Wstęp do programowania
|
|
- Szczepan Sawicki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
2 Rekurencja Recursion See Recursion. P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
3 Rekurencja Recursion If you still don t get it, see Recursion. P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
4 Silnia silnia(i) = n! = n { 1 i = 1 silnia(i 1) i w p.p. P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
5 Silnia silnia(i) = Rozwiązanie rekurencyjne def s i l n i a ( n ) : i f n==1: return 1 e l s e : return n! = n { 1 i = 1 silnia(i 1) i s i l n i a ( n 1) n w p.p. P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
6 Liczby Fibonacciego F 0 = 0 F 1 = 1 F n = F n 1 + F n 2 Rozwiązanie rekurencyjne def f i b ( n ) : i f n<2: return e l s e : return n f i b ( n 1)+ f i b ( n 2) P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
7 Wieże Hanoi Jak przenieść krążki z lewego stosu na prawy, jeżeli wolno je przenosić po jednym i nie wolno kłaść większego na mniejszym? P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
8 Wieże Hanoi Rozwiązanie def move ( n, f, t, h ) : i f n==1: move_one ( f, t ) e l s e : move ( n 1, f, h, t ) move_one ( f, t ) move ( n 1, h, t, f ) P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
9 Ile kosztuje rekurencja? Niech H n będzie liczbą przeniesień w przypadku z n krążkami. H n+1 = 2H n + 1 H 1 = 1 H 2 = 2H = 3 H 3 = 7 H 4 = 15 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
10 Ile kosztuje rekurencja? Niech H n będzie liczbą przeniesień w przypadku z n krążkami. H n+1 = 2H n + 1 H 1 = 1 H 2 = 2H = 3 H 3 = 7 H 4 = 15 Lepiej się nie da. H n = 2 n 1 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
11 Ile kosztuje rekurencja? Niech T n będzie liczbą dodawań potrzebnych do obliczenia fib(n). T n+1 = T n + T n T 1,2,3,... = 0, 0, 1, 2, 4, 7, 12, 20, 33, 54, 87,... P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
12 Ile kosztuje rekurencja? Niech T n będzie liczbą dodawań potrzebnych do obliczenia fib(n). T n+1 = T n + T n T 1,2,3,... = 0, 0, 1, 2, 4, 7, 12, 20, 33, 54, 87,... F 1,2,3,... = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88,... T n = F n 1 = ϕ = ϕ n P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
13 Ile kosztuje rekurencja? Niech O n będzie liczbą dodawań potrzebnych do obliczenia F n metodą iteracyjną. Wiemy, że wystarczy dla F n wystarczy n 2 dodawań. O n = O n P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
14 Czy można poprawić funkcję fib? Wystarczy zapamiętywać obliczone liczby. f i b _ l i s t =[0,1] def f i b ( n ) : i f len ( f i b _ l i s t )>n : return f i b _ l i s t [ n ] e l s e : r e s=f i b ( n 2)+ f i b ( n 1) f i b _ l i s t. append ( r e s ) return r e s P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
15 Rekurencja ogonowa Ostatnią operacją funkcji rekurencyjnej jest wywołanie samej siebie lub zwrócenie wyniku. Przykład def f ( i ) : k=foo ( i ) return f ( k ) albo def f ( i ) : k=foo ( i ) r e s=f ( k ) return r e s Tak nie def f ( i ) : k=foo ( i ) return f ( k)+1 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
16 Rekurencja ogonowa Zwykła def s i l n i a ( n ) : i f n==1: return 1 return s i l n i a ( n 1) n Ogonowa def s i l ( n, acc ) : i f n==1: return acc return s i l ( n 1, n acc ) def s i l n i a ( n ) : return s i l ( n, 1) P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
17 Rekurencja ogonowa Zwykła Wywołaj silnia(3) Wywołaj silnia(2) Wywołaj silnia(1) Wywołaj silnia(0) Zwróć 1 Zwróć 1 Zwróć 2 Zwróć 6 Ogonowa Wywołaj silnia(3) Wywołaj sil(3,1) Zastąp argumenty (3,1) przez (2,3), skocz na początek sil Zastąp argumenty (2,3) przez (1,6), skocz na początek sil Zastąp argumenty (1,6) przez (0,6), skocz na początek sil Zwróć 6 jako wynik P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
18 Konwersja na pętlę Przed def f ( par, r e s ) : i f done ( par ) : return r e s par, r e s=one_step ( par, r e s ) f ( par, r e s ) Po def f ( par, r e s ) : while not done ( par ) : par, r e s=one_step ( par, r e s ) return r e s P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
19 Dziel i zwyciężaj 1 Podział problemu na 2 lub więcej części 2 Rozwiązanie każdej z części niezależnie 3 Scalenie rozwiązań części w rozwiązanie problemu pierwotnego Każdy z podproblemów rozwiązywany jest tą samą metodą. Naturalna implementacja przy pomocy rekurencji. Hanoi 1 Podział: Hanoi(n, f, t, h) Hanoi(n-1, f, h, t), Hanoi(n-1, h, t, f) 2 Scalenie: Hanoi(n-1, f, h, t), f t, Hanoi(n-1, h, t, f) P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
20 Mergesort Scalanie dwóch posortowanych list L 1, L 2 scalane listy L lista wynikowa 1 jeżeli L 1 i L 2 niepuste niech a i b będą odpowiednio pierwszymi elementami L 1 i L 2 jeżeli a b usuń a z L 1 i dopisz na koniec L jeżeli a > b usuń b z L2 i dopisz na koniec L skocz do 1 2 dopisz niepustą listę do L Scalenie list o łącznej długości N wymaga co najwyżej N 1 porównań i N przepisań. P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
21 Mergesort c.d. Sortowanie przez scalanie 1 podziel listę na dwie listy o równej długości 2 posortuj listy oddzielnie 3 scal posortowane listy Czas potrzebny na posortowanie listy długości N: T 1 = 0 T n = 2T n 2 + n P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
22 Mergesort c.d. Załóżmy, że n = 2 k : S k = T n S 0 = 0 S k = 2S k k Ostatecznie: S k = k2 k T n = n log 2 n P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
23 Liczby Fibonacciego Łatwo zauważyć ( Fn+1 F n ) = ( ) ( ) 1 1 Fn 1 0 F n 1 ( Fn+1 F n F n F n 1 F n+m ) = ( F n+m 1 ) ( ) Fn F n 1 = F n 1 F n 2 ( ) n 1 ( ) 1 1 F2 F = 1 = 1 0 F 1 F 0 ( ) ( ) ( ) Fn+m+1 F n+m Fn+1 F = n Fm+1 F m F n F n 1 F m F m 1 ( ) n P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
24 Liczby Fibonacciego c.d. ( ) ( ) ( ) F2n+1 F 2n Fn+1 F = n Fn+1 F n F 2n F 2n 1 F n F n 1 Ostatecznie F 2n+1 = Fn Fn 2 F 2n = 2F n+1 F n Fn 2 F n F n 1 Algorytm obliczania F n 1 obliczyć F n 2 +1 i F n 2 2 zastosować wzory P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
25 Liczby Fibonacciego c.d. Czas obliczeń T 1 = 0 T 2n = T n + 1 T n = log 2 n P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
26 Zadanie 1 labirynt Labirynt jest zdefiniowany na prostokątnej planszy o rozmiarze n na m pól. Pole może być oznaczone jako korytarz lub ściana. Dozwolone jest przechodzenie pomiędzy mającymi wspólny bok polami korytarza. Napisz program rozstrzygający, czy w zadanym labiryncie istnieje droga pomiędzy wskazanymi polami. Wskazówka Labirynt w Pythonie można zaimplementować jako listę list. Np.: map= [ [ 0, 0, 1, 1, 1, 0, 0, 0 ], [ 1, 1, 1, 0, 1, 0, 1, 1 ], [ 0, 0, 0, 1, 1, 0, 1, 0 ], [ 0, 0, 0, 1, 1, 1, 1, 0 ] ] P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
27 Zadanie 2 wyszukiwanie binarne Zaimplementuj algorytm wyszukiwania binarnego w posortowanej liście z zastosowaniem rekurencji. P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
28 Zadanie 3 Quicksort Sortowanie szybkie polega na rozdzieleniu sortowanej listy na dwie: zawierającą elementy mniejsze od pewnego wybranego i zawierającą elementy pozostałe. Obie listy sortowane są niezależnie, a następnie następuje ich złączenie. Cały proces można (i należy) przeprowadzić w miejscu stosując do rozdzielania algorytm analogiczny do użytego w zadaniu o fladze polskiej. P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
29 Zadanie 4 wieże Hanoi z ograniczeniami Napisz program tworzący sekwencję ruchów w problemie wież Hanoi przy założeniu, że nie wszystkie ruchy są dozwolone. Przykładowo, jeżeli zakazany jest ruch z A na C, konieczne jest przenoszenie krążka z A na B, a następnie z B na C. P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
30 Strona wykładu z P. Daniluk(Wydział Fizyki) WP w. VIII Jesień / 27
Wykład 3. Metoda dziel i zwyciężaj
Wykład 3 Metoda dziel i zwyciężaj 1 Wprowadzenie Technika konstrukcji algorytmów dziel i zwyciężaj. przykładowe problemy: Wypełnianie planszy Poszukiwanie (binarne) Sortowanie (sortowanie przez łączenie
Wstęp do programowania
Wstęp do programowania Programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. X Jesień 2013 1 / 21 Dziel i zwyciężaj przypomnienie 1 Podział problemu na 2 lub
Wstęp do programowania
Wstęp do programowania Funkcje Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. V Jesień 2013 1 / 32 Funkcje Funkcje w matematyce f : D W D dziedzina W zbiór wartości Funkcja może
Strategia "dziel i zwyciężaj"
Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
12. Rekurencja. UWAGA Trzeba bardzo dokładnie ustalić <warunek>, żeby mieć pewność, że ciąg wywołań się zakończy.
12. Rekurencja. Funkcja rekurencyjna funkcja, która wywołuje samą siebie. Naturalne postępowanie: np. zbierając rozsypane pionki do gry podnosi się zwykle pierwszy, a potem zbiera się resztę w ten sam
Wstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Wstęp do programowania
Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu
Wykład 8. Rekurencja. Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. L. Peter Deutsch
Wykład 8 Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. Smok podsuszony zmok (patrz: Zmok). Zmok zmoczony smok (patrz: Smok). L. Peter Deutsch Stanisław Lem Wizja lokalna J. Cichoń, P. Kobylański
Wstęp do programowania
Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 9. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 9 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Zasada dziel i zwyciężaj Przykłady znajdowanie
Rekurencja. Przygotowała: Agnieszka Reiter
Rekurencja Przygotowała: Agnieszka Reiter Definicja Charakterystyczną cechą funkcji (procedury) rekurencyjnej jest to, że wywołuje ona samą siebie. Drugą cechą rekursji jest jej dziedzina, którą mogą być
Rekurencja/rekursja. Iluzja istnienia wielu kopii tego samego algorytmu (aktywacji) Tylko jedna aktywacja jest aktywna w danej chwili
rekurencja 1 Rekurencja/rekursja Alternatywny dla pętli sposób powtarzania pewnych czynności; kolejny etap podzadanie poprzedniego Rekursja może być zamieniona na iteracje Cechy rekurencji Rozłożenie problemu
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Programowanie dynamiczne
Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Rekurencja. Przykład. Rozważmy ciąg
Rekurencja Definicje rekurencyjne Definicja: Mówimy, iż ciąg jest zdefiniowany rekurencyjnie, jeżeli: (P) Określony jest pewien skończony zbiór wyrazów tego ciągu, zwykle jest to pierwszy wyraz tego ciągu
Sortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Efektywna metoda sortowania sortowanie przez scalanie
Efektywna metoda sortowania sortowanie przez scalanie Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Metoda dziel i zwycięŝaj Dzielimy
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4: Iteracja, indukcja i rekurencja http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Iteracja, indukcja
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ i KOMPUTEROWEJ Katedra Automatyki i Technik Informacyjnych Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew
Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
5. Podstawowe algorytmy i ich cechy.
23 5. Podstawowe algorytmy i ich cechy. 5.1. Wyszukiwanie liniowe i binarne 5.1.1. Wyszukiwanie liniowe Wyszukiwanie jest jedną z najczęściej wykonywanych operacji na strukturach danych i dotyczy wszystkich,
FUNKCJA REKURENCYJNA. function s(n:integer):integer; begin if (n>1) then s:=n*s(n-1); else s:=1; end;
Rekurencja Wykład: rekursja, funkcje rekurencyjne, wywołanie samej siebie, wyznaczanie poszczególnych liczb Fibonacciego, potęgowanie, algorytm Euklidesa REKURENCJA Rekurencja (z łac. recurrere), zwana
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 6 Podstawy programowania 2 Temat: Funkcje i procedury rekurencyjne Przygotował: mgr inż. Tomasz Michno Wstęp teoretyczny Rekurencja (inaczej nazywana rekursją, ang. recursion)
REKURENCJA W JĘZYKU HASKELL. Autor: Walczak Michał
REKURENCJA W JĘZYKU HASKELL Autor: Walczak Michał CZYM JEST REKURENCJA? Rekurencja zwana rekursją, polega na wywołaniu przez funkcję samej siebie. Algorytmy rekurencyjne zastępują w pewnym sensie iteracje.
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
ALGORYTMY I STRUKTURY DANYCH
KATEDRASYSTEMÓWOBLICZENIOWYCH ALGORYTMY I STRUKTURY DANYCH 1.Rekurencja Rekurencja inaczej rekursja (ang. recursion) to wywołanie z poziomu metody jej samej. Programowanie z wykorzytaniem rekurencji pozwala
Definicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Dzi kuj za uwag! Spotkania z Pythonem. Cz ± 1 - podstawy - rozwi zania zada« Michaª Alichniewicz. Gda«sk 2014. Studenckie Koªo Automatyków SKALP
Spotkania z Pythonem Cz ± 1 - podstawy - rozwi zania zada«michaª Alichniewicz Studenckie Koªo Automatyków SKALP Gda«sk 2014 Dzi kuj za uwag! Na licencji Creative Commons Attribution-NonCommercial-ShareAlike
Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.
Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego
Sortowanie przez scalanie
Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie
Wstęp do programowania. Dziel i rządź. Piotr Chrząstowski-Wachtel
Wstęp do programowania Dziel i rządź Piotr Chrząstowski-Wachtel Divide et impera Starożytni Rzymianie znali tę zasadę Łatwiej się rządzi, jeśli poddani są podzieleni Nie chodziło im jednak bynajmniej o
Raport z projektu. Przedmiot: Algorytmy i struktury danych 1 Projekt: Wieża Hanoi Autor: Wojciech Topolski
Raport z projektu Przedmiot: Algorytmy i struktury danych 1 Projekt: Wieża Hanoi Autor: Wojciech Topolski Problem wieży Hanoi W wielkiej świątyni Benares w Hanoi, pod kopułą, która zaznacza środek świata,
Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.
Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2015-10-09 Spis treści 1 Szybkie potęgowanie 1 2 Liczby Fibonacciego 2 3 Dowód, że n 1 porównań jest potrzebne do znajdowania minimum 2 4 Optymalny algorytm do
Wstęp do programowania
Wstęp do programowania Programowanie funkcyjne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XIV Jesień 2013 1 / 25 Paradygmaty programowania Programowanie imperatywne Program
Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku
Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Rekurencja 11 Wieże Hanoi Rekurencja jest to zdolność podprogramu (procedury lub funkcji) do wywoływania samego siebie Zacznijmy
Podstawy algorytmiki i programowania - wykład 3 Funkcje rekurencyjne Wyszukiwanie liniowe i binarne w tablicy
1 Podstawy algorytmiki i programowania - wykład 3 Funkcje rekurencyjne Wyszukiwanie liniowe i binarne w tablicy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania.
Informatyka A. Algorytmy
Informatyka A Algorytmy Spis algorytmów 1 Algorytm Euklidesa....................................... 2 2 Rozszerzony algorytm Euklidesa................................ 2 3 Wyszukiwanie min w tablicy..................................
Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s].
Zadanie 1. Wiązka zadań Od szczegółu do ogółu Rozważmy następujący algorytm: Dane: Algorytm 1: k liczba naturalna, A[1...2 k ] tablica liczb całkowitych. n 1 dla i=1,2,,k wykonuj n 2n s 1 dopóki s
5. Rekurencja. Przykłady
5. Rekurencja Uwaga! W tym rozdziale nie są omówione żadne nowe konstrukcje języka C++. Omówiona jest za to technika wykorzystująca funkcje, która pozwala na rozwiązanie pewnych nowych rodzajów zadań.
Algorytmy sortujące i wyszukujące
Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.
Wykład 4: Iteracja, indukcja i rekurencja
Teoretyczne podstawy informatyki Wykład 4: Iteracja, indukcja i rekurencja Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Iteracja, indukcja i rekurencja to podstawowe zagadnienia pojawiające się przy
Technologie informacyjne Wykład VII-IX
Technologie informacyjne -IX A. Matuszak 19 marca 2013 A. Matuszak Technologie informacyjne -IX Rekurencja A. Matuszak (2) Technologie informacyjne -IX Gotowanie jajek na miękko weż czysty garnek włóż
Złożoność algorytmów. Wstęp do Informatyki
Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność
Sortowanie. LABORKA Piotr Ciskowski
Sortowanie LABORKA Piotr Ciskowski main Zaimplementuj metody sortowania przedstawione w następnych zadaniach Dla każdej metody osobna funkcja Nagłówek funkcji wg uznania ale wszystkie razem powinny być
Laboratorium nr 1. i 2.
Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych
Wstęp do programowania
Wieczorowe Studia Licencjackie Wrocław, 28.11.2006 Wstęp do programowania Wykład nr 9 (w oparciu o notatki K. Lorysia z modyfikacjami) Sortowanie szybkie (Quicksort) Sortowanie przez scalanie opierało
Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 9 Rekurencja
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 9 Rekurencja Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Przykład:
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 5 część I 2 Iteracja Rekurencja Indukcja Iteracja Rekurencja Indukcja Algorytmy sortujące Rozwiazywanie
Wstęp do Programowania potok funkcyjny
i programowanie dynamiczne Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 i programowanie dynamiczne Outline 1 i programowanie dynamiczne i programowanie dynamiczne Rekurencyjny zapis rozwiązania
Algorytmy i Struktury Danych. (c) Marcin Sydow. Sortowanie Selection Sort Insertion Sort Merge Sort. Sortowanie 1. Listy dowiązaniowe.
1 Tematy wykładu: problem sortowania sortowanie przez wybór (SelectionSort) sortowanie przez wstawianie (InsertionSort) sortowanie przez złaczanie (MergeSort) struktura danych list dowiązaniowych Input:
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni. Wykład 3. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni Wykład 3 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Co to jest algorytm? Zapis algorytmów Algorytmy
Podstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
1.1. Uzupełnij poniższą tabelę: i wynik(i)
Zadanie 1. Krzysztof, Kamil Wiązka zadań Ciągi rekurencyjne Dana jest następująca funkcja rekurencyjna: funkcja wynik( i ) jeżeli i < 3 zwróć 1 i zakończ; w przeciwnym razie jeżeli i mod 2 = 0 zwróć wynik(i
Rekurencja (rekursja)
Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)
Programowanie Równoległe i Rozproszone. Algorytm Kung a. Algorytm Kung a. Programowanie Równoległe i Rozproszone Wykład 8. Przygotował: Lucjan Stapp
Programowanie Równoległe i Rozproszone Lucjan Stapp Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska (l.stapp@mini.pw.edu.pl) 1/34 PRiR Algorytm Kunga Dany jest odcinek [a,b] i ciągła funkcja
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona
EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 INFORMATYKA
EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 INFORMATYKA POZIOM ROZSZERZONY FORMUŁA OD 2015 ( NOWA MATURA ) ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1,R2 MAJ 2018 Uwaga: Akceptowane są wszystkie odpowiedzi
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)
funkcje rekurencyjne Wykład 12. Podstawy programowania (język C) Funkcje rekurencyjne (1) Funkcje rekurencyjne (2)
Podstawy programowania (język C) funkcje rekurencyjne Wykład 12. Tomasz Marks - Wydział MiNI PW -1- Tomasz Marks - Wydział MiNI PW -2- Funkcje rekurencyjne (1) W języku C funkcja moŝe wywoływać samą siebie.
Anatomia definicji rekursywnej. Anatomia definicji rekursywnej. int silnia(intn){ if(n==0) return 1; else return n*silnia(n-1); }
Anatomia definicji rekursywnej int silnia(intn){ if(n==0) return 1; else return n*silnia(n-1); PRZYPADEK BAZOWY PRZYPADEK REKURSYWNY Definicja rekursywna musi zawierać przypadek bazowy, czyli kod bez wywołania
Wstęp do programowania
Wstęp do programowania Podstawowe konstrukcje programistyczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) WP w. II Jesień 2014 1 / 38 Przypomnienie Programowanie imperatywne Program
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
WYŻSZA SZKOŁA IFORMATYKI STOSOWAEJ I ZARZĄDZAIA Złożoność algorytmów Złożoność pamięciowa algorytmu wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie. Złożoność czasowa algorytmu
Wstęp do programowania
Wstęp do programowania Podstawowe konstrukcje programistyczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. II Jesień 2013 1 / 34 Przypomnienie Programowanie imperatywne Program
Algorytmy. wer Wojciech Myszka 30 listopada 2008
Algorytmy Część IV wer. 1.2 Wojciech Myszka 30 listopada 2008 Spis treści I Spis treści Jak się tworzy algorytmy? Poszukiwania i wędrówki Dziel i zwyciężaj Rekurencja Definicje Przykład Schemat blokowy
Wykład 5: Iteracja, indukcja i rekurencja Sortowanie
Teoretyczne podstawy informatyki Wykład 5: Iteracja, indukcja i rekurencja Sortowanie Prof. dr hab. Elżbieta Richter-Wąs 1 30.10.2012 Słowem wstępu Iteracja, indukcja i rekurencja to podstawowe zagadnienia
Laboratorium kryptograficzne dla licealistów 6
Laboratorium kryptograficzne dla licealistów 6 Projekt Matematyka dla ciekawych świata Łukasz Mazurek 11.05.2017 1 Potęgowanie W kryptografii często wykonuje się operację potęgowania modulo. Np. w algorytmie
Podstawy Programowania semestr drugi. Wykład dziewiąty
Wykład dziewiąty 1. Rekurencja i technika dziel i zwyciężaj Rekurencja jest silnie związana z jedną z najefektywniejszych technik projektowania algorytmów, którą określamy nazwą dziel i zwyciężaj (ang.
Programowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Testy jednostkowe Wybrane problemy testowania metod rekurencyjnych
Testy jednostkowe Wybrane problemy testowania metod rekurencyjnych Artykuł przeznaczony jest dla osób związanych z testowaniem, programowaniem, jakością oraz wytwarzaniem oprogramowania, wymaga jednak
Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy
1 Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Wieczorowe Studia Licencjackie Wrocław, Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa
Wieczorowe Studia Licencjackie Wrocław, 7.11.2006 Wstęp do programowania Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa Zaprezentujemy teraz algorytm na wyznaczanie wszystkich
Wyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna
Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2016 1 / 8 Plan Wstęp Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz Zmiany w funkcji main()
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Techniki konstruowania algorytmów. Metoda dziel i zwyciężaj
Techniki konstruowania algorytmów Metoda dziel i zwyciężaj Technika dziel i zwyciężaj Aby rozwiązać problem techniką dziel i zwyciężaj musi on wykazywać własność podstruktury rozwiązanie problemu można
Metody algortmiczne (Algorytmy Część IV)
Metody algortmiczne (Algorytmy Część IV) wer. 9 z drobnymi modyfikacjami! Wojciech Myszka 2018-10-02 17:27:45 +0200 Jak się tworzy algorytmy? Moja odpowiedź jest krótka: Jak się tworzy algorytmy? Moja
Technologie Informatyczne Wykład VII
Technologie Informatyczne Wykład VII A. Matuszak (1) 22 listopada 2007 A. Matuszak (1) Technologie Informatyczne Wykład VII A. Matuszak (2) Technologie Informatyczne Wykład VII (Rekursja) albo rekursja
Algorytmy i struktury danych IS/IO, WIMiIP
Algorytmy i struktury danych IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Algorytmy i struktury danych 2 Spis treści 3 Organizacja zajęć 4 Literatura 5 Pojęcia podstawowe Rozwiązywanie problemu
Algorytmika w bioinformatyce
Algorytmika w bioinformatyce Kurs dla kierunku BIOINFORMATYKA 2017/2018 Prowadzący: Prof. Danuta Makowiec danuta.makowiec@gmail.com IFTiA, pok. 353, tel.: 58 523 2466 Motywacja 2 Cztery etapy rekonstrukcji
Podstawy Informatyki. Metalurgia, I rok. Rekurencja. skomplikowane zadanie. Rekurencja
Podstawy Informatyki Metalurgia, I rok Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Małe dziecko otrzymuje polecenie
Podstawy Informatyki. Metalurgia, I rok. Wykład 5 Rekurencja
Podstawy Informatyki Metalurgia, I rok Wykład 5 Rekurencja Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Przykład: Małe
Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie
Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej
Algorytmy i struktury danych.
Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności
Podstawy programowania. Wykład: 13. Rekurencja. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD
Podstawy programowania Wykład: 13 Rekurencja 1 dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD Podstawy programowania Rekurencja - pojęcie 2 Rekurencja - pojęcie Rekurencja (rekursja) wywołanie
. Podstawy Programowania 2. Drzewa bst - część druga. Arkadiusz Chrobot. 12 maja 2019
.. Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2019 1 / 39 Plan.1 Wstęp.2 Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz.3.4 Zmiany w
wykład II uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - funkcje, tablice i wskaźniki wykład II dr Jarosław Mederski Spis
i cz. 2 Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 i cz. 2 2 i cz. 2 3 Funkcje i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje instrukcje } i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje