 6
7 Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: Przypadek wieży zbudowanej z trzech klocków Przenieśliśmy wieżę dwu-klockową z patyka 1 na patyk 2 korzystając z patyka 3. Przenieśliśmy największy klocek na jego miejsce patyk Danuta Makowiec: Algorytmika, wykład iv [13] Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: Przypadek wieży zbudowanej z trzech klocków Danuta Makowiec: Algorytmika, wykład iv [14] 7
8 Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: Przenieśliśmy wieżę dwu-klockową z patyka 2 na patyk 3 korzystając patyka 1 Przypadek wieży zbudowanej z trzech klocków A co jeśli wieża zbudowana jest jest z 4 i więcej klocków? Danuta Makowiec: Algorytmika, wykład iv [15] Strategia rekurencji D. Makowiec: A - złożoność obliczeniowa 16 Strategia rekurencji: rozwiąż dany problem zakładając, że znasz rozwiązanie jego prostszej wersji Wieże Hanoi (1883) Oblicz, ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: A co jeśli wieża zbudowana jest jest z 4 i więcej klocków? 8
9 17 Strategia rekurencji Strategia rekurencji: rozwiąż dany problem zakładając, że znasz rozwiązanie jego prostszej wersji Wieże Hanoi (1883) Oblicz, ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: Lucas i legenda wieży Brahmy w Hanoi Wieże Hanoi (1883) przykład algorytmu rekukencyjnego Ile ruchów trzeba wykonać? Algorytmika, wykład iv Czy to dużo? 1 dysk 1 ruch 2 dyski 3 ruchy 3 dyski 7 ruchów 4 dyski 15 ruchów 5 dysków 31 ruchów.. 20 dysków ruchów 32 dyski ruchów 64 dyski
10 META KOD ALGORYTMÓW 10/11/ Rzędy wielkości Nauczka: Sensowne porównania liczb to tylko takie, które są tego samego rzędu Algorytmika, wykład iv Problem sortowania Definicja: Wejście: Wyjście: dany jest ciąg n elementów A= (A 1, A 2,., A n ) = A[1..n] permutacja ciągu wejściowego A =A [1..n] taka, że A [1] A [2] A [n] 20 Rozważamy n-1 elementów INSERTION_SORT (A[1..n]) for j = 2 to n key = A[j] i = j 1 while i > 0 and A[i] > key A[i+1] = A[i] i = i 1 A[i+1] = key //pobierz kolejny element A[j] //wstaw a[j] do posortowanego ciągu A[1..j-1] i-ty pobrany element porównujemy co najwyżej (i-1) razy Przybliżona ilość maksymalnej liczby elementarnych operacji (n-1)= n*(n-1)/2 10
11 21 Analiza wydajności algorytmu Analiza wydajności algorytmu to ocena czasu przetwarzania I tak, czas przebiegu Insertion_Sort zależy od: wielkości danych wejściowych: czy mamy 6 czy 6 milionów liczb do wysortowania? jakości danych wejściowych: czy są już częściowo posortowane i jak? ile umownych jednostek czasowych potrzeba na przetworzenie n-elementowego zbioru: analiza najgorszego przypadku: T(n)=max { czas sortowania danych o rozmiarze n} analiza średniego przypadku: T(n)= E { wszystkie możliwe dane o rozmiarze n} analiza najlepszego przypadku: możliwość oszukania się i innych 22 Analiza asymptotyczna Pomysł na ilościową ocenę wydajności algorytmu: Sedno algorytmiki ANALIZA ASYMPTOTYCZNA 1. zignoruj stałe wielkości zależne od maszyny 2. obserwuj jedynie WZROST przebiegu T(n), gdy n Definicja notacji asymptotycznej O( ) : Dla danej funkcji g(n) przez O(g(n)) oznaczamy następujący zbiór funkcji: O(g(n))={ f(n): istnieją stałe c oraz n 0 takie, że 0 f(n) c g(n) dla wszystkich n n 0 } co piszemy f(n)=o(g(n)) Wniosek: Notacja O( ) służy szacowaniu funkcji z góry. 11
12 23 Oszacowania asymptotyczne Notacja asymptotyczna Jak wartości dowolnej funkcji f(n) mają się do wartości znanej funkcji g(n)? notacja theta notacja duże O notacja omega Funkcje ważne dla oszacowań asymptotycznych D. Makowiec: A: podstawowe techniki 24 O(n lg n) Złożoność wielomianowa 1,lg n n,..., n, n, n, n, nlg n, n, n, n,...,2, n!, n n O(1) O(lg n) O(n) O(n 2 ) O(2 n ) O(n!) Złożoność logarytmiczna Złożoność liniowa Złożoność kwadratowa Złożoność wykładnicza Hierarchia ważnych ciągów uporządkowanych w ten sposób, że każdy z nich jest O() od wszystkich ciągów na prawo od niego 12
13 Różnice pomiędzy funkcjami rosnącymi 25 Jak długo będziemy czekać na wynik przetwarzania? Big-O: O(n 2 ) = oznacza że dana funkcja rośnie nie szybciej niż n 2 Problemy obliczalne i NP-zupełne 26 Problem jest obliczalny (tractable) jeśli jest rozwiązywalny przez algorytm o złożoności wielomianowej czyli jest O(n k ) dla pewnego k Problem jest nieobliczalny (intractable) jeśli nie może być obliczony przez jakikolwiek algorytm o złożoności wielomianowej (ograniczenie dolne jest wykładnicze: (2 n ) ) Problem NP-zupełny: nie istnieje dowód, że problem jest nieobliczalny 13
14 27 Wyznaczanie O() Jak znaleźć funkcję f(n): iloś ć elementarnych operacji w algorytmie, dla której następnie znajdujemy O()? Przyklady: jak ocenić złożoność rozważanych wcześniej algorytmów? Zliczanie: f(d)< 1+2*d = O(d) Algorytm rekurencyjny Metoda Drzewo rekurencji: O(2 n ) przypominajka Zliczanie: F(d) <1+ M/c 1 *M/c 2 *.*M/c d = O(M d ) ANALIZA ASYMPTOTYCZNA 1. zignoruj stałe wielkości zależne od maszyny 2. obserwuj jedynie WZROST przebiegu T(n), gdy n Drzewo rekurencji metoda szacowania złożoności algorytmów rekurencyjnych 28 Czas obliczeń: HT(n, ) T(n) HT(n-1, ) HT(n-1, ) =2*T(n-1) +c HT(n-1, ) HT(n-1, ) HT(n-1, ) HT(n-1, ) =4*T(n-2) +c =2 i *T(n-i) +c HT(1, ) HT(1, ) HT(1, ) HT(1, ) HT(1, ) HT(1, ) =2 n-1 *T(1) +c =O(2 n ) 14
15 Problem Fibonacciego ( z roku 1202) 29 Algorytm rekurencyjny O(2 n ) Algorytm dynamiczny: O(n) Bezpośrednie obliczenie [29] F n n n O(1) Gdzie jest telefon? 30 15
16 Podstawowe techniki projektowania algorytmów 31 Algorytm wyczerpujący (exhaustive lub brute-force) systematyczne sprawdzenie wszystkich możliwości Algorytm podziału i ograniczeń (branch-and-bound ) wyeliminowanie szeregu opcji algorytmu wyczerpującego Algorytm zachłanny (greedy) iteracyjne tworzenie rozwiązania w oparciu o aktualnie atrakcyjne alternatywy Algorytm dynamiczny (dynamic programming) organizowanie rozwiązań mniejszych problemów w celu uzyskania rozwiązania problemu większego. Algorytm dziel-i-zwyciężaj ( divide-conquer-combine) algorytm rekurencyjnego rozwiązywania problemu Algorytm maszynowego uczenia się (machine learning) korzysta z wiedzy zgromadzonej w poprzednich tego typu zdarzeniach Algorytm losowy (randomized, Monte Carlo ) realizacja algorytmu związana jest z eksperymentem losowym wyczerpujący zachłanny Monte Carlo Programowanie dynamiczne Gra ROCKS: w każdym ruchu każdy gracz musi zdjąć albo 1 klocek z dowolnie wybranego stosu albo po 1 klocku z każdego stosu Alicja Bob 32 Wygrywa ten, kto zdejmuje ostatni klocek. Zaczyna Alicja. Czy istnieje tu strategia zwyciężania? Czy Alicja, jako startująca, ma jakieś korzyści? Więcej informacji : rozdział 1 i 2 z podręcznika 16
17 Programowanie dynamiczne 33 Gra ROCKS: w każdym ruchu każdy gracz musi zdjąć albo 1 klocek z dowolnie wybranego stosu albo po 1 klocku z każdego stosu Wygrywa ten, kto zdejmuje ostatni klocek. Zaczyna Alicja. A: B: Alicja A Bob B Strategia zwycięstwa: ^ - ściągnij klocek z A < - ściągnij klocek z B \ - ściągnij oba klocki * - poddaj się Programowanie dynamiczne 34 A: Rozwiązanie powstaje z rozwiązania problemów mniejszych, przy czym w odróżnieniu od strategii rekurencyjnej, rozwiązanie problemów mniejszych składają się iteracyjnie na rozwiązanie problemu większego. B: 17
Algorytmika w bioinformatyce
Algorytmika w bioinformatyce Kurs dla kierunku BIOINFORMATYKA 2017/2018 Prowadzący: Prof. Danuta Makowiec danuta.makowiec@gmail.com IFTiA, pok. 353, tel.: 58 523 2466 Motywacja 2 Cztery etapy rekonstrukcji
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Wykład 3. Metoda dziel i zwyciężaj
Wykład 3 Metoda dziel i zwyciężaj 1 Wprowadzenie Technika konstrukcji algorytmów dziel i zwyciężaj. przykładowe problemy: Wypełnianie planszy Poszukiwanie (binarne) Sortowanie (sortowanie przez łączenie
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Złożoność algorytmów. Wstęp do Informatyki
Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,
Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa
PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE
D: PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE I. Strategia zachłanna II. Problem przetasowań w genomie III. Sortowanie przez odwrócenia IV. Algorytmy przybliżone V. Algorytm zachłanny
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Podstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Algorytmika i pseudoprogramowanie
Przedmiotowy system oceniania Zawód: Technik Informatyk Nr programu: 312[ 01] /T,SP/MENiS/ 2004.06.14 Przedmiot: Programowanie Strukturalne i Obiektowe Klasa: druga Dział Dopuszczający Dostateczny Dobry
Wprowadzenie do złożoności obliczeniowej
problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów
Algorytmy i złożoność obliczeniowa. Wojciech Horzelski
Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury
Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie
Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej
Klasa 2 INFORMATYKA. dla szkół ponadgimnazjalnych zakres rozszerzony. Założone osiągnięcia ucznia wymagania edukacyjne na. poszczególne oceny
Klasa 2 INFORMATYKA dla szkół ponadgimnazjalnych zakres rozszerzony Założone osiągnięcia ucznia wymagania edukacyjne na poszczególne oceny Algorytmy 2 3 4 5 6 Wie, co to jest algorytm. Wymienia przykłady
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Wykład 2. Poprawność algorytmów
Wykład 2 Poprawność algorytmów 1 Przegląd Ø Poprawność algorytmów Ø Podstawy matematyczne: Przyrost funkcji i notacje asymptotyczne Sumowanie szeregów Indukcja matematyczna 2 Poprawność algorytmów Ø Algorytm
Zasady analizy algorytmów
Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Efektywność algorytmów
Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
Laboratorium nr 1. i 2.
Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
1. Analiza algorytmów przypomnienie
1. Analiza algorytmów przypomnienie T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, rozdziały 1-4 Wydawnictwa naukowo-techniczne (2004) Jak mierzyć efektywność algorytmu?
Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
Szczegółowy program kursów szkoły programowania Halpress
Szczegółowy program kursów szkoły programowania Halpress Lekcja A - Bezpłatna lekcja pokazowa w LCB Leszno "Godzina kodowania - Hour of Code (11-16 lat) Kurs (B) - Indywidualne przygotowanie do matury
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego
Wstęp do programowania
Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 3 2 Złożoność obliczeniowa algorytmów Notacja wielkie 0 Notacja Ω i Θ Algorytm Hornera Przykłady rzędów
KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Temat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
WYŻSZA SZKOŁA IFORMATYKI STOSOWAEJ I ZARZĄDZAIA Złożoność algorytmów Złożoność pamięciowa algorytmu wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie. Złożoność czasowa algorytmu
Algorytmy i Struktury Danych
Algorytmy i Struktury Danych Podstawowe informacje Prowadzący: Jan Tuziemski Email: jan.tuziemski@pg.edu.pl Konsultacje: pokój 412 GB (do ustalenia 412 GB) Podstawowe informacje literatura K. Goczyła Struktury
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Podstawy programowania. Podstawy C# Przykłady algorytmów
Podstawy programowania Podstawy C# Przykłady algorytmów Proces tworzenia programu Sformułowanie problemu funkcje programu zakres i postać danych postać i dokładność wyników Wybór / opracowanie metody rozwiązania
Podyplomowe Studium Informatyki
Podyplomowe Studium Informatyki Wstęp do informatyki 30 godz. wykładu dr inż. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura D. Harel, Rzecz o istocie informatyki. Algorytmika, WNT
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015 2019 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu
Kurs MATURA Z INFORMATYKI
Kurs MATURA Z INFORMATYKI Cena szkolenia Cena szkolenia wynosi 90 zł za 60 min. Ilość godzin szkolenia jest zależna od postępów w nauce uczestnika kursu oraz ilości czasu, którą będzie potrzebował do realizacji
Wykład 8. Rekurencja. Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. L. Peter Deutsch
Wykład 8 Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. Smok podsuszony zmok (patrz: Zmok). Zmok zmoczony smok (patrz: Smok). L. Peter Deutsch Stanisław Lem Wizja lokalna J. Cichoń, P. Kobylański
Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej
Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w
Teoria obliczeń i złożoność obliczeniowa
Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy
Technologie informacyjne Wykład VII-IX
Technologie informacyjne -IX A. Matuszak 19 marca 2013 A. Matuszak Technologie informacyjne -IX Rekurencja A. Matuszak (2) Technologie informacyjne -IX Gotowanie jajek na miękko weż czysty garnek włóż
Zaliczenie. Egzamin. lub. Wykład. Zaliczenie. Ćwiczenie. 3 zadania. Projekty. Ocena. Na ocenę
Zaliczenie Egzamin Ocena lub Zerówka Wykład z Zaliczenie Ocena Ćwiczenie Projekty 3 zadania Na ocenę Sylabus O http://wmii.uwm.edu.pl/~jakula/sylabus_23 17N1-ALISTD_PL.pdf JAK? CO? ILE? Polecane Cormen
Sortowanie przez wstawianie
Sortowanie przez wstawianie Wykład 1 26 lutego 2019 (Wykład 1) Sortowanie przez wstawianie 26 lutego 2019 1 / 25 Outline 1 Literatura 2 Algorytm 3 Problem sortowania Pseudokod 4 Sortowanie przez wstawianie
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016 2020 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu
Programowanie dynamiczne
Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 9: Programowanie
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
Efektywność Procedur Obliczeniowych. wykład 5
Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki.
1. Podaj definicję informatyki. 2. W jaki sposób można definiować informatykę? 3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 4. Co to jest algorytm? 5. Podaj neumanowską architekturę
Algorytmy komputerowe. dr inż. Jarosław Forenc
Rok akademicki 2010/2011, Wykład nr 9/10 2/38 Plan wykładu nr 9/10 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki
Projektowanie i analiza algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 3a: Złożoność obliczeniowa algorytmów http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Złożoność obliczeniowa i asymptotyczna
Rozkład materiału do realizacji informatyki w szkole ponadgimnazjalnej w zakresie rozszerzonym
Rozkład materiału do realizacji informatyki w szkole ponadgimnazjalnej w zakresie rozszerzonym opracowany na podstawie podręcznika, MIGRA 2013 Autor: Grażyna Koba W rozporządzeniu Ministra Edukacji Narodowej
INFORMATYKA SORTOWANIE DANYCH.
INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania
Algorytm i złożoność obliczeniowa algorytmu
Algorytm i złożoność obliczeniowa algorytmu Algorytm - przepis postępowania, którego wykonanie prowadzi do rozwiązania określonego problemu określa czynności, jakie należy wykonać wyszczególnia wszystkie
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Złożoność obliczeniowa algorytmu dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy PODSTAWY INFORMATYKI Fundamentals of computer science
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 13 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Złożoność algorytmów czy to istotne, skoro
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 13 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Złożoność algorytmów czy to istotne, skoro
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ i KOMPUTEROWEJ Katedra Automatyki i Technik Informacyjnych Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew
Złożoność Obliczeniowa Algorytmów
Algorytmów Pożądane cechy dobrego algorytmu Dobry algorytm mający rozwiązywać jakiś problem powinien mieć 2 naturalne cechy: 1 (poprawność) zwracać prawidłowy wynik (dokładniej: zgodność z warunkiem końcowym
Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
Wstęp do programowania
Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator
1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu.
Wymagania edukacyjne z informatyki poziom rozszerzony w klasie 2 Społecznego Liceum Ogólnokształcącego Splot im. Jana Karskiego w Nowym Sączu 1. Algorytmika TREŚCI NAUCZANIA WPROWADZENIE DO ALGORYTMIKI
Algorytmy i struktury danych Matematyka III sem.
Algorytmy i struktury danych Matematyka III sem. 30 godz. wykł. / 15 godz. ćw. / 15 godz. projekt dr inŝ. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura T.H. Cormen i inni, Wprowadzenie
Sortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Sortowanie w czasie liniowym
Sortowanie w czasie liniowym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n Po co sortować? Podstawowy problem
Liczby pierwsze - wstęp
Artykuł pobrano ze strony eioba.pl Liczby pierwsze - wstęp W latach 60 ubiegłego wieku w Afryce znaleziono kości z wyrytymi na nich karbami liczące ponad 5000 lat. Na jednej z nich (kość z Ishango) karby
Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s].
Zadanie 1. Wiązka zadań Od szczegółu do ogółu Rozważmy następujący algorytm: Dane: Algorytm 1: k liczba naturalna, A[1...2 k ] tablica liczb całkowitych. n 1 dla i=1,2,,k wykonuj n 2n s 1 dopóki s
Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 9 Rekurencja
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 9 Rekurencja Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Przykład:
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 5 część I 2 Iteracja Rekurencja Indukcja Iteracja Rekurencja Indukcja Algorytmy sortujące Rozwiazywanie
Struktura danych. Sposób uporządkowania informacji w komputerze.
Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk
Podstawy Informatyki. Metalurgia, I rok. Rekurencja. skomplikowane zadanie. Rekurencja
Podstawy Informatyki Metalurgia, I rok Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Małe dziecko otrzymuje polecenie
Podstawy Informatyki. Metalurgia, I rok. Wykład 5 Rekurencja
Podstawy Informatyki Metalurgia, I rok Wykład 5 Rekurencja Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Przykład: Małe
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu
Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).
Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Programowanie od pierwszoklasisty do maturzysty. Grażyna Koba
Programowanie od pierwszoklasisty do maturzysty Grażyna Koba Krąg trzydziestolecia nauki programowania C++, Java Scratch, Baltie, Logo, Python? 2017? Informatyka SP, GIMN, PG 1987 Elementy informatyki
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona
Podstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Algorytmy sortujące i wyszukujące
Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Struktury danych i algorytmy Analiza algorytmów Typy danych i struktury danych Sposoby zapisu algorytmów
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Zadania obliczeniowe, algorytmy i złożoność obliczeniowa
Dr inż. Jerzy Mieścicki Instytut Informatyki PW Zadania obliczeniowe, algorytmy i złożoność obliczeniowa Wstęp do Informatyki, część 2 Przeszukiwanie listy nieuporządkowanej Zapisy (records), umieszczone
Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.
Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego
Rekurencja. Przygotowała: Agnieszka Reiter
Rekurencja Przygotowała: Agnieszka Reiter Definicja Charakterystyczną cechą funkcji (procedury) rekurencyjnej jest to, że wywołuje ona samą siebie. Drugą cechą rekursji jest jej dziedzina, którą mogą być