Algorytmika w bioinformatyce

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmika w bioinformatyce"

Transkrypt

1 Algorytmika w bioinformatyce Kurs dla kierunku BIOINFORMATYKA 2017/2018 Prowadzący: Prof. Danuta Makowiec IFTiA, pok. 353, tel.: Motywacja 2 Cztery etapy rekonstrukcji genomu: cięcie DNA na fragmenty Fragmenty DNA są uzyskiwane poprzez enzymy restrykcyjne tworzenie milionów kopii każdego fragmentu Klonowanie Reakcja łańcuchowa polimerazy odczytanie każdej pary w każdym fragmencie Techniki sekwencjonowania Macierze DNA zestawienie wszystkich fragmentów we właściwym porządku Algorytmy bioinformatyki usiłują zrekonstruować oryginalne sekwencje. 1

2 Rozkład jazdy 3 Wykłady Środy, godz.: do Na stronie będą sukcesywnie pojawiać się materiały z wykładów Warunek uzyskania zaliczenia wykładu: pozytywne napisanie kolokwium zaliczającego. termin kolokwium: 31 stycznia 2018, godz. 12:15. Podręczniki Schemat omawianych treści: problem biologiczny algorytmiczna technika rozwiązania : ćwiczenia audytoryjne praktyczne kodowanie rozwiązania : laboratoria programistyczne analiza złożoności 2

3 A1: PODSTAWOWE TECHNIKI ALGORYTMICZNE Algorytmika dla bioinformatyki Prowadzący: Prof. Danuta Makowiec IFTiA, pok. 353, tel.: Algorytmika 6 Algorytm to zestaw dobrze zdefiniowanych instrukcji, które należy wykonać, aby rozwiązać określony problem. To, co decyduje o jakości algorytmu to jego poprawność i wydajność (złożoność) Mamy wypracowane różne strategie projektowania algorytmów takie jak na przykład: wyczerpująca, zachłanna, dynamiczna czy rekurencyjna Mamy wypracowany sposób oceny złożoności algorytmów: analiza asymptotyczna 3

4 Algorytmika 7 Poprawność algorytmu Problem kasjera 8 wydać resztę optymalnie czyli wykorzystując możliwie najmniejszą liczbę monet przy zadanym zestawie monet. Wydawaj możliwie największą monetę z aktualnej reszty 4

5 strategia zachłanna versus strategia wyczerpująca Strategia zachłanna: wydawaj resztę aktualnie największym nominałem Strategia wyczerpująca: kolejno rozważ wszystkie możliwe kombinacje monet Algorytm zawsze poprawny, ale też i zawsze niewydajny Ile tych możliwie najwiekszych monet można wypłacić Algorytm BetterChange jest niepoprawny. Źle oblicza resztę dla np.: M=40, c=(25, 20, 10, 5, 1) Algorytm mięśniaka 9 Algorytmika 10 Złożoność algorytmu 5

6 META KOD ALGORYTMÓW Problem Fibonacciego ( z roku 1202) 11 Algorytm rekurencyjny Algorytm dynamiczny: Bezpośrednie obliczenie F n n n [11] Problem sortowania Definicja: Wejście: Wyjście: dany jest ciąg n elementów A= (A 1, A 2,., A n ) = A[1..n] permutacja ciągu wejściowego A =A [1..n] taka, że A [1] A [2] A [n] 12 INSERTION_SORT (A[1..n]) for j = 2 to n key = A[j] i = j 1 while i > 0 and A[i] > key A[i+1] = A[i] i = i 1 A[i+1] = key Rozważamy n-1 elementów //pobierz kolejny element A[j] //wstaw A[j] do posortowanego ciągu A[1..j-1] i-ty pobrany element porównujemy co najwyżej (i-1) razy Przybliżona ilość maksymalnej liczby elementarnych operacji (n-1)= n*(n-1)/2 6

7 13 Analiza wydajności algorytmu Analiza wydajności algorytmu to ocena czasu przetwarzania I tak, czas przebiegu Insertion_Sort zależy od: wielkości danych wejściowych: czy mamy 6 czy 6 milionów liczb do wysortowania? jakości danych wejściowych: czy są już częściowo posortowane i jak? ile umownych jednostek czasowych potrzeba na przetworzenie n-elementowego zbioru: analiza najgorszego przypadku: T(n)=max { czas sortowania danych o rozmiarze n} analiza średniego przypadku: T(n)= E { wszystkie możliwe dane o rozmiarze n} analiza najlepszego przypadku: możliwość oszukania się i innych 14 Analiza asymptotyczna Pomysł na ilościową ocenę wydajności algorytmu: Sedno algorytmiki ANALIZA ASYMPTOTYCZNA 1. zignoruj stałe wielkości zależne od maszyny 2. obserwuj jedynie WZROST przebiegu T(n), gdy n Definicja notacji asymptotycznej O( ) : Dla danej funkcji g(n) przez O(g(n)) oznaczamy następujący zbiór funkcji: O(g(n))={ f(n): istnieje stała C oraz n 0 takie, że 0 f(n) C g(n) dla wszystkich dostatecznie dużych n n 0 } co piszemy f(n)=o(g(n)) Wniosek: Notacja O( ) służy szacowaniu funkcji z góry. 7

8 15 Oszacowania asymptotyczne Notacja asymptotyczna Jak wartości dowolnej funkcji f(n) mają się do wartości znanej funkcji g(n)? notacja theta notacja duże O notacja omega A2: PODSTAWOWE TECHNIKI ALGORYTMICZNE Algorytmika dla bioinformatyki Prowadzący: Prof. Danuta Makowiec IFTiA, pok. 353, tel.:

9 Funkcje ważne dla oszacowań asymptotycznych D. Makowiec: A: podstawowe techniki 17 O(n lg n) Złożoność wielomianowa 1,lg n n,..., n, n, n, n, nlg n, n, n, n,...,2, n!, n n O(1) O(lg n) O(n) O(n 2 ) O(2 n ) O(n!) Złożoność logarytmiczna Złożoność liniowa Złożoność kwadratowa Złożoność wykładnicza Hierarchia ważnych ciągów uporządkowanych w ten sposób, że każdy z nich jest O() od wszystkich ciągów na prawo od niego Różnice pomiędzy funkcjami rosnącymi 18 Jak długo będziemy czekać na wynik przetwarzania? Big-O: O(n 2 ) = oznacza że dana funkcja rośnie nie szybciej niż n 2 9

10 19 Wyznaczanie O() Jak znaleźć funkcję f(n): ilość elementarnych operacji w algorytmie, dla której następnie znajdujemy O()? Przykłady: jak ocenić złożoność rozważanych wcześniej algorytmów? ANALIZA ASYMPTOTYCZNA 1. zignoruj stałe wielkości zależne od maszyny 2. obserwuj jedynie WZROST przebiegu T(n), gdy n Zliczanie: f(d)< 1+2*d = O(d) Zliczanie: F(d) <1+ M/c 1 *M/c 2 *.*M/c d = O(M d ) Problemy obliczalne i NP-zupełne 20 Problem jest obliczalny (tractable) jeśli jest rozwiązywalny przez algorytm o złożoności wielomianowej czyli jest O(n k ) dla pewnego k Problem jest nieobliczalny (intractable) jeśli nie może być obliczony przez jakikolwiek algorytm o złożoności wielomianowej (ograniczenie dolne jest wykładnicze: (2 n ) ) Problem NP-zupełny: nie istnieje dowód, że problem jest nieobliczalny 10

11 21 Strategia rekurencji Strategia rekurencji: rozwiąż problem o rozmiarze n zakładając, że znasz rozwiązanie problemu o rozmiarze mniejszym niż n Wieże Hanoi (1883) Oblicz, ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: brać tylko 1 klocek kłaść klocek mniejszy na większy Lucas i legenda wieży Brahmy w Hanoi Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: brać tylko 1 klocek kłaść klocek mniejszy na większy Przypadek wieży zbudowanej z dwóch klocków Danuta Makowiec: Algorytmika, wykład iv [22] 11

12 Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: brać tylko 1 klocek kłaść klocek mniejszy na większy Przypadek wieży zbudowanej z dwóch klocków Danuta Makowiec: Algorytmika, wykład iv [23] Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: brać tylko 1 klocek kłaść klocek mniejszy na większy Przypadek wieży zbudowanej z trzech klocków Danuta Makowiec: Algorytmika, wykład iv [24] 12

13 Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: brać tylko 1 klocek kłaść klocek mniejszy na większy Przypadek wieży zbudowanej z trzech klocków Przenieśliśmy wieżę dwu-klockową z patyka 1 na patyk 2 korzystając z patyka 3. Przenieśliśmy największy klocek na jego miejsce patyk Danuta Makowiec: Algorytmika, wykład iv [25] Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: brać tylko 1 klocek kłaść klocek mniejszy na większy Przypadek wieży zbudowanej z trzech klocków Danuta Makowiec: Algorytmika, wykład iv [26] 13

14 Wieże Hanoi (1883) rozwiązanie rekurencyjne Oblicz ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: brać tylko 1 klocek kłaść klocek mniejszy na większy Przenieśliśmy wieżę dwu-klockową z patyka 2 na patyk 3 korzystając patyka 1 Przypadek wieży zbudowanej z trzech klocków A co jeśli wieża zbudowana jest jest z 4 i więcej klocków? Danuta Makowiec: Algorytmika, wykład iv [27] Strategia rekurencji D. Makowiec: A - złożoność obliczeniowa 28 Strategia rekurencji: rozwiąż dany problem zakładając, że znasz rozwiązanie jego prostszej wersji Wieże Hanoi (1883) Oblicz, ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: brać tylko 1 klocek kłaść klocek mniejszy na większy A co jeśli wieża zbudowana jest jest z 4 i więcej klocków? 14

15 29 Strategia rekurencji Strategia rekurencji: rozwiąż dany problem zakładając, że znasz rozwiązanie jego prostszej wersji Wieże Hanoi (1883) Oblicz, ile ruchów co najmniej musisz wykonać, aby przenieść wszystkie klocki z patyka 1 na patyk 3, przy czym wolno Ci: brać tylko 1 klocek kłaść klocek mniejszy na większy Lucas i legenda wieży Brahmy w Hanoi Wieże Hanoi (1883) przykład algorytmu rekukencyjnego Ile ruchów trzeba wykonać? Algorytmika, wykład iv Czy to dużo? 1 dysk 1 ruch 2 dyski 3 ruchy 3 dyski 7 ruchów 4 dyski 15 ruchów 5 dysków 31 ruchów.. 20 dysków ruchów 32 dyski ruchów 64 dyski

16 31 Rzędy wielkości Nauczka: Sensowne porównania liczb to tylko takie, które są tego samego rzędu Algorytmika, wykład iv Drzewo rekurencji metoda szacowania złożoności algorytmów rekurencyjnych 32 Czas obliczeń: HT(n, ) T(n) HT(n-1, ) HT(n-1, ) =2*T(n-1) +c HT(n-2, ) HT(n-2, ) HT(n-2, ) HT(n-2, ) =4*T(n-2) +c =2 i *T(n-i) +c HT(1, ) HT(1, ) HT(1, ) HT(1, ) HT(1, ) HT(1, ) =2 n-1 *T(1) +c =O(2 n ) 16

17 Gdzie jest telefon? 34 Podstawowe techniki projektowania algorytmów Algorytm wyczerpujący (exhaustive lub brute-force) systematyczne sprawdzenie wszystkich możliwości Algorytm podziału i ograniczeń (branch-and-bound ) wyeliminowanie szeregu opcji algorytmu wyczerpującego Algorytm zachłanny (greedy) iteracyjne tworzenie rozwiązania w oparciu o aktualnie atrakcyjne alternatywy Algorytm dynamiczny (dynamic programming) składanie rozwiązań mniejszych problemów by uzyskać rozwiązanie problemu większego. Algorytm dziel-i-zwyciężaj ( divide-conquer-combine) rozkładanie problemu większego na mniejsze, które umiemy rozwiązać Algorytm maszynowego uczenia się (machine learning) korzysta z wiedzy zgromadzonej w poprzednich tego typu zdarzeniach Algorytm losowy (randomized, Monte Carlo ) realizacja algorytmu związana jest z eksperymentem losowym 35 wyczerpujący zachłanny Monte Carlo 17

18 Programowanie dynamiczne Gra ROCKS: w każdym ruchu każdy gracz musi zdjąć albo 1 klocek z dowolnie wybranego stosu albo po 1 klocku z każdego stosu Wygrywa ten, kto zdejmuje ostatni klocek. Zaczyna Alicja. Alicja Bob 36 Czy istnieje tu strategia zwyciężania? Czy Alicja, jako startująca, ma jakieś korzyści? Więcej informacji : rozdział 1 i 2 z podręcznika Programowanie dynamiczne 37 Gra ROCKS: w każdym ruchu każdy gracz musi zdjąć albo 1 klocek z dowolnie wybranego stosu albo po 1 klocku z każdego stosu Wygrywa ten, kto zdejmuje ostatni klocek. Zaczyna Alicja. A: B: Alicja A Bob B Strategia zwycięstwa: ^ - ściągnij klocek z A < - ściągnij klocek z B \ - ściągnij oba klocki * - poddaj się 18

19 Programowanie dynamiczne 38 A: Rozwiązanie powstaje z rozwiązania problemów mniejszych, przy czym w odróżnieniu od strategii rekurencyjnej, rozwiązanie problemów mniejszych składają się iteracyjnie na rozwiązanie problemu większego. B: 19

Algorytmika w bioinformatyce

Algorytmika w bioinformatyce Algorytmika w bioinformatyce Kurs dla kierunku BIOINFORMATYKA 2016/2017 Prowadzący: Prof. Danuta Makowiec danuta.makowiec@gmail.com IFTiA, pok. 353, tel.: 58 523 2466 Motywacja 2 Cztery etapy rekonstrukcji

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Wykład 3. Metoda dziel i zwyciężaj

Wykład 3. Metoda dziel i zwyciężaj Wykład 3 Metoda dziel i zwyciężaj 1 Wprowadzenie Technika konstrukcji algorytmów dziel i zwyciężaj. przykładowe problemy: Wypełnianie planszy Poszukiwanie (binarne) Sortowanie (sortowanie przez łączenie

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce

Bardziej szczegółowo

Złożoność algorytmów. Wstęp do Informatyki

Złożoność algorytmów. Wstęp do Informatyki Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność

Bardziej szczegółowo

Algorytmika i pseudoprogramowanie

Algorytmika i pseudoprogramowanie Przedmiotowy system oceniania Zawód: Technik Informatyk Nr programu: 312[ 01] /T,SP/MENiS/ 2004.06.14 Przedmiot: Programowanie Strukturalne i Obiektowe Klasa: druga Dział Dopuszczający Dostateczny Dobry

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

Wprowadzenie do złożoności obliczeniowej

Wprowadzenie do złożoności obliczeniowej problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury

Bardziej szczegółowo

Wykład 2. Poprawność algorytmów

Wykład 2. Poprawność algorytmów Wykład 2 Poprawność algorytmów 1 Przegląd Ø Poprawność algorytmów Ø Podstawy matematyczne: Przyrost funkcji i notacje asymptotyczne Sumowanie szeregów Indukcja matematyczna 2 Poprawność algorytmów Ø Algorytm

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział

Bardziej szczegółowo

Algorytmy i złożoność obliczeniowa. Wojciech Horzelski

Algorytmy i złożoność obliczeniowa. Wojciech Horzelski Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 3 2 Złożoność obliczeniowa algorytmów Notacja wielkie 0 Notacja Ω i Θ Algorytm Hornera Przykłady rzędów

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

Efektywność algorytmów

Efektywność algorytmów Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów

Bardziej szczegółowo

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego

Bardziej szczegółowo

Laboratorium nr 1. i 2.

Laboratorium nr 1. i 2. Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA WYŻSZA SZKOŁA IFORMATYKI STOSOWAEJ I ZARZĄDZAIA Złożoność algorytmów Złożoność pamięciowa algorytmu wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie. Złożoność czasowa algorytmu

Bardziej szczegółowo

KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4

KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

Temat: Algorytmy zachłanne

Temat: Algorytmy zachłanne Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Podyplomowe Studium Informatyki

Podyplomowe Studium Informatyki Podyplomowe Studium Informatyki Wstęp do informatyki 30 godz. wykładu dr inż. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura D. Harel, Rzecz o istocie informatyki. Algorytmika, WNT

Bardziej szczegółowo

Zaliczenie. Egzamin. lub. Wykład. Zaliczenie. Ćwiczenie. 3 zadania. Projekty. Ocena. Na ocenę

Zaliczenie. Egzamin. lub. Wykład. Zaliczenie. Ćwiczenie. 3 zadania. Projekty. Ocena. Na ocenę Zaliczenie Egzamin Ocena lub Zerówka Wykład z Zaliczenie Ocena Ćwiczenie Projekty 3 zadania Na ocenę Sylabus O http://wmii.uwm.edu.pl/~jakula/sylabus_23 17N1-ALISTD_PL.pdf JAK? CO? ILE? Polecane Cormen

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015 2019 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

Wykład 8. Rekurencja. Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. L. Peter Deutsch

Wykład 8. Rekurencja. Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. L. Peter Deutsch Wykład 8 Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. Smok podsuszony zmok (patrz: Zmok). Zmok zmoczony smok (patrz: Smok). L. Peter Deutsch Stanisław Lem Wizja lokalna J. Cichoń, P. Kobylański

Bardziej szczegółowo

INFORMATYKA SORTOWANIE DANYCH.

INFORMATYKA SORTOWANIE DANYCH. INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016 2020 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 3a: Złożoność obliczeniowa algorytmów http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Złożoność obliczeniowa i asymptotyczna

Bardziej szczegółowo

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w

Bardziej szczegółowo

Liczby pierwsze - wstęp

Liczby pierwsze - wstęp Artykuł pobrano ze strony eioba.pl Liczby pierwsze - wstęp W latach 60 ubiegłego wieku w Afryce znaleziono kości z wyrytymi na nich karbami liczące ponad 5000 lat. Na jednej z nich (kość z Ishango) karby

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

Algorytmy sortujące i wyszukujące

Algorytmy sortujące i wyszukujące Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.

Bardziej szczegółowo

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 9 Rekurencja

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 9 Rekurencja Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 9 Rekurencja Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Przykład:

Bardziej szczegółowo

Algorytmy komputerowe. dr inż. Jarosław Forenc

Algorytmy komputerowe. dr inż. Jarosław Forenc Rok akademicki 2010/2011, Wykład nr 9/10 2/38 Plan wykładu nr 9/10 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca

Bardziej szczegółowo

3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki.

3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 1. Podaj definicję informatyki. 2. W jaki sposób można definiować informatykę? 3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 4. Co to jest algorytm? 5. Podaj neumanowską architekturę

Bardziej szczegółowo

Algorytmy w teorii liczb

Algorytmy w teorii liczb Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,

Bardziej szczegółowo

Sortowanie danych. Jolanta Bachan. Podstawy programowania

Sortowanie danych. Jolanta Bachan. Podstawy programowania Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ i KOMPUTEROWEJ Katedra Automatyki i Technik Informacyjnych Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew

Bardziej szczegółowo

Rekurencja. Przygotowała: Agnieszka Reiter

Rekurencja. Przygotowała: Agnieszka Reiter Rekurencja Przygotowała: Agnieszka Reiter Definicja Charakterystyczną cechą funkcji (procedury) rekurencyjnej jest to, że wywołuje ona samą siebie. Drugą cechą rekursji jest jej dziedzina, którą mogą być

Bardziej szczegółowo

Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s].

Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s]. Zadanie 1. Wiązka zadań Od szczegółu do ogółu Rozważmy następujący algorytm: Dane: Algorytm 1: k liczba naturalna, A[1...2 k ] tablica liczb całkowitych. n 1 dla i=1,2,,k wykonuj n 2n s 1 dopóki s

Bardziej szczegółowo

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n

Bardziej szczegółowo

Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p.

Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p. Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 13 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Złożoność algorytmów czy to istotne, skoro

Bardziej szczegółowo

Zadania obliczeniowe, algorytmy i złożoność obliczeniowa

Zadania obliczeniowe, algorytmy i złożoność obliczeniowa Dr inż. Jerzy Mieścicki Instytut Informatyki PW Zadania obliczeniowe, algorytmy i złożoność obliczeniowa Wstęp do Informatyki, część 2 Przeszukiwanie listy nieuporządkowanej Zapisy (records), umieszczone

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu

Bardziej szczegółowo

Podstawowe algorytmy i ich implementacje w C. Wykład 9

Podstawowe algorytmy i ich implementacje w C. Wykład 9 Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny

Bardziej szczegółowo

Algorytmy i struktury danych Matematyka III sem.

Algorytmy i struktury danych Matematyka III sem. Algorytmy i struktury danych Matematyka III sem. 30 godz. wykł. / 15 godz. ćw. / 15 godz. projekt dr inŝ. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura T.H. Cormen i inni, Wprowadzenie

Bardziej szczegółowo

Rozkład materiału do realizacji informatyki w szkole ponadgimnazjalnej w zakresie rozszerzonym

Rozkład materiału do realizacji informatyki w szkole ponadgimnazjalnej w zakresie rozszerzonym Rozkład materiału do realizacji informatyki w szkole ponadgimnazjalnej w zakresie rozszerzonym opracowany na podstawie podręcznika, MIGRA 2013 Autor: Grażyna Koba W rozporządzeniu Ministra Edukacji Narodowej

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 5 część I 2 Iteracja Rekurencja Indukcja Iteracja Rekurencja Indukcja Algorytmy sortujące Rozwiazywanie

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze.

Struktura danych. Sposób uporządkowania informacji w komputerze. Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy PODSTAWY INFORMATYKI Fundamentals of computer science

Bardziej szczegółowo

Sortowanie w czasie liniowym

Sortowanie w czasie liniowym Sortowanie w czasie liniowym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n Po co sortować? Podstawowy problem

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Treści programowe. Złożoność obliczeniowa algorytmu na przykładach. dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 9: Programowanie

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy

Bardziej szczegółowo

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne

Bardziej szczegółowo

Strategia "dziel i zwyciężaj"

Strategia dziel i zwyciężaj Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania

Bardziej szczegółowo

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu.

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu. Wymagania edukacyjne z informatyki poziom rozszerzony w klasie 2 Społecznego Liceum Ogólnokształcącego Splot im. Jana Karskiego w Nowym Sączu 1. Algorytmika TREŚCI NAUCZANIA WPROWADZENIE DO ALGORYTMIKI

Bardziej szczegółowo

Projektowanie i analiza algorytmów

Projektowanie i analiza algorytmów POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład

Bardziej szczegółowo

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:

Bardziej szczegółowo

Zaawansowane algorytmy. Wojciech Horzelski

Zaawansowane algorytmy. Wojciech Horzelski Zaawansowane algorytmy Wojciech Horzelski 1 Organizacja Wykład: poniedziałek 8 15-10 Aula Ćwiczenia: Każdy student musi realizować projekty (treść podawana na wykładzie) : Ilość projektów : 5-7 Na realizację

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Złożoność obliczeniowa, efektywność i algorytmy sortowania

WSTĘP DO INFORMATYKI. Złożoność obliczeniowa, efektywność i algorytmy sortowania Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Złożoność obliczeniowa, efektywność i algorytmy sortowania www.agh.edu.pl

Bardziej szczegółowo

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Programowanie od pierwszoklasisty do maturzysty. Grażyna Koba

Programowanie od pierwszoklasisty do maturzysty. Grażyna Koba Programowanie od pierwszoklasisty do maturzysty Grażyna Koba Krąg trzydziestolecia nauki programowania C++, Java Scratch, Baltie, Logo, Python? 2017? Informatyka SP, GIMN, PG 1987 Elementy informatyki

Bardziej szczegółowo

Podyplomowe Studium Programowania i Systemów Baz Danych

Podyplomowe Studium Programowania i Systemów Baz Danych Podyplomowe Studium Programowania i Systemów Baz Danych Algorytmy, struktury danych i techniki programowania 15 godz. wykładu / 15 godz. laboratorium dr inż. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 3: Wprowadzenie do algorytmów i ich

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Raport z projektu. Przedmiot: Algorytmy i struktury danych 1 Projekt: Wieża Hanoi Autor: Wojciech Topolski

Raport z projektu. Przedmiot: Algorytmy i struktury danych 1 Projekt: Wieża Hanoi Autor: Wojciech Topolski Raport z projektu Przedmiot: Algorytmy i struktury danych 1 Projekt: Wieża Hanoi Autor: Wojciech Topolski Problem wieży Hanoi W wielkiej świątyni Benares w Hanoi, pod kopułą, która zaznacza środek świata,

Bardziej szczegółowo

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność

Bardziej szczegółowo

Wykład 5. Sortowanie w czasie liniowologarytmicznym

Wykład 5. Sortowanie w czasie liniowologarytmicznym Wykład 5 Sortowanie w czasie liniowologarytmicznym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n 2 Zestawienie

Bardziej szczegółowo

Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 1. Karol Tarnowski A-1 p.

Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 1. Karol Tarnowski A-1 p. Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 1 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan wykładów (1) Algorytmy i programy Proste typy danych Rozgałęzienia

Bardziej szczegółowo

O rekurencji i nie tylko

O rekurencji i nie tylko O rekurencji i nie tylko dr Krzysztof Bryś Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska 10 grudnia 2011 Intuicyjnie: rekurencja sprowadzenie rozwiązania danego problemu do rozwiązania

Bardziej szczegółowo

Algorytmy komputerowe. dr inŝ. Jarosław Forenc

Algorytmy komputerowe. dr inŝ. Jarosław Forenc Rok akademicki 2009/2010, Wykład nr 8 2/24 Plan wykładu nr 8 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2009/2010

Bardziej szczegółowo

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/ STL, czyli o co tyle hałasu W świecie programowania C++, hasło STL pojawia się nieustannie i zawsze jest o nim głośno... często początkujące osoby, które nie znają STL-a pytają się co to jest i czemu go

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Algorytmy. wer Wojciech Myszka 30 listopada 2008

Algorytmy. wer Wojciech Myszka 30 listopada 2008 Algorytmy Część IV wer. 1.2 Wojciech Myszka 30 listopada 2008 Spis treści I Spis treści Jak się tworzy algorytmy? Poszukiwania i wędrówki Dziel i zwyciężaj Rekurencja Definicje Przykład Schemat blokowy

Bardziej szczegółowo

zajęcia 3. Marcin Andrychowicz, Tomasz Kulczyński,

zajęcia 3. Marcin Andrychowicz, Tomasz Kulczyński, zajęcia 3. Marcin Andrychowicz, Tomasz Kulczyński, Błażej Osiński Dane Metoda pozwalajaca sortować w czasie liniowym Ciag liczb z zakresu O, 1,..., M 5, 1, 4, 5, 1, 0, 4, 5, 1, 3, 5 Zliczamy wystapienia

Bardziej szczegółowo

Algorytmy i Struktury Danych, 2. ćwiczenia

Algorytmy i Struktury Danych, 2. ćwiczenia Algorytmy i Struktury Danych, 2. ćwiczenia 2015-10-09 Spis treści 1 Szybkie potęgowanie 1 2 Liczby Fibonacciego 2 3 Dowód, że n 1 porównań jest potrzebne do znajdowania minimum 2 4 Optymalny algorytm do

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algorytmy i Struktury Danych Nazwa w języku angielskim : Algorithms adn Data Structures Kierunek studiów

Bardziej szczegółowo

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny

Bardziej szczegółowo

12. Rekurencja. UWAGA Trzeba bardzo dokładnie ustalić <warunek>, żeby mieć pewność, że ciąg wywołań się zakończy.

12. Rekurencja. UWAGA Trzeba bardzo dokładnie ustalić <warunek>, żeby mieć pewność, że ciąg wywołań się zakończy. 12. Rekurencja. Funkcja rekurencyjna funkcja, która wywołuje samą siebie. Naturalne postępowanie: np. zbierając rozsypane pionki do gry podnosi się zwykle pierwszy, a potem zbiera się resztę w ten sam

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA INFORMATYKA.

PRZEDMIOTOWY SYSTEM OCENIANIA INFORMATYKA. PRZEDMIOTOWY SYSTEM OCENIANIA INFORMATYKA. KLASA 3e I. Główne założenia PSO Ocenianie uczniów na lekcjach informatyki: spełnia założenia wewnątrzszkolnego systemu oceniania; powinno być systematyczne;

Bardziej szczegółowo

Efektywna metoda sortowania sortowanie przez scalanie

Efektywna metoda sortowania sortowanie przez scalanie Efektywna metoda sortowania sortowanie przez scalanie Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Metoda dziel i zwycięŝaj Dzielimy

Bardziej szczegółowo

Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony

Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony I. Cele kształcenia wymagania ogólne 1. Bezpieczne posługiwanie się komputerem i jego

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający

Bardziej szczegółowo

Informatyka 1. Złożoność obliczeniowa

Informatyka 1. Złożoność obliczeniowa Informatyka 1 Wykład XI Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo