Zaliczenie. Egzamin. lub. Wykład. Zaliczenie. Ćwiczenie. 3 zadania. Projekty. Ocena. Na ocenę

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zaliczenie. Egzamin. lub. Wykład. Zaliczenie. Ćwiczenie. 3 zadania. Projekty. Ocena. Na ocenę"

Transkrypt

1

2 Zaliczenie Egzamin Ocena lub Zerówka Wykład z Zaliczenie Ocena Ćwiczenie Projekty 3 zadania Na ocenę

3 Sylabus O 17N1-ALISTD_PL.pdf JAK? CO? ILE?

4 Polecane Cormen Thomas; Leiserson Charles; Rivest Ronald; Stein Clifford, Wprowadzenie do Algorytmów, Wydawnictwo WNT, 2007, lub Wydawnictwo Naukowe PWN, Warszawa 2012

5 Polecane Wróblewski Piotr, Algorytmy, Struktury Danych i Techniki Programowania, Wydawnictwo Helion, Gliwice 2010

6 Polecane Sedgewick Robert, Algorytmy w C++, Wydawnictwo RM, Warszawa 1999, Drozdek Adam, C++. Algorytmy i Struktury Danych, Wydawnictwo Helion, Gliwice 2004,

7 Internet Analiza złożoności Priceton University, Course on algorithms, PL/edu/submissions/SedgewickWayne/index.html, (po angielsku) Algorytmy wytłumaczenie, schematy blokowe, kody źródłowe. (po polsku)

8 Co się kryje w nazwie przedmiotu? V ALGORYTM sposób rozwiązania pewnego zagadnienia, który można zrealizować za pomocą dowolnego języka programowania i na dowolnym komputerze STRUKTURY DANYCH obiekty, które powstają w wyniku zastosowania algorytmu do organizacji danych biorących udział w obliczeniach

9

10 Rekurencja O wywołanie kilkakrotne pewnej procedury, która odwołuje się do samej siebie Funkcja rekurencyjna odwołuje się do

11 Przykład Potęga x n 1 x x n 1 gdy gdy n n 0 0

12 Rodzaje rekurencji Rekurencja ogonowa pośrednia zagnieżdżona

13 Rekurencja ogonowa Przykład

14 Rekurencja pośrednia Przykład Funkcja _1 Funkcja _2 Funkcja _n Funkcja _1

15 Rekurencja zagnieżdżona Przykład h( n) 0 n h(2 gdy gdy h(2n)) gdy n 0 n 4 n 4

16 Złożoność obliczeniowa To szacowanie efektywności porównywanych algorytmów, wykonujących to samo zadanie lecz innymi metodami

17 Liczba operac ji na sek. Ile czasu zajmie rozwiązanie niektórych problemów Zadanie o rozmiarze 1 miliona Zadanie o rozmiarze 1 miliarda n nlgn n 2 n nlgn n sekundy sekundy tygodni e godziny godziny nigdy 10 9 natychmias t natychmias t godziny sekundy sekundy dziesiąt ki lat natychmias t natychmias t sekund y natychmias t natychmias t tygodni e Źródło: R. Sedgewick, Algorytmy w C++, wyd. I., Wydawnictwo RM, Warszawa 1999, s. 38

18 Szacowanie złożoności Przykład 1 Operacja Krotność deklaracja zmiennej 2 Instrukcja przypisania 2 Porównanie < n+1 Porównanie == n Dostęp do tablicy n inkrementacja 2n (pomiędzy n brak zer a 2n wszystkie są zera

19 Szacowanie złożoności Przykład 2 Operacja deklaracja zmiennej n+2 Instrukcja przypisania n+2 Porównanie < Porównanie == krotność ½(n+1)(n+2) ½n(n-1) (korzystamy ze wzoru na sumę szeregu liczb naturalnych od 1 do n) Dostęp do tablicy n(n-1) inkrementacja n 2

20 ~ Notacja tylda przykład 2 Operacja notacja tylda koszt Całkowity koszt deklaracja ~n t 1 ~t 1 n zmiennej Instrukcja przypisania ~n t 2 ~t 2 n Porównanie < ~1/2 n 2 t 3 ~t 3 n 2 Porównanie ~1/2 n 2 == Dostęp do ~ n 2 t 4 ~t 4 n 2 tablicy inkrementacja n 2 t 5 t 5 n 2 ostatecznie ~c n 2

21 ~ Notacja tylda jak szacujemy O oszacuj czas działania (albo pamięci) jako funkcję, która przyjmuje dane wejściowe o rozmiarze n, O zignoruj wyrazy o mniejszej ważności: O gdy n jest duże, wyrazy są nieistotne, O gdy n jest małe, nie bierzemy ich pod uwagę

22 Notacje asymptotyczne O Notacja Θ O Notacja O O Notacja Ω

23 Θ Notacja Θ c 2 g(n) f(n) c 1 g(n) O Dla danej funkcji g(n) oznaczamy przez Θ (g(n)) zbiór funkcji O Θ(g(n))={f(n): istnieją dodatnie stałe c 1, c 2 i n 0 takie, że n 0 n 0 c 1 g(n) f(n) c 2 g(n) dla wszystkich n n 0 }

24 O Notacja O cg(n) f(n) O Dla danej funkcji g(n) oznaczamy przez O (g(n)) zbiór funkcji O(g(n))={f(n): istnieją dodatnie stałe c i n0 takie, że 0 f(n) cg(n) dla wszystkich n n0} n 0 n

25 Notacja Ω f(n) cg(n) O Dla danej funkcji g(n) oznaczamy przez Ω (g(n)) zbiór funkcji O Ω (g(n))={f(n): istnieją dodatnie stałe c i n0 takie, że 0 cg(n) f(n) dla wszystkich n n0} n 0 n

26 Twierdzenie O Dla każdych dwóch funkcji f(n) i g(n) zachodzi zależność f(n)= Θ(g(n)) wtedy i tylko wtedy gdy f(n)=o(g(n)) i f(n)= Ω(g(n)).

27 Notacja o i ω Notacja o Dla danej funkcji g(n) oznaczamy przez o (g(n)) zbiór funkcji o(g(n))={f(n): dla każdej dodatniej stałej c istnieje stała n 0 >0 taka, że 0 f(n)<cg(n) dla wszystkich n n 0 } Notacja ω Dla danej funkcji g(n) oznaczamy przez ω (g(n)) zbiór funkcji ω (g(n))={f(n): dla każdej dodatniej stałej c>0 istnieje stała n 0 >0 taka, że 0 cg(n) <f(n) dla wszystkich n n 0 }

28 Notacja - podsumowanie

29 Bibliografia Cormen Thomas; Leiserson Charles; Rivest Ronald; Stein Clifford, Wprowadzenie do Algorytmów, Wydawnictwo Naukowe PWN, Warszawa 2012 Sedgewick Robert, Algorytmy w C++, Wydawnictwo RM, Warszawa 1999, Drozdek Adam, C++. Algorytmy i Struktury Danych, Wydawnictwo Helion, Gliwice 2004, Wróblewski Piotr, Algorytmy, Struktury Danych i Techniki Programowania, Wydawnictwo Helion, Gliwice 2010, Priceton University, Course on algorithms, PL/edu/submissions/SedgewickWayne/index.html,

Podstawy Informatyki. Sprawność algorytmów

Podstawy Informatyki. Sprawność algorytmów Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych

Bardziej szczegółowo

Sortowanie przez wstawianie

Sortowanie przez wstawianie Sortowanie przez wstawianie Wykład 1 26 lutego 2019 (Wykład 1) Sortowanie przez wstawianie 26 lutego 2019 1 / 25 Outline 1 Literatura 2 Algorytm 3 Problem sortowania Pseudokod 4 Sortowanie przez wstawianie

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie

Bardziej szczegółowo

Krzysztof Gniłka. Twierdzenie o rekurencji uniwersalnej

Krzysztof Gniłka. Twierdzenie o rekurencji uniwersalnej Krzysztof Gniłka Twierdzenie o rekurencji uniwersalnej Spis treści Wstęp 3 Rozdział 1 Definicje i pomocnicze lematy 4 1 Części całkowite liczb 4 2 Logarytmy 9 3 Notacja asymptotyczna 12 Rozdział 2 Metoda

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury

Bardziej szczegółowo

Wprowadzenie do złożoności obliczeniowej

Wprowadzenie do złożoności obliczeniowej problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Podstawowe informacje Prowadzący: Jan Tuziemski Email: jan.tuziemski@pg.edu.pl Konsultacje: pokój 412 GB (do ustalenia 412 GB) Podstawowe informacje literatura K. Goczyła Struktury

Bardziej szczegółowo

Listy, kolejki, stosy

Listy, kolejki, stosy Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:

Bardziej szczegółowo

Algorytmy zachłanne. dr inż. Urszula Gałązka

Algorytmy zachłanne. dr inż. Urszula Gałązka Algorytmy zachłanne dr inż. Urszula Gałązka Algorytm zachłanny O Dokonuje wyboru, który w danej chwili wydaje się najkorzystniejszy. O Mówimy, że jest to wybór lokalnie optymalny O W rzeczywistości nie

Bardziej szczegółowo

koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013

koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013 Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Informatyka A (03-MO1S-12-InfoA) 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

KARTA KURSU. Algorytmy, struktury danych i techniki programowania. Algorithms, Data Structures and Programming Techniques

KARTA KURSU. Algorytmy, struktury danych i techniki programowania. Algorithms, Data Structures and Programming Techniques KARTA KURSU Nazwa Nazwa w j. ang. Algorytmy, struktury danych i techniki programowania Algorithms, Data Structures and Programming Techniques Kod Punktacja ECTS* 3 Koordynator dr Paweł Pasteczka Zespół

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 3 2 Złożoność obliczeniowa algorytmów Notacja wielkie 0 Notacja Ω i Θ Algorytm Hornera Przykłady rzędów

Bardziej szczegółowo

Wykład 2. Poprawność algorytmów

Wykład 2. Poprawność algorytmów Wykład 2 Poprawność algorytmów 1 Przegląd Ø Poprawność algorytmów Ø Podstawy matematyczne: Przyrost funkcji i notacje asymptotyczne Sumowanie szeregów Indukcja matematyczna 2 Poprawność algorytmów Ø Algorytm

Bardziej szczegółowo

Sortowanie - wybrane algorytmy

Sortowanie - wybrane algorytmy Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 3a: Złożoność obliczeniowa algorytmów http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Złożoność obliczeniowa i asymptotyczna

Bardziej szczegółowo

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015 2019 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Efektywność algorytmów

Efektywność algorytmów Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów

Bardziej szczegółowo

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016 2020 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Zaawansowane algorytmy. Wojciech Horzelski

Zaawansowane algorytmy. Wojciech Horzelski Zaawansowane algorytmy Wojciech Horzelski 1 Organizacja Wykład: poniedziałek 8 15-10 Aula Ćwiczenia: Każdy student musi realizować projekty (treść podawana na wykładzie) : Ilość projektów : 5-7 Na realizację

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 2/14 Funkcji podłogi z logarytmu można użyć do wyliczenia liczby cyfr liczby naturalnej k (k>0): w układzie dziesiętnym log 10 (k)

Bardziej szczegółowo

Sprawozdanie do zadania numer 2

Sprawozdanie do zadania numer 2 Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach

Bardziej szczegółowo

i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) =

i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) = Druga zasada inducji matematycznej Niech m będzie liczbą całowitą, niech p(n) będzie ciągiem zdań zdefiniowanych na zbiorze {n Z: n m} oraz niech l będzie nieujemną liczbą całowitą. Jeśli (P) wszystie

Bardziej szczegółowo

Algorytmy sortujące. Sortowanie bąbelkowe

Algorytmy sortujące. Sortowanie bąbelkowe Algorytmy sortujące Sortowanie bąbelkowe Sortowanie bąbelkowe - wstęp Algorytm sortowania bąbelkowego jest jednym z najstarszych algorytmów sortujących. Zasada działania opiera się na cyklicznym porównywaniu

Bardziej szczegółowo

Zasady analizy algorytmów

Zasady analizy algorytmów Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania

Bardziej szczegółowo

PODSTAWY PROGRAMOWANIA STRUKTURALNEGO (C) SYLABUS A. Informacje ogólne

PODSTAWY PROGRAMOWANIA STRUKTURALNEGO (C) SYLABUS A. Informacje ogólne PODSTAWY PROGRAMOWANIA STRUKTURALNEGO (C) SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

Wykład 1 Wprowadzenie do algorytmów. Zawartość wykładu 1. Wstęp do algorytmów i struktur danych 2. Algorytmy z rozgałęzieniami.

Wykład 1 Wprowadzenie do algorytmów. Zawartość wykładu 1. Wstęp do algorytmów i struktur danych 2. Algorytmy z rozgałęzieniami. Wykład 1 Wprowadzenie do algorytmów Zawartość wykładu 1. Wstęp do algorytmów i struktur danych 2. Algorytmy z rozgałęzieniami Wykaz literatury 1. N. Wirth - Algorytmy+Struktury Danych = Programy, WNT Warszawa

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Algorytmy i programowanie Algorithms and Programming Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: kierunkowy Poziom studiów: studia I stopnia forma studiów: studia

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Informatyka (03-MO1N-12-Info) 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

Projektowanie i Analiza Algorytmów

Projektowanie i Analiza Algorytmów POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Projektowanie i Analiza Algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład

Bardziej szczegółowo

Podstawy programowania. Wykład: 13. Rekurencja. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD

Podstawy programowania. Wykład: 13. Rekurencja. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD Podstawy programowania Wykład: 13 Rekurencja 1 dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD Podstawy programowania Rekurencja - pojęcie 2 Rekurencja - pojęcie Rekurencja (rekursja) wywołanie

Bardziej szczegółowo

Rekurencja. Matematyka dyskretna

Rekurencja. Matematyka dyskretna Rekurencja Matematyka dyskretna Rekurencja Definicja rekurencyjna (indukcyjna) nieformalnie: taka definicja, która odwołuje się do samej siebie, ale trzeba tu uważać, by odwołanie było do instancji o mniejszej

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Kierunek: INFORMATYKA Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW. Tryb studiów: NIESTACJONARNE PIERWSZEGO STOPNIA

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Treści programowe. Złożoność obliczeniowa algorytmu na przykładach. dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak

Bardziej szczegółowo

Algorytmy sortujące. sortowanie kubełkowe, sortowanie grzebieniowe

Algorytmy sortujące. sortowanie kubełkowe, sortowanie grzebieniowe Algorytmy sortujące sortowanie kubełkowe, sortowanie grzebieniowe Sortowanie kubełkowe (bucket sort) Jest to jeden z najbardziej popularnych algorytmów sortowania. Został wynaleziony w 1956 r. przez E.J.

Bardziej szczegółowo

Haszowanie. dr inż. Urszula Gałązka

Haszowanie. dr inż. Urszula Gałązka Haszowanie dr inż. Urszula Gałązka Problem Potrzebujemy struktury do Wstawiania usuwania wyszukiwania Liczb, napisów, rekordów w Bazach danych, sieciach komputerowych, innych Rozwiązanie Tablice z haszowaniem

Bardziej szczegółowo

Algorytm - pojęcie algorytmu, sposób zapisu, poziom szczegółowości, czynności proste i strukturalne. Pojęcie procedury i funkcji.

Algorytm - pojęcie algorytmu, sposób zapisu, poziom szczegółowości, czynności proste i strukturalne. Pojęcie procedury i funkcji. Algorytm - pojęcie algorytmu, sposób zapisu, poziom szczegółowości, czynności proste i strukturalne. Pojęcie procedury i funkcji. Maria Górska 9 stycznia 2010 1 Spis treści 1 Pojęcie algorytmu 3 2 Sposób

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy PODSTAWY INFORMATYKI Fundamentals of computer science

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algorytmy i Struktury Danych Nazwa w języku angielskim : Algorithms adn Data Structures Kierunek studiów

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z zagadnień dotyczących analizy i syntezy algorytmów z uwzględnieniem efektywności

Bardziej szczegółowo

Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)

Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2018/2019 (semestr zimowy) Spis

Bardziej szczegółowo

Algorytmy i struktury danych Matematyka III sem.

Algorytmy i struktury danych Matematyka III sem. Algorytmy i struktury danych Matematyka III sem. 30 godz. wykł. / 15 godz. ćw. / 15 godz. projekt dr inŝ. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura T.H. Cormen i inni, Wprowadzenie

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 01/013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Podstawy Programowania 1 Nazwa modułu w języku angielskim Introduction to

Bardziej szczegółowo

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /

Bardziej szczegółowo

Grafy i sieci w informatyce - opis przedmiotu

Grafy i sieci w informatyce - opis przedmiotu Grafy i sieci w informatyce - opis przedmiotu Informacje ogólne Nazwa przedmiotu Grafy i sieci w informatyce Kod przedmiotu 11.9-WI-INFD-GiSwI Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel.

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel. WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk 01-447 Warszawa, ul. Newelska 6, tel. 22 3486544 Wydział Informatyki Kierunek studiów Profil Stopień studiów Forma

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona

Bardziej szczegółowo

Złożoność Obliczeniowa Algorytmów

Złożoność Obliczeniowa Algorytmów Algorytmów Pożądane cechy dobrego algorytmu Dobry algorytm mający rozwiązywać jakiś problem powinien mieć 2 naturalne cechy: 1 (poprawność) zwracać prawidłowy wynik (dokładniej: zgodność z warunkiem końcowym

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Kod przedmiotu: ASD Rodzaj przedmiotu: Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Algorytmy i struktury danych. kierunkowy ; obowiązkowy Poziom studiów: pierwszego stopnia

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Formalne podstawy informatyki Rok akademicki: 2013/2014 Kod: EIB-1-220-s Punkty ECTS: 2 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna

Bardziej szczegółowo

KARTA KURSU. Wstęp do programowania

KARTA KURSU. Wstęp do programowania KARTA KURSU Nazwa Nazwa w j. ang. Wstęp do programowania Introduction to Programming Kod Punktacja ECTS* 6 Koordynator dr inż. Magdalena Andrzejewska Zespół dydaktyczny: dr inż. Magdalena Andrzejewska

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Struktury danych i algorytmy. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Struktury danych i algorytmy. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Struktury danych i algorytmy 2. KIERUNEK: Matematyka 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 6 6. LICZBA GODZIN: 30 wykład

Bardziej szczegółowo

Kierunek: Informatyka. Przedmiot:

Kierunek: Informatyka. Przedmiot: Kierunek: Informatyka Przedmiot: ALGORYTMY I Z LOŻONOŚĆ Czas trwania: Przedmiot: Jezyk wyk ladowy: semestr III obowiazkowy polski Rodzaj zaj eć Wyk lad Laboratorium Prowadzacy Prof. dr hab. Wojciech Penczek

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI. 10 maja 2017 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I

EGZAMIN MATURALNY Z INFORMATYKI. 10 maja 2017 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Podstawy Programowania 1 Nazwa modułu w języku angielskim Introduction to

Bardziej szczegółowo

Podyplomowe Studium Informatyki

Podyplomowe Studium Informatyki Podyplomowe Studium Informatyki Wstęp do informatyki 30 godz. wykładu dr inż. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura D. Harel, Rzecz o istocie informatyki. Algorytmika, WNT

Bardziej szczegółowo

Metodyki i techniki programowania

Metodyki i techniki programowania Metodyki i techniki programowania dr inż. Maciej Kusy Katedra Podstaw Elektroniki Wydział Elektrotechniki i Informatyki Politechnika Rzeszowska Elektronika i Telekomunikacja, sem. 2 Plan wykładu Sprawy

Bardziej szczegółowo

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa.

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa. INFORMATYKA Zajęcia organizacyjne Arytmetyka komputerowa http://www.infoceram.agh.edu.pl http://home.agh.edu.pl/~grzesik/ KONSULTACJE Zbigniew Grzesik środa, 9 ; A-3, p. 2 tel.: 67-249 e-mail: grzesik@agh.edu.pl

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

Podstawy programowania.

Podstawy programowania. Kod przedmiotu: PPR Podstawy programowania. Rodzaj przedmiotu: kierunkowy; obowiązkowy Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Poziom studiów: pierwszego stopnia Profil

Bardziej szczegółowo

Podstawy programowania strukturalnego (C) SYLABUS A. Informacje ogólne

Podstawy programowania strukturalnego (C) SYLABUS A. Informacje ogólne Podstawy programowania strukturalnego (C) SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2

Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2 Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: ALGORYTMY I STRUKTURY DANYCH 2 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ i KOMPUTEROWEJ Katedra Automatyki i Technik Informacyjnych Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew

Bardziej szczegółowo

Podstawy Programowania

Podstawy Programowania Podstawy Programowania Monika Wrzosek Instytut Matematyki Uniwersytet Gdański Matematyka 2017/18 Monika Wrzosek (IM UG) Podstawy Programowania 1 / 119 Sprawy organizacyjne E-mail: mwrzosek@mat.ug.edu.pl

Bardziej szczegółowo

PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU

PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU OPIS PRZEDMIOTU Nazwa przedmiotu Kod przedmiotu Przetwarzanie równoległe i rozproszone Wydział Wydział Matematyki, Fizyki i Techniki Instytut/Katedra Instytut Mechaniki i Informatyki Stosowanej Kierunek

Bardziej szczegółowo

E-1EZ1-03-s2. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

E-1EZ1-03-s2. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-1EZ1-03-s2 Nazwa modułu Informatyka 2 Nazwa modułu w języku angielskim Computer science 2 Obowiązuje od roku akademickiego 2012/2013 (aktualizacja 2017/2018)

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 2

KARTA KURSU. Kod Punktacja ECTS* 2 KARTA KURSU Nazwa Nazwa w j. ang. Matematyka obliczeniowa Computational Mathematics Kod Punktacja ECTS* 2 Koordynator Dr Zbigniew Leśniak Zespół dydaktyczny: Dr Magdalena Piszczek Opis kursu (cele kształcenia)

Bardziej szczegółowo

NAZWA PRZEDMIOTU/MODUŁU KSZTAŁCENIA:

NAZWA PRZEDMIOTU/MODUŁU KSZTAŁCENIA: NAZWA PRZEDMIOTU/MODUŁU KSZTAŁCENIA: Podstawy programowania Kod przedmiotu: GS_13 Rodzaj przedmiotu: kierunkowy Wydział: Informatyki Kierunek: Grafika Poziom studiów: pierwszego stopnia VI poziom PRK Profil

Bardziej szczegółowo

Złożoność algorytmów. Wstęp do Informatyki

Złożoność algorytmów. Wstęp do Informatyki Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych

Bardziej szczegółowo

Algorytmika w bioinformatyce

Algorytmika w bioinformatyce Algorytmika w bioinformatyce Kurs dla kierunku BIOINFORMATYKA 2016/2017 Prowadzący: Prof. Danuta Makowiec danuta.makowiec@gmail.com IFTiA, pok. 353, tel.: 58 523 2466 Motywacja 2 Cztery etapy rekonstrukcji

Bardziej szczegółowo

Rok akademicki: 2018/2019 Kod: ITE s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2018/2019 Kod: ITE s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Algorytmy i struktury danych Rok akademicki: 2018/2019 Kod: ITE-1-201-s Punkty ECTS: 3 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Teleinformatyka Specjalność: Poziom studiów:

Bardziej szczegółowo

Algorytmy i złożoność obliczeniowa. Wojciech Horzelski

Algorytmy i złożoność obliczeniowa. Wojciech Horzelski Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury

Bardziej szczegółowo

Algorytmy przeszukiwania wzorca

Algorytmy przeszukiwania wzorca Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Algorytmy przeszukiwania wzorca 1 Wstęp Algorytmy

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

E-2IZ1-03-s3. Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

E-2IZ1-03-s3. Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu E-2IZ1-03-s3 Nazwa modułu Podstawy programowania 2 Nazwa modułu w języku angielskim Basics

Bardziej szczegółowo

Algorytmika w bioinformatyce

Algorytmika w bioinformatyce Algorytmika w bioinformatyce Kurs dla kierunku BIOINFORMATYKA 2017/2018 Prowadzący: Prof. Danuta Makowiec danuta.makowiec@gmail.com IFTiA, pok. 353, tel.: 58 523 2466 Motywacja 2 Cztery etapy rekonstrukcji

Bardziej szczegółowo

Podstawy Informatyki Information Technology. Inżynieria Środowiska I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny)

Podstawy Informatyki Information Technology. Inżynieria Środowiska I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego Podstawy

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Podstawy Programowania 2 Nazwa modułu w języku angielskim Introduction to

Bardziej szczegółowo

Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Podstawy Informatyki Nazwa modułu w języku angielskim The fundamentals of

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Mariusz Różycki University of Cambridge Zajęcia będą mieć formę wykładową. Slajdy można znaleźć na stronie kursu: http://lw.mi.edu.pl/informatyka/algorytmy.

Bardziej szczegółowo

Podstawy Programowania. Złożoność obliczeniowa

Podstawy Programowania. Złożoność obliczeniowa Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 2

KARTA KURSU. Kod Punktacja ECTS* 2 KARTA KURSU Nazwa Nazwa w j. ang. Matematyka obliczeniowa Computational Mathematics Kod Punktacja ECTS* 2 Koordynator dr Zbigniew Leśniak Zespół dydaktyczny: dr Magdalena Piszczek Opis kursu (cele kształcenia)

Bardziej szczegółowo

Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Niestacjonarne (stacjonarne / niestacjonarne)

Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Niestacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Informatyka 2 Nazwa modułu w języku angielskim Computer science 2 Obowiązuje

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY ARKUSZ I STYCZEŃ 2014 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron (zadania 1 3). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

Informatyka 1. Złożoność obliczeniowa

Informatyka 1. Złożoność obliczeniowa Informatyka 1 Wykład XI Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności

Bardziej szczegółowo

Przykładowe sprawozdanie. Jan Pustelnik

Przykładowe sprawozdanie. Jan Pustelnik Przykładowe sprawozdanie Jan Pustelnik 30 marca 2007 Rozdział 1 Sformułowanie problemu Tematem pracy jest porównanie wydajności trzech tradycyjnych metod sortowania: InsertionSort, SelectionSort i BubbleSort.

Bardziej szczegółowo

Instytut Ekonomiczny 9 kierunek studiów

Instytut Ekonomiczny 9 kierunek studiów Kod przedmiotu: PLPILA02-IEEKO-L-2s1-2012IWBIAS Pozycja planu: D1 INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Algorytmy i struktury 2 Rodzaj przedmiotu Specjalnościowy /Obowiązkowy 3

Bardziej szczegółowo

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny

Bardziej szczegółowo