Fizyka Materii Skondensowanej.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka Materii Skondensowanej."

Transkrypt

1 Fizyka Materii Skondensowanej Uniwersytet Warszawski 0

2 GryPlan 4.0 Mechanika kwantowa. Stany. Studnia kwantowa, Stany atomu wodoru. Symetrie stanów..0 Pole magnetyczne, sprzężenie spin orbita, J, L, S 8.0 Dipolowe przejścia optyczne. Reguły wyboru, czas życia 5.0 Lasery współczynniki Einsteina 8. Optyka powtórzenie, klasyczny współczynnik załamania 4. PONIEDZIAŁEK RANO - KOLOKWIUM 5. Wiązania chemiczne i cząsteczki, hybrydyzacje. Przejścia optyczne w cząsteczkach, widma oscylacyjno-rotacyjne 9. Ciało stałe, kryształy, krystalografia, sieci Bravais 6. Pasma, tw. Blocha, masa efektywna, przybliżenie kp 3. KOLOKWIUM 0. Elektrony i dziury cz. 3.0 Elektrony i dziury cz. Nanotechnologia 0.0 Urządzenia półprzewodnikowe. Diody, tranzystory, komputery 7.0 Fizyka subatomowa

3 Egzamin 3 styczeń 0 (wtorek) Zasady zaliczania: kolokwia (po 3 zadania) x30p = 60p Testy z wykładu ( pytania, 0 testów) 0p Prace domowe (5 serii 3 zadania) 0p Zaliczenie ćwiczeń 40p / 90p Egzamin (4 zadania) 40p Należy uzyskać min. 50p / 30p żeby odpowiadać Ćwiczenia są obowiązkowe dr Konrad Dziatkowski

4 Wyprowadzenie prawa Plancka. Lasery. S. Harris

5 Rachunek zaburzeń z czasem Szczególne rozwiązania równania Schrödingera Potencjał niezależny od czasu H 0 = ħ m x +U(x) ψ x, t = AA(x)e iii/ħ Potencjał niezależny od czasu Najprostszy przypadek: H = H 0 + V(t) V(t) = W t 0 dla 0 t τ dla t < 0 i t > τ 0 t t

6 Rachunek zaburzeń z czasem Podstawiamy do równania, bierzemy pod uwagę warunek początkowy (patrz Mechanika kwantowa S.A Dawydov) w mn = A mm τ = τ ħ m W(t) n e+iωmmt 0 Dla przypadku gdy W t = ccccc = W dla 0 t τ łatwo jest policzyć: τ m W(t) n e iωmmt 0 = eiω mmτ iω mm m W n Wtedy prawdopodobieństwo przejścia w czasie działania zaburzenia jest dane przez w mn = A mm τ = ħ m W n cos E τ n E m ħ E n E m ħ Dla τ ħ E n E m τ cos E n E m ħ ττħδ E n E m E n E m ħ

7 τ = τ = τ = 00 τ cos E n E m ħ E n E m ħ

8 Rachunek zaburzeń z czasem Ostatecznie prawdopodobieństwo przejścia w mm = π ħ m W n ττ E m E n Prawdopodobieństwo przejścia jest proporcjonalne do czasu działania zaburzenia, więc prawdopodobieństwo przejścia na jednostkę czasu dane jest przez: P mn = w mm τ = π ħ m W n δ E m E n

9 Rachunek zaburzeń z czasem W przypadku gdy zaburzeniem jest fala periodyczna wracamy do ogólnego wzoru: w nn = A nn τ = τ ħ n W(t) m e+iωnmt 0 dla przypadku gdy W t = w ± e ±iωt dla 0 t τ łatwo jest policzyć: τ n w ± l e i(ωnn±ω)t 0 = ei(ω nn±ω)τ i(ω nn ± ω) n w ± l Prawdopodobieństwo przejścia: w nn = π ħ n w± m ττ E n E m ± ħω Prawdopodobieństwo przejścia na jednostkę czasu dane jest przez: P nn = w nn τ = π ħ n w± m δ E n E m ± ħω

10 Rachunek zaburzeń z czasem Wnioski: W t = w ± e ±iωt 0 t τ P nn = w nn τ = π ħ n w± m δ E n E m ± ħω Przejścia są możliwe tylko do stanów E m = E n ± ħω Układ albo może energię zyskać (zaabsorbować) albo stracić (wyemitować)

11 Fala elektromagnetyczna Zaburzenie w postaci fali elektromagnetycznej. P nn = w nn τ = π ħ n w± m δ E n E m ± ħω Ogólna postać hamiltonianu w polu elektromagnetycznym dana jest przez potencjał wektorowy A i skalarny j : H = m p + ea eφ + V Przyjmując odpowiednie cechowanie j =0, diva=0 oraz zaniedbując wyrazy z A (słabe promieniowanie) H e m A p Potencjał wektorowy dla fali elektromagnetycznej można wprowadzić w postaci: A = A 0 E = φ A e i(ωt kr ) + e i(ωt kr ) E = ωa 0 sin(ωt kr ) B = A B = (k A 0 )sin(ωt kr )

12 Fala elektromagnetyczna Zaburzenie w postaci fali elektromagnetycznej. H e m A p A = A 0 e i(ωt kr ) + e i(ωt kr ) P nn = w nn τ = π ħ n w± m δ E n E m ± ħω rozwijając w szereg p e i(kr ) p + ikr + ikr! + Korzystamy z reguł komutacji r, H 0 = r H 0 H 0 r = iħ m p dostajemy n p m = iiω nn n r m Kolejne człony w rozwinięciu dają przejścia dipolowe magnetyczne, kwadrupolowe elektryczne itd.

13 Fala elektromagnetyczna Zaburzenie w postaci fali elektromagnetycznej. H e m A p A = A 0 e i(ωt kr ) + e i(ωt kr ) P nn = w nn τ = π ħ n w± m δ E n E m ± ħω rozwijając w szereg p e i(kr ) p + ikr + ikr! + po żmudnych obliczeniach dostajemy prawdopodobieństwo emisji promieniowania elektromagnetycznego dipolowego (opisanego operatorem er ) A nn = w nn τ = ω nn 3 e 3πε 0 ħc 3 n r m = 4α 3 ω nn 3 c n r m α = e 4πε 0 ħc 37 Jest to jeden ze współczynników Einsteina (lasery itp. za tydzień!) dla stanów niezdegenerowanych

14 Fala elektromagnetyczna Zaburzenie w postaci fali elektromagnetycznej. A nn = ω nn 3 e 3πε 0 ħc 3 m r n = 4α 3 ω nn 3 c m r n W przypadku degeneracji stanów wprowadza się siłę linii A nn = 4α 3 ω nn 3 c S mm g m S nn = n i r m j degeneracja poziomu wyjściowego W przypadku stanów atomu wodoru wygodnie jest przedstawić operator i n i r m j = ni z m j + n i x + ii m j + n i x ii m j j r w postaci kołowej: łatwo jest wtedy całkować harmoniki sferyczne, bo: Sprawdzić! z = r cos θ x ± ii = re ±ii sin θ

15 Fala elektromagnetyczna Kilka uwag A nn = 4α 3 ω nn 3 c S mm g m S nn = n i r m j i j Obliczając współczynnika Einsteina dla np. atomu wodoru możemy dostać tzw. reguły wyboru przejść optycznych l = ± zas. zach. pędu foton ma spin całkowity m = ± m = 0 przejścia w polaryzacji kołowej s przejścia w polaryzacji liniowej p Przejścia optyczne są możliwe tylko między poziomami o różnej symetrii, gdyż operator jest antysymetryczny r

16 Fala elektromagnetyczna Kilka uwag A nn = 4α 3 ω nn 3 c S mm g m S nn = n i r m j i j Wprowadza się pojęcie czasu życia ze względu na zanik radiacyjny: τ nn = A nn W przypadku przejść optycznych dipolowych czas życia jest rzędu nanosekund. Moc przejścia optycznego P nn = A nn ħ ω nn

17 PODSUMOWANIE złota reguła Fermiego Prawdopodobieństwo przejścia na jednostkę czasu: W t = W 0 t τ Przejścia są możliwe tylko do stanów P mm = w mm τ E m = E n = π ħ m W n δ E m E n W t = w ± e ±iωt 0 t τ P nn = w nn τ = π ħ n w± m δ E n E m ± ħω Przejścia są możliwe tylko do stanów E m = E n ± ħω Zaburzenie w postaci fali elektromagnetycznej. A nn = ω nn 3 e 3πε 0 ħc 3 m r n = 4α 3 ω nn 3 c m r n P nn = A nn δ E n E m ± ħω

18 PODSUMOWANIE złota reguła Fermiego Szybkość zmian czyli prawdopodobieństwo przejścia na jednostkę czasu ze stanu początkowego i do końcowego f dane jest wzorem: P mm = π ħ f W i ρ E f W- oziaływanie z polem ρ E f - gęstość stanów końcowych Zaburzenie W nie musi być w postaci fali elektromagnetycznej.

19 Wyprowadzenie prawa Plancka. Lasery. S. Harris

20 Trochę historii XIX w: materia ma budowę ziarnistą, energia (gł. fale e- m) ma charakter falowy Nierozwiązane problemy: Promieniowanie ciała doskonale czarnego Efekt fotoelektryczny Linie widmowe atomów

21 Trochę historii XIX w: materia ma budowę ziarnistą, energia (gł. fale e- m) ma charakter falowy Nierozwiązane problemy: Promieniowanie ciała doskonale czarnego Efekt fotoelektryczny Linie widmowe atomów

22 Prawo Rayleigha- Jeansa Katastrofa w nadfiolecie Rozkład widmowy ciała doskonale czarnego: Klasycznie zasada ekwipartycji energii: średnia energia fali stojącej jest niezależna od częstotliwości E = kk Gęstość energii r to ilość fal z danego przedziału częstotliwości razy średnia energia, podzielić przez objętość wnęki: ρ ν, T = 8πν c 3 kkkk Całkowita gęstość energii promieniowania w danej temperaturze dna jest przez sumę po wszystkich częstościach ρ T = ρ ν, T 0 0 = 8π c3 kk ν =

23 Prawo Rayleigha- Jeansa Katastrofa w nadfiolecie

24 Trochę historii XX w: energia ma (również) charakter ziarnisty (korpuskularny) hipoteza Plancka Rozwiązane problemy: Promieniowanie ciała doskonale czarnego (Planck 900, Nobel 98) Efekt fotoelektryczny (Einstein 905, Nobel 9) Linie widmowe atomów (Bohr 93, Nobel 9) Fotony energia: E = h n (h = J s = ev s) pęd: p = E / c = h / l Count Dooku's Geonosian solar sailer l = h / p

25 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E Od jakich parametrów zależy liczba przejść atomów ze stanu do i na odwrót? E = E E E

26 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E hν Od jakich parametrów zależy liczba przejść atomów ze stanu do i na odwrót? ħω = hν = E E. Absorpcja E

27 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E hν E Od jakich parametrów zależy liczba przejść atomów ze stanu do i na odwrót? ħω = hν = E E. Absorpcja liczba przejść aaa = N B ρ Ilość dostępnych stanów Gęstość energii promieniowania Współczynnik proporcjonalności

28 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E Od jakich parametrów zależy liczba przejść atomów ze stanu do i na odwrót? hν ħω = hν = E E. Absorpcja E aaa = N B ρ. Emisja spontaniczna

29 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E Od jakich parametrów zależy liczba przejść atomów ze stanu do i na odwrót? hν ħω = hν = E E. Absorpcja E aaa = N B ρ. Emisja spontaniczna liczba przejść ssss = AN Współczynnik proporcjonalności Ilość dostępnych stanów

30 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E Od jakich parametrów zależy liczba przejść atomów ze stanu do i na odwrót? hν hν ħω = hν = E E hν. Absorpcja E aaa = N B ρ. Emisja spontaniczna ssss = AN. Emisja wymuszona

31 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E hν hν hν Od jakich parametrów zależy liczba przejść atomów ze stanu do i na odwrót? ħω = hν = E E. Absorpcja E = N B ρ aaa. Emisja spontaniczna ssss = AN. Emisja wymuszona liczba przejść Ilość dostępnych stanów www = N B ρ Współczynnik proporcjonalności Gęstość energii promieniowania

32 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E Od jakich parametrów zależy liczba przejść atomów ze stanu do i na odwrót? N B ρ AN N B ρ ħω = hν = E E. Absorpcja E = N B ρ aaa. Emisja spontaniczna. Emisja wymuszona ssss = AN www = N B ρ

33 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E aaa = N B ρ AN N B ρ ssss = AN E www = N B ρ W warunkach równowagi termicznej (warunek konieczny, ale spełniony także w stanach dalekich od równowagi, np. w laserach!) = + aaa ssss www N B ρ = AN + N B ρ

34 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E N B ρ = AN + N B ρ E AN N B ρ ρ = A B N B N B W warunkach równowagi termicznej obsadzenia N i N dane są rozkładem Boltzmana

35 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E N B ρ = AN + N B ρ E AN N B ρ ρ = A B N B N B W warunkach równowagi termicznej obsadzenia N i N dane są rozkładem Boltzmana N = const e E kk N = const e E kk Co się dzieje z ρ dla T? N = e (E E ) kk N = e hν kk

36 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E N B ρ = AN + N B ρ E AN N B ρ ρ = A B N B N B W warunkach równowagi termicznej obsadzenia N i N dane są rozkładem Boltzmana N = const e E kk N = const e E kk N = e (E E ) kk N = e hν kk Co się dzieje z ρ dla T? B = B Biorąc pod uwagę stopnie degeneracji poziomów g B = g B

37 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E E AN N B ρ ρ ν, T = A B N B N B = A B exp hν kk Z kolei dla hν kk mamy prawo Reileigha-Jeansa ρ ν, T = 8πν c 3 kkkk Należy rozwinąć funkcję wykładniczą

38 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E E AN N B ρ ρ ν, T = A B N B N B = A B exp hν kk Z kolei dla hν kk mamy prawo Reileigha-Jeansa ρ ν, T = 8πν c 3 kkkk Należy rozwinąć funkcję wykładniczą ρ ν, T A B kk/hν Stąd: A B = 8π c 3 hν3 = D ν hν Ilość modów promieniowania w zamkniętej objętości

39 Emisja spontaniczna i wymuszona Rozważmy przejścia pomiędzy dwoma stanami E ρ ν, T = exp 8πν hν kk c 3 hν AN N B ρ Wzór Plancka E A oraz B to współczynniki Einsteina. Wymiar A: ssss = AN A = τ oraz : B = ττ ν hν

40 Fala elektromagnetyczna Zaburzenie w postaci fali elektromagnetycznej. A nn = ω nn 3 e 3πε 0 ħc 3 m r n = 4α 3 ω nn 3 c m r n W przypadku degeneracji stanów wprowadza się siłę linii A nn = 4α 3 ω nn 3 c S mm g m S nn = n i r m j degeneracja poziomu wyjściowego W przypadku stanów atomu wodoru wygodnie jest przedstawić operator i n i r m j = ni z m j + n i x + ii m j + n i x ii m j j r w postaci kołowej: łatwo jest wtedy całkować harmoniki sferyczne, bo: Sprawdzić! z = r cos θ x ± ii = re ±ii sin θ

41 Lasery Laser potrzebuje co najmniej 3ch stanów Czesław Radzewicz Rzadko stosowany laser 3-poziomowy

42 Lasery Laser potrzebuje co najmniej 3ch stanów Czesław Radzewicz Rzadko stosowany laser 3-poziomowy

43 Struktura subtelna Struktura subtelna to zespół zjawisk związanych z istnieniem spinu. Uwzględnienie ich prowadzi do poprawek energii poziomów atomowych. 4 0 c m p E + = = + + = c m p m p c m c m p c m p c m E = = c m p m p c m E E K. Wyrażenie pozostające pod pierwiastkiem można rozwinąć w szereg:. Wzór na energię kinetyczną obcinamy na trzecim wyrazie: Ψ Ψ Ψ + Ψ = ) ˆ( c m r V m t i Tadeusz Stacewicz Poprawny opis atomu wymaga wzięcia pod uwagę efektów relatywistycznych co prowadzi do hamiltonianu Diraca.

44 Struktura subtelna i 4 Ψ = Ψ + Vˆ( r) Ψ 4 3 m 8m0c t Ψ Stosując rachunek zaburzeń w bazie funkcji własnych atomu wodoru można znaleźć poprawkę energii uwzględniającą relatywistyczną zmianę masy dla poziomu o głównej liczbie kwantowej E n E α Z 4 ' n = E n 4 4 l + n 3 n α = e πε c Poprawka ta dla atomu wodoru jest: stosunkowo niewielka; szybko zmniejsza się wraz z główną liczbą kwantową; a więc ma także niewielkie znaczenie dla atomów wieloelektronowych. Jednak dla jonów wodoropodobnych o dużych ładunkach jądra (dużych E n ) wartość tej poprawki jest wielkością znaczącą. Tadeusz Stacewicz

45 Struktura subtelna Następny wyraz rozwinięcia równania Diraca daje się sprowadzić do hamiltonianu opisującego oziaływanie spin orbita : m e c s gdzie V oznacza potencjał wiążący atom, a dv ( Σ p) = sl = µ B Σ m W wyniku obliczeń uzyskuje się poprawki energetyczne: e c r dr to pole elektryczne, jakie odczuwa elektron. E α Z = n " 3 4 [ j( j + ) l( l + ) s( s + ) ] l( l + )( l + ) E n Tadeusz Stacewicz

46 Struktura subtelna Dla stanów z l=0 uwzględnia się także oziaływanie elektronu z jądrem wynikające stąd, że elektron o tej liczbie kwantowej przebywa średnio blisko jądra znacznie dłużej niż elektron w jakimkolwiek innym stanie. Prowadzi to do poprawki Darwina: α Z "' = n E 3 Pełny wynik sumaryczna poprawka energii poziomu atomu wodoru w wyniku oziaływania subtelnego wynosi : 4 E n E α Z = 4 3 S E n n 4 4 j + n Tadeusz Stacewicz

47 Struktura subtelna Powyższe obliczenia wykonał Paul Dirac. Jak widać, stany o jednakowych liczbach kwantowych n i j powinny mieć tę samą energię: np. energia poziomu S / i P / powinny być identyczne, podobnie jak energie poziomu 3P 3/ i 3D 3/. Tadeusz Stacewicz

48 Struktura subtelna W latach Lamb i Retherford wykazali, że model ten jest zbyt uproszczony. Dokonując precyzyjnych pomiarów oziaływania atomów wodoru z polem fal radiowych stwierdzili, że energia stanu S / jest większa niż energia stanu P / o cm -. Wielkość ta, zwana przesunięciem Lamba, była także wielokrotnie wyznaczana za pomocą współczesnych technik spektroskopii laserowej. Obecnie jest jedną z najdokładniej znanych stałych fizycznych. Wyniki tych badań dały impuls do rozwoju nowej gałęzi nauki: elektrodynamiki kwantowej. Wyjaśniła ona, że przesunięcie Lamba powstaje wskutek oziaływania atomów z polem elektromagnetycznym, którego mody nawet w próżni, w temperaturze zera bezwzględnego - a więc w nieobecności promieniowania charakteryzują się energią ω / Tadeusz Stacewicz

49 Pole magnetyczne i spin Spin, oziaływanie spin-orbita dla stanów s L ˆ = 0 Lˆ Sˆ = 0 dla stanów p Lˆ 0 Lˆ Sˆ 0 Całkowity moment pędu: L ˆ =, Sˆ = Jˆ = Lˆ + Sˆ baza: H SO j, = λ LS ˆ ˆ m j P3/ P/ g-czynnik, zapewnia zgodność z eksprymentem 3 3 baza: baza: w skrócie: n, l, s, m l, m s λ = R α 4 Ry = hcr n, l, s, j, j, m j m j

50 Termy elektronowe Pole magnetyczne i spin Sposób opisu układu wielu elektronów s+ Funkcja falowa MUSI być antysymetryczna (ze względu na przestawienia cząsteczek) ψ ( r, S ) = ψ ( r ) χ( ) z S z L j część orbitalna część spinowa P3/ L ˆ =, Sˆ = P/ 3 3 baza: n, l, s, j, m j w skrócie: j, m j

51 Termy elektronowe Pole magnetyczne i spin Sposób opisu układu wielu elektronów s+ Funkcja falowa MUSI być antysymetryczna (ze względu na przestawienia cząsteczek) ψ ( r, S ) = ψ ( r ) χ( ) z S z L j część orbitalna część spinowa Uogólnienie: ψ N ( r r, S,..., S ) = ψ ( r,..., r ) ( S,..., S ),..., N N N χ N Antysymetryczna funkcja falowa + zasada Pauliego + oziaływanie kulombowski = ODDZIAŁYWANIA WYMIENNE

Fizyka Materii Skondensowanej.

Fizyka Materii Skondensowanej. Fizyka Materii Skondensowanej Jacek.Szczytko@fuw.edu.pl Konrad.Dziatkowski@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/fms Uniwersytet Warszawski 011 GryPlan 4.10 Mechanika kwantowa. Stany. Studnia kwantowa,

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych

II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych r. akad. 004/005 II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych Sprzężenie spin - orbita jest drugim, po efektach relatywistycznych, źródłem rozszczepienia subtelnego

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Oddziaływanie atomu z kwantowym polem E-M: C.D.

Oddziaływanie atomu z kwantowym polem E-M: C.D. Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 3, 12.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 2 - przypomnienie

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

II.1 Serie widmowe wodoru

II.1 Serie widmowe wodoru II.1 Serie widmowe wodoru Jan Królikowski Fizyka IVBC 1 II.1 Serie widmowe wodoru W obszarze widzialnym wystepują 3 silne linie wodoru: H α (656.3 nm), H β (486.1 nm) i H γ (434.0 nm) oraz szereg linii

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa Widmo sodu, serie p główna s- ostra d rozmyta f -podstawowa Przejścia dozwolone w Na Reguły wyboru: l =± 1 Diagram Grotriana dla sodu, z lewej strony poziomy energetyczne wodoru; należy zwrócić uwagę,

Bardziej szczegółowo

ZJAWISKA KWANTOWO-OPTYCZNE

ZJAWISKA KWANTOWO-OPTYCZNE ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Model Bohra budowy atomu wodoru - opis matematyczny

Model Bohra budowy atomu wodoru - opis matematyczny Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41? TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Spektroskopia magnetyczna

Spektroskopia magnetyczna Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,

Bardziej szczegółowo

obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a

obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a Wykład II.1 25 Obroty układu kwantowego Interpretacja aktywna i pasywna. Macierz obrotu w trzech wymiarach a operator obrotu w przestrzeni stanów. Reprezentacja obrotu w przestrzeni funkcji falowych. Transformacje

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

II.6 Atomy w zewnętrznym polu magnetycznym

II.6 Atomy w zewnętrznym polu magnetycznym II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu

Bardziej szczegółowo

Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Wstęp do fizyki atomowej i kwantowej Rok akademicki: 2012/2013 Kod: JFM-1-302-s Punkty ECTS: 6 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów:

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO

PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO wyprowadzenie bez mechaniki kwantowej. Opracował mgr inż. Herbert S. Mączko Celem jest wyznaczenie objętościowej gęstości energii ρ T promieniowania w równoległościennej,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

0900 FS2 2 FAC. Fizyka atomu i cząsteczki FT 8. WYDZIAŁ FIZYKI UwB KOD USOS: Karta przedmiotu. Przedmiot moduł ECTS. kierunek studiów: FIZYKA 2 st.

0900 FS2 2 FAC. Fizyka atomu i cząsteczki FT 8. WYDZIAŁ FIZYKI UwB KOD USOS: Karta przedmiotu. Przedmiot moduł ECTS. kierunek studiów: FIZYKA 2 st. WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS2 2 FAC Karta przedmiotu Przedmiot moduł ECTS Fizyka atomu i cząsteczki FT 8 kierunek studiów: FIZYKA 2 st. specjalność: FIZYKA TEORETYCZNA Formy zajęć wykład konwersatorium

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He

Bardziej szczegółowo

Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów

Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów Nazwa i kod przedmiotu Kierunek studiów Mechanika kwantowa, NAN1B0051 Nanotechnologia Poziom studiów I stopnia - inżynierskie Typ przedmiotu obowiąkowy Forma studiów stacjonarne Sposób realizacji na uczelni

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Wykłady z Fizyki. Kwanty

Wykłady z Fizyki. Kwanty Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej.

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej. 1 Chemia kwantowa. Pytania egzaminacyjne. 21/211: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny - interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest licza

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE 1 3 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy Poziom przedmiotu Symbole efektów kształcenia Symbole efektów dla obszaru kształcenia Symbole efektów kierunkowych

Bardziej szczegółowo

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

Problemy fizyki początku XX wieku

Problemy fizyki początku XX wieku Mechanika kwantowa Problemy fizyki początku XX wieku Promieniowanie ciała doskonale czarnego Ciałem doskonale czarnym nazywamy ciało całkowicie pochłaniające na nie promieniowanie elektromagnetyczne, niezależnie

Bardziej szczegółowo

Liczby kwantowe elektronu w atomie wodoru

Liczby kwantowe elektronu w atomie wodoru Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność

Bardziej szczegółowo

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018 Optyka Wykład XII Krzysztof Golec-Biernat Dyfrakcja. Laser Uniwersytet Rzeszowski, 17 stycznia 2018 Wykład XII Krzysztof Golec-Biernat Optyka 1 / 23 Plan Dyfrakcja na jednej i dwóch szczelinach Dyfrakcja

Bardziej szczegółowo

1. Przesłanki doświadczalne mechaniki kwantowej.

1. Przesłanki doświadczalne mechaniki kwantowej. 1 Pytania egzaminacyjne: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny- interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest liczba wybijanych elektronów

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego 3.5. Model Bohra-Sommerfelda Przeciw modelowi atomu zaproponowanego przez Ernesta Rutherforda przemawiały także wyniki badań spektroskopowych pierwiastków. Jeśli elektrony, jak wynika z teorii Maxwella,

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak

FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak FALOWY KWANTOWY OPS ŚWATŁA Dualizm korpuskularno - falowy Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak interferencja, dyfrakcja i polaryzacja ma naturę falową, a w

Bardziej szczegółowo

Spis treści. 1. Wstęp... 17. 2. Masa i rozmiary atomu... 21. 3. Izotopy... 45. Przedmowa do wydania szóstego... 13

Spis treści. 1. Wstęp... 17. 2. Masa i rozmiary atomu... 21. 3. Izotopy... 45. Przedmowa do wydania szóstego... 13 5 Spis treści Przedmowa do wydania szóstego........................................ 13 Przedmowa do wydania czwartego....................................... 14 Przedmowa do wydania pierwszego.......................................

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 28, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 28, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 8, 5.01.018 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 6 - przypomnienie

Bardziej szczegółowo

2/τ. ω fi Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2009/10. wykład 10 1/14 = 1. 2 fi 0.5

2/τ. ω fi Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2009/10. wykład 10 1/14 = 1. 2 fi 0.5 Streszczenie W9: stany niestacjonarne niestacjonarne superpozycje stanów elektronowych promieniują polaryzacja składowych zeemanowskich = wynik szczególnej ewolucji stanów niestacjonarnych w polu B przejścia

Bardziej szczegółowo