Podstawy Informatyki 1. Laboratorium 8
|
|
- Kazimiera Grzybowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Podstawy Informatyki 1 Laboratorium 8 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z nakładką SIMULINK oraz zdobycie praktycznych umiejętności tworzenia i symulowania modeli z wykorzystaniem tej nakładki. 2. Wprowadzenie Biblioteka Simulink dołączana do pakietu Matlab jest graficznie zorientowanym środowiskiem projektowym wyposażonym w funkcje:
2 Podstawy Informatyki 2 Konstrukcji modeli dynamicznych Analizy działania modeli dynamicznych przy różnych wymuszeniach Prezentacji wyników symulacji W pełni interaktywne środowisko pracy Simulink umożliwia budowę modeli dynamicznych na bazie predefiniowanych bloków funkcjonalnych dołączanych wraz z pakietem. Funkcje edycyjne ułatwiają szybkie tworzenie modeli oraz ich modyfikację. W celu umożliwienia symulacji nakładkę Simulink wyposażono w zestaw bloków modelujących sygnały wejściowe. Podstawowe to: step, const, ramp. Możliwa jest też symulacja dla bardziej złożonych wymuszeń, w tym zdefiniowanych przez użytkownika. Symulacji układów sterowania można dokonywać dla różnych metod całkowania, zadanych parametrów (krok, rząd metody, czas symulacji, solver). Prezentacja wyników symulacji w nakładce Simulink jest możliwa dzięki bogatej bibliotece bloków wyjściowych. Najprostsze z nich to: display,scope, to workspace.). Dzięki temu wyniki symulacji mogą być przesłane np. do przestrzeni roboczej programu MATLAB i tam poddane dalszemu przetwarzaniu. Możliwości nakładki Simulink mogą zostać rozszerzone przez dodatkowe biblioteki bloków funkcjonalnych (ang. blocksets). Przykładowe biblioteki to: Nonlinear Control Design Blockset wspomaganie projektowania nieliniowych układów sterowania, Power System Blockset wspomaganie projektowania układów sterowania systemami maszyn i napędów dużych mocy. DSP Blockset wspomaganie projektowania systemów wykorzystujących cyfrowe przetwarzanie sygnałów. 3. Program ćwiczenia 1. Uruchomienie programu MATLAB. (a) Wprowadzić: >>pwd Wprogramie MATLAB każde wprowadzone polecenie zatwierdza się klawiszem <ENTER>. (b) Wprowadzić: >>cd nazwa_podkatalogu Parametr nazwa_pod-katalogu powinien składać się z nazwisk 2 wybranych studentów grupy laboratoryjnej (np. >>cd KowalskiNowak). 2. Modelowanie zależności statycznych Zamodelować zależność umożliwiającą zamianę wartości temperatur wyrażonych w stopniach Celsjusza na wartości wyrażone w stopniach Fahrenheita: 9 T F = Tc gdzie: T F temperatura wyrażona w stopniach Fahrenheita; T C temperatura wyrażona w stopniach Celsjusza. (a) W linii poleceń programu MATLAB wprowadzić: simulink. Zgodnie ze wskazówkami prowadzącego utworzyć nowy projekt (File->New->Model). Elementy niezbędne do budowy modelu to: Blok ramp (wymuszenie prędkościowe) z biblioteki Sources (wejście). Blok const (wartość stała) z biblioteki sources, (wartość stała równa 32). Blok gain (wzmocnienie) z biblioteki math, (mnożenie). Blok sum (sumator) z biblioteki math, (dodawanie). Blok scope (oscyloskop) z biblioteki sinks, (wyniki symulacji). (b) Przeciągnąć wymienione elementy (bloki) do okna modelu:
3 Podstawy Informatyki 3 Rys. 1. Połączenie elementów modelu zależności statycznej (c) Przypisać wartości parametrom bloków. Dwukrotne kliknięcie - edycja wartości parametrów, wprowadzenie wartości, przycisk Close - zamknięcie okna edycji. Wartości parametrów: ramp pole: Initial Output = 0. gain: 9/5. constant: 32. (d) Połączyć bloki zgodnie z kierunkiem przepływu sygnału jak na rys. 1: Rys. 2. Wykres, który można zobaczyć na oscyloskopie po przeprowadzeniu symulacji
4 Podstawy Informatyki 4 (e) Zapoznać się z opcjami symulacji nakładki Simulink (menu Simulation/Configuration Parameters). (f) Zasymulować działanie modelu (polecenie Start z menu Simulation) dla czasu symulacji 10s. (g) Zasymulować działanie modelu (polecenie Start z menu Simulation) dla czasu symulacji 50s. (h) Zapisać model w pliku C2F.mdl. 3. Wprowadzić następujący model Zamodelować zależność x ( t) = Acos( ω t + ϕ ) W matlabie odpowiada to: t=(0:.01:10);a=2;phi=pi/2;omega=5; xt=a*cos(omega*t+phi); plot(t,xt);grid Rys. 3. Połączenie modelu 4. Rozwiązywanie równań różniczkowych. (a) Zamodelować równanie różniczkowe postaci: x (t) = 2x(t) + u(t) gdzie: x(t) rozwiązanie; u(t) wymuszenie w postaci fali prostokątnej o amplitudzie równej 1 i częstotliwości równej 1 rad/sec. W modelu równania do wyznaczenia x(t) na podstawie x (t) wykorzystano blok integratora (biblioteka Continuous). Inne niezbędne bloki to gain (mnożenie) oraz sum (sumator). Dodatkowo zastosowano blok Signal Generator (biblioteka sources) do wygenerowania zadanego przebiegu funkcji u(t). Przeciągnąć bloki do okna modelu. Połączyć bloki zgodnie ze schematem: Węzeł zaczepowy tworzy się przez przeciąganie linii z wciśniętym prawym przyciskiem myszy. W celu odwrócenia bloku gain należy wywołać menu kontekstowe (klikając prawym przyciskiem myszy na bloku) i wykonać polecenie Format -> Flip Block. Zapoznać się z opcjami menu kontekstowego. Rys. 4. Model równania różniczkowego
5 Podstawy Informatyki 5 (b) Dodać element to workspace z biblioteki sinks, tak aby możliwe było wyeksportowanie wyników symulacji do przestrzeni roboczej programu MATLAB (po kliknięciu lewym przyciskiem myszki ustawić Save format array, w matlabie wpisać whos, plot(simout)). Rys. 5. Model równania różniczkowego z blokiem To Workspace c) Przeprowadzić symulację działania stworzonego modelu dla różnych parametrów (w menu Simulations/Configuration Parameters) oraz trzech wartości gain: 2, 10, 2. Wykreślić przebiegi sygnałów zarejestrowanych podczas symulacji. 5. Modelowanie transmitancji operatorowej (a) Zamodelować zależność x (t) = 2x(t) + u(t), w postaci transmitancji operatorowej (przy zerowych warunkach początkowych). Zakładając zerowe warunki początkowe, do równania stosuje się obustronne przekształcenie Laplace a, co prowadzi do równania: sx(s) = 2X(s) + U(s) Traktując U(s) jako transformatę wymuszenia, oraz X(s) jako transformatę odpowiedzi, po prostych przekształceniach uzyskuje się następującą transmitancję modelu: G(s) =1/(s + 2) Przeciągnąć do okna modelu bloki: Signal Generator (biblioteka sources), Transfer Fcn, (biblioteka continous). Połączyć bloki zgodnie ze schematem Ustawić parametry bloku Signal generator: Wave form: square; Amplitude: 1; Frequency: 1; Units: rad/sec. (b) Dodać element to workspace z biblioteki sinks, tak aby możliwe było wyeksportowanie wyników symulacji do przestrzeni roboczej programu MATLAB. (c) Przeprowadzić symulację działania stworzonego modelu dla czasów symulacji: 50s i 5s. Wykreślić przebiegi sygnałów zarejestrowanych podczas symulacji. Rys. 6. Model w postaci transmitancji
6 Podstawy Informatyki 6 Zadanie 1 Narysować krzywe Lissajous o parametrach, a nieparzyste, b parzyste, a b = 1. a=1, b=2 a=3, b=2
7 Podstawy Informatyki 7 a=3, b=4 a=5, b=4 Wskazówka1: Krzywa Lissajous (wym. lisaʒu) bądź Bowditcha w matematyce krzywa parametryczna opisująca drgania harmoniczne, dana wzorem
8 Podstawy Informatyki 8 Nazwy pochodzą od nazwisk Nathaniela Bowditcha, który opisał rodzinę tych krzywych w 1815, oraz Julesa Antoine'a Lissajous, który badał je używając do tego celu drgających kamertonów z umocowanymi do nich zwierciadełkami. Krzywe te nazywane są też figurami Lissajous. Kształt krzywych jest szczególnie uzależniony od współczynnika (stosunek częstotliwości). Dla współczynnika równego 1, krzywa jest elipsą, ze specjalnymi przypadkami okrąg: ; oraz odcinek: δ = 0. Inne wartości współczynnika dają bardziej złożone krzywe, które są zamknięte, tylko gdy jest liczbą wymierną. Wskazówka2: Dla lepszego efektu wizualnego należy zmienić w preferencjach XY Graph wartość Sample time na jakąś małą np Zadanie 2 Utworzyć model zależności liczącej T c. 5 T c = ( TF 32) 9 Zasymulować działanie modelu (polecenie Start z menu Simulation) dla czasu symulacji 50s. Zadanie 3. Analiza stanów przejściowych. Przeprowadzić analizę stanów przejściowych w obwodzie RC (filtr dolnoprzepustowy), przedstawionym na rys. 7 Rys. 7. Model obwodu RC (filtr dolnoprzepustowy) W pierwszej kolejności należy ułożyć równanie różniczkowe analizowanego obwodu: u 1 (t) = u R (t) + u 2 (t) Biorąc pod uwagę, że: u R (t) = i(t)r 1, i(t) = i c (t) = du t C c ( ) 1 dt u c (t)=u 2 (t) u 1 (t)=r 1 * i c (t)+u 2 (t) du 2 ( t) =. (wpisać końcowe równanie i je zamodelować) dt
9 Podstawy Informatyki 9 (b) Przeprowadzić symulację działania stworzonego modelu, dla następujących wartości parametrów RC: i. R1 = 1kΩ, C1 = 1μF ii. R1 = 20KΩ, C1 = 5nF iii. R1 = 1Ω, C1 = 2μF Zadanie 4. Badanie obwodu RLC Przy szeregowym połączeniu idealnych elementów R, L, C, zgodnie z drugim prawem Kirchoffa, napięcia w oczku obwodu muszą zachodzić: u=u R +u C +u L Połączone szeregowo elementy R, L, C Aby zaimplementować dany obwód w simulinku należy wprowadzić inne oznaczenia (wymóg oprogramowania):
10 Podstawy Informatyki 10 Narysować schemat blokowy i zasymulować. Przyjąć R=1; C=0.01, L=0.01 Kolejno wyeksportować do Workspace i oglądać wykresy np. plot(i(40:50)) plot(ul(40:50)) plot(uc(40:50)) plot(ur(40:50)) Parametry dla Sine Wave Amplitude=2 Bias=0 Frequency (rad/s) = 2*pi Phase =0 Sample Time=0
Laboratorium Komputerowego Wspomagania Analizy i Projektowania
Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 6. Symulacja obiektów dynamicznych w środowisku SIMULINK. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest
LABORATORIUM MODELOWANIA I SYMULACJI
Wydział Elektryczny Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczenie 6 Wykorzystanie nakładki SIMULINK do budowy i symulacji modeli dynamicznych. 1. Cel ćwiczenia. Celem
ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
Uruchamianie Aby uruchomić środowisko Simulink należy wpisać w command window Matlaba polecenie simulink lub kliknąć na pasku zadań ikonę programu:
SIMULINK 1 Zawartość O środowisku... 1 Uruchamianie... 1 Idea tworzenia modeli... 2 Pierwszy prosty model figury Lissajou... 2 Drugi prosty model wahadło matematyczne... 6 O środowisku Simulink jest częścią
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy SIMULINKA Simulink jest
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Wprowadzenie do Simulinka w środowisku MATLAB Pytania i zadania do ćwiczeń laboratoryjnych
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ Laboratorium nr 2 Podstawy środowiska Matlab/Simulink część 2 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE ZJAWISKA REZONANSU W SZEREGOWYM OBWODZIE RLC PRZY POMOCY PROGRAMU MATLAB/SIMULINK Autor: Tomasz Trawiński, Strona /7 . Cel ćwiczenia Celem ćwiczenia jest
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. wyświetla listę tematów pomocy. wyświetla okno pomocy (Help / Product Help)
Wybr ane za gadnienia elektr oniki współczesnej Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. 1 Cel ćwiczenia Pierwsze zajęcia laboratoryjne z zakresu przetwarzania sygnałów mają na celu
Identyfikacja i modelowanie struktur i procesów biologicznych
Identyfikacja i modelowanie struktur i procesów biologicznych Laboratorium 1: Modele ciągłe. Model Lotki-Volterry. mgr inż. Urszula Smyczyńska AGH Akademia Górniczo-Hutnicza 1. Ćwiczenie 1: Rozwiązanie
Modele układów dynamicznych - laboratorium. SIMULINK - wprowadzenie
Modele układów dynamicznych - laboratorium SIMULINK - wprowadzenie SIMULINK Simulink to przybornik (toolbo) pakietu Matlab przeznaczony do symulacji układów dynamicznych w trybie graficznym. Simulink to
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX0 Wprowadzenie Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się ze środowiskiem Matlab/Simulink wraz
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
Wprowadzenie do SIMULINKA
Wprowadzenie do SIMULINKA 1. WSTĘP SIMULINK jest pakietem oprogramowania służącym do modelowania, symulacji i analizowania układów dynamicznych. Można implementować w nim zarówno układy liniowe jak i nieliniowe
c - częstość narodzin drapieżników lub współczynnik przyrostu drapieżników,
SIMULINK 3 Zawartość Równanie Lotki-Volterry dwa słowa wstępu... 1 Potrzebne elementy... 2 Kosmetyka 1... 3 Łączenie elementów... 3 Kosmetyka 2... 6 Symulacja... 8 Do pobrania... 10 Równanie Lotki-Volterry
WPROWADZENIE DO ŚRODOWISKA SCICOS
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCICOS Materiały pomocnicze do ćwiczeń laboratoryjnych Oryginał: Modeling and Simulation in Scilab/Scicos Stephen L.
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Rys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji mgr inż.
POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula
POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII Roman Kaula ZASTOSOWANIE NOWOCZESNYCH NARZĘDZI INŻYNIERSKICH LabVIEW oraz MATLAB/Simulink DO MODELOWANIA UKŁADÓW DYNAMICZNYCH PLAN WYKŁADU Wprowadzenie
Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
. Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
Przekształcanie schematów blokowych. Podczas ćwiczenia poruszane będą następujące zagadnienia:
Warszawa 2017 1 Cel ćwiczenia rachunkowego Podczas ćwiczenia poruszane będą następujące zagadnienia: zasady budowy schematów blokowych układów regulacji automatycznej na podstawie równań operatorowych;
Symulacja pracy silnika prądu stałego
KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Symulacja pracy silnika prądu stałego Opracował: Dr inż. Roland Pawliczek Opole 016
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach
Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...
1. Regulatory ciągłe liniowe.
Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie: Regulacja ciągła PID 1. Regulatory ciągłe liniowe. Zadaniem regulatora w układzie regulacji automatycznej jest wytworzenie sygnału sterującego u(t),
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza
UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:
Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. MTiSP pomiary częstotliwości i przesunięcia fazowego MTiSP 003 Autor: dr inż. Piotr Wyciślok Strona 1 / 8 Cel Celem ćwiczenia jest wykorzystanie
Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 3 Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Rys. 1. Wzmacniacz odwracający
Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową
Prototypowanie systemów sterowania
Prototypowanie systemów sterowania Prowadzący: dr hab. inż. Mateusz Dybkowski, prof. Pwr. mgr inż. Szymon Bednarz Opracował: mgr inż. Szymon Bednarz Wrocław 2019 Laboratorium nr 4 Prototypowanie układów
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA II rok Kierunek Transport Temat: Minimalizacja funkcji logicznych. Projektowanie układów logicznych. Opracował
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 1 Poznawanie i posługiwanie się programem Multisim 2001 Wersja
Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna
Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia obiektu inercyjnego I rzędu 2. orekcja dynamiczna
TWORZENIE SCHEMATÓW BLOKOWYCH I ELEKTRYCZNYCH
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: TS1C 100 003 Ćwiczenie pt. TWORZENIE SCHEMATÓW BLOKOWYCH I
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Minimalizacja funkcji logicznych.
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 1 WPROWADZENIE DO PROGRAMU KOMPUTEROWEGO MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 1 Wprowadzenie do programu komputerowego Matlab 1.1.
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 1 WPROWADZENIE DO PROGRAMU KOMPUTEROWEGO MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 1 Wprowadzenie do programu komputerowego Matlab 1.1.
1. Rejestracja odpowiedzi skokowej obiektu rzeczywistego i wyznaczenie podstawowych parametrów dynamicznych obiektu
Cel ćwiczenia: Zapoznanie się z metodami badania i analitycznego wyznaczania parametrów dynamicznych rzeczywistego obiektu regulacji (identyfikacji obiektu regulacji) na przykładzie mikrotermostatu oraz
ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA
ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC Celem ćwiczenia jest poznanie zasad symulacji prostych obwodów jednofazowych składających się z elementów RLC. I. Zamodelować jednofazowy szeregowy układ RLC (rys.1a)
Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
4.2 Analiza fourierowska(f1)
Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał
Ćw. 0: Wprowadzenie do programu MultiSIM
Ćw. 0: Wprowadzenie do programu MultiSIM Wstęp Celem ćwiczenia jest zapoznanie się z programem MultiSIM przeznaczonym do analiz i symulacji działania układów elektronicznych. Zaznajamianie się z tym programem
Ćw. 0 Wprowadzenie do programu MultiSIM
Ćw. 0 Wprowadzenie do programu MultiSIM 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z programem MultiSIM słuŝącym do symulacji działania układów elektronicznych. Jednocześnie zbadane zostaną podstawowe
Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.
Ćwiczenie 1 Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Środowisko symulacyjne Symulacja układu napędowego z silnikiem DC wykonana zostanie w oparciu o środowisko symulacyjne
przy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
Rys.1. Model cieplny odcinka toru prądowego reprezentowany elementami biblioteki Power System Blockset
Ćwiczenie 4 Modelowanie procesu nagrzewania toru prądowego narzędziami Simulinka w Matlabie Wprowadzenie Celem ćwiczenia jest modelowanie procesu nagrzewania toru prądowego z wykorzystaniem różnorodnych
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
Ćwiczenie: "Rezonans w obwodach elektrycznych"
Ćwiczenie: "Rezonans w obwodach elektrycznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych
WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Ćwiczenie składa się z dwóch części:
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku
Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW
Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW SYMULACJA UKŁADÓW ELEKTRONICZNYCH Z ZASTOSOWANIEM PROGRAMU SPICE Opracował dr inż. Michał Szermer Łódź, dn. 03.01.2017 r. ~ 2 ~ Spis treści Spis treści 3
Inteligentnych Systemów Sterowania
Laboratorium Inteligentnych Systemów Sterowania Mariusz Nowak Instytut Informatyki Politechnika Poznańska ver. 200.04-0 Poznań, 2009-200 Spis treści. Układ regulacji automatycznej z regulatorami klasycznymi
Laboratorium nr 1. Diagnostyka z wykorzystaniem modelu. 2 Detekcja uszkodzeń na podstawie modeli obiektu
Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Diagnostyka procesów i systemów 1 Cel ćwiczenia. Prowadzący: Marcel Luzar 1 Laboratorium nr 1 Diagnostyka z wykorzystaniem modelu
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
Podstawowe zastosowania wzmacniaczy operacyjnych
ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych
Laboratorium 1. Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
Laboratorium 1 1. Cel ćwiczenia Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi Zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Ćwiczenie nr 11. Projektowanie sekcji bikwadratowej filtrów aktywnych
Ćwiczenie nr 11 Projektowanie sekcji bikwadratowej filtrów aktywnych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi filtrami elektrycznymi o charakterystyce dolno-, środkowo- i górnoprzepustowej,
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 5 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego - Zasada
Projektowania Układów Elektronicznych CAD Laboratorium
Projektowania Układów Elektronicznych CAD Laboratorium ĆWICZENIE NR 3 Temat: Symulacja układów cyfrowych. Ćwiczenie demonstruje podstawowe zasady analizy układów cyfrowych przy wykorzystaniu programu PSpice.
Wirtualne przyrządy kontrolno-pomiarowe
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Wirtualne przyrządy kontrolno-pomiarowe dr inż.. Roland PAWLICZEK Laboratorium komputerowe Mechatroniki Cel zajęć ęć: Przyrząd pomiarowy:
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling
Gromadzenie danych. Przybliżony czas ćwiczenia. Wstęp. Przegląd ćwiczenia. Poniższe ćwiczenie ukończysz w czasie 15 minut.
Gromadzenie danych Przybliżony czas ćwiczenia Poniższe ćwiczenie ukończysz w czasie 15 minut. Wstęp NI-DAQmx to interfejs służący do komunikacji z urządzeniami wspomagającymi gromadzenie danych. Narzędzie
Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna
Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE I SYMULACJA UKŁADÓW STEROWANIA Kierunek: Mechatronika Rodzaj przedmiotu: Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1.
PODSTAWY AUTOMATYKI. Wprowadzenie do Simulinka środowiska MATLAB. Materiały pomocnicze do ćwiczeń laboratoryjnych - - termin T3
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Wprowadzenie do Simulinka środowiska MATLAB. Materiały pomocnicze do ćwiczeń laboratoryjnych - - termin T3
UWAGA. Program i przebieg ćwiczenia:
Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi
Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
Automatyka i pomiar wielkości fizykochemicznych ĆWICZENIE NR 3 Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan
Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)
Implementacja rozmytych systemów wnioskujących w zdaniach regulacji
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania Wprowadzenie do Simulinka w środowisku MATLAB Materiały pomocnicze do ćwiczeń laboratoryjnych
O co chodzi z tym MATLAB'em?!
O co chodzi z tym MATLAB'em?! Część 1. SIMULINK W pliku data.mat jest zapisany przebieg. Gdzieś tam i kiedyś tam zarejestrowany. Widać go na fioletowo poniżej. Powstał on z obiektu, co ciekawe wiemy jak
Temat ćwiczenia. Analiza częstotliwościowa
POLIECHNIKA ŚLĄSKA W YDZIAŁ RANSPORU emat ćwiczenia Analiza częstotliwościowa Analiza częstotliwościowa sygnałów. Wprowadzenie Analizę częstotliwościową stosuje się powszechnie w wielu dziedzinach techniki.
MentorGraphics ModelSim
MentorGraphics ModelSim 1. Konfiguracja programu Wszelkie zmiany parametrów systemu symulacji dokonywane są w menu Tools -> Edit Preferences... Wyniki ustawień należy zapisać w skrypcie startowym systemu
Przyjmuje się umowę, że:
MODELE OPERATOROWE Modele operatorowe elementów obwodów wyprowadza się wykorzystując znane zależności napięciowo-prądowe dla elementów R, L, C oraz źródeł idealnych. Modele te opisują zależności pomiędzy
1 Układy wzmacniaczy operacyjnych
1 Układy wzmacniaczy operacyjnych Wzmacniacz operacyjny jest elementarnym układem przetwarzającym sygnały analogowe. Stanowi blok funkcjonalny powszechnie stosowany w układach wstępnego przetwarzania i
Laboratorium z automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:
Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
TRANZYSTORY BIPOLARNE
Instrukcja do ćwiczenia laboratoryjnego TRANZYSTORY BIPOLARNE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień: 1. Tranzystory bipolarne rodzaje, typowe parametry i charakterystyki,
ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC U L U R U C. Informatyka w elektrotechnice
ĆWICZENIE JEDNOFAZOWE OBWODY RLC Celem ćwiczenia jest poznanie zasad symulacji prostych obwodów jednofazowych składających się z elementów RLC, szeregowych i równoległych zjawisko rezonansu prądowego i
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
Wprowadzenie do programu MultiSIM
Ćw. 1 Wprowadzenie do programu MultiSIM 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z programem MultiSIM służącym do symulacji działania układów elektronicznych. Jednocześnie zbadane zostaną podstawowe
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 17 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego -
INSTRUKCJA DO ĆWICZENIA NR 2
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o jednym stopniu
Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa
INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ TEORIA OBWODÓW ELEKTRYCZNYCH LABORATORIUM Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa Grupa nr:. Zespół nr:. Skład
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba